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Abstract

Let S = {a, b, c, . . .} and Γ = {α, β, γ, . . . } be two nonempty sets.
S is called a Γ-semigroup if aαb ∈ S, for all α ∈ Γ and a, b ∈ S and
(aαb)βc = aα(bβc), for all a, b, c ∈ S and for all α, β ∈ Γ. In this paper
we study the semidirect product of a semigroup and a Γ-semigroup.
We also introduce the notion of wreath product of a semigroup and a Γ-
semigroup and investigate some interesting properties of this product.

Keywords: semigroup, Γ-semigroup, orthodox semigroup, right(left)
orthodox Γ-semigroup, right(left) inverse semigroup, right(left) inverse
Γ-semigroup, right(left)α- unity, Γ-group, semidirect product, wreath
product.

2000 Mathematics Subject Classification: 20M17.



162 M.K. Sen and S. Chattopadhyay

1. Introduction

The notion of a Γ-semigroup has been introduced by Sen and Saha [7] in
the year 1986. Many classical notions of semigroup have been extended
to Γ-semigroup. In [1] and [2] we have introduced the notions of right
inverse Γ-semigroup and right orthodox Γ-semigroup. In [6] we have studied
the semidirect product of a monoid and a Γ-semigroup as a generalization
of [4] and [5]. We have obtained necessary and sufficient conditions for
a semidirect product of the monoid and a Γ-semigroup to be right (left)
orthodox Γ-semigroup and right (left) inverse Γ-semigroup. In [9] Zhang
has studied the semidirect product of semigroups and also studied wreath
product of semigroups. In this paper we generalize the results of Zhang to
the semidirect product of a semigroup and a Γ-semigroup. We also study
the wreath product of a semigroup and a Γ-semigroup.

2. Preliminaries

We now recall some definitions and results relating our discussion.

Definition 2.1. Let S = {a, b, c, . . . } and Γ = {α, β, γ, . . . } be two nonempty
sets. S is called a Γ-semigroup if

(i) aαb ∈ S, for all α ∈ Γ and a, b ∈ S and

(ii) (aαb)βc = aα(bβc), for all a, b, c ∈ S and for all α, β ∈ Γ.

Let S be an arbitrary semigroup. Let 1 be a symbol not representing any
element of S. We extend the binary operation defined on S to S ∪ {1} by
defining 11 = 1 and 1a = a1 = a for all a ∈ S. It can be shown that S ∪{1}
is a semigroup with identity element 1. Let Γ = {1}. If we take ab = a1b, it
can be shown that the semigroup S is a Γ−semigroup where Γ = {1}. Thus
a semigroup can be considered to be a Γ-semigroup.

Let S be a Γ-semigroup and x be a fixed element of Γ. We define
a.b = axb for all a, b ∈ S. We can show that (S, .) is a semigroup and we
denote this semigroup by Sx.

Definition 2.2. Let S be a Γ-semigroup. An element a ∈ S is said to be
regular if a ∈ aΓSΓa where aΓSΓa = {aαbβa : b ∈ S, α, β ∈ Γ}. S is said
to be regular if every element of S is regular.
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We now describe some examples of regular Γ-semigroup.
In [7] we find the following interesting example of a regular Γ-semigroup.

Example 2.3. Let S be the set of all 2 × 3 matrices and Γ be the set of
all 3 × 2 matrices over a field. Then for all A,B,C ∈ S and P,Q ∈ Γ we
have APB ∈ S and since the matrix multiplication is associative, we have
(APB)QC = AP (BQC). Hence S is a Γ-semigroup. Moreover it is regular
shown in [7].

Here we give another example of a regular Γ-semigroup.

Example 2.4. Let S be a set of all negative rational numbers. Obviously
S is not a semigroup under usual product of rational numbers. Let
Γ = {− 1

p
: p is prime }. Let a, b, c ∈ S and α, β ∈ Γ. Now if aαb is

equal to the usual product of rational numbers a, α, b, then
aαb ∈ S and (aαb)βc = aα(bβc). Hence S is a Γ-semigroup. Let a =
m
n

∈ Γ where m > 0 and n < 0. m = p
1
p

2
...p

k
where p

i
’s are prime.

p
1
p
2
...p

k

n
(− 1

p
1

) n
p
2
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k−1

(− 1
p

k

) m
n

=
p
1
p
2
...p

k

n
. Thus taking b = n

p
2
...p

k−1

,

α = (− 1
p
1

) and β = (− 1
p

k

) we can say that a is regular. Hence S is a regular

Γ-semigroup.

Definition 2.5 [7] . Let S be a Γ-semigroup and α ∈ Γ. Then e ∈ S is said
to be an α-idempotent if eαe = e. The set of all α-idempotents is denoted
by Eα. We denote

⋃

α∈Γ Eα by E(S). The elements of E(S) are called
idempotent elements of S.

Definition 2.6 [7]. Let a ∈ M and α, β ∈ Γ. An element b ∈ M is called
an (α, β)-inverse of a if a = aαbβa and b = bβaαb. In this case we write

b ∈ V
β
α (a).

Definition 2.7 [2]. A regular Γ-semigroup M is called a right (left) ortho-
dox Γ-semigroup if for any α-idempotent e and β-idempotent f , eαf (resp.
fαe) is a β-idempotent.

Example 2.8 [2]. Let A = {1, 2, 3} and B = {4, 5}. S denotes the set of
all mappings from A to B. Here members of S are described by the images
of the elements 1, 2, 3. For example the map 1→4, 2→5, 3→4 is written as
(4, 5, 4) and (5, 5, 4) denotes the map 1→5, 2→5, 3→4. A map from B to A
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is described in the same fashion. For example (1, 2) denotes 4→1, 5→2. Now

S =
{

(4, 4, 4), (4, 4, 5), (4, 5, 4), (4, 5, 5), (5, 5, 5), (5, 4, 5), (5, 4, 4), (5, 5, 4)
}

and let Γ = {(1, 1), (1, 2), (2, 3), (3, 1)}. Let f, g ∈ S and α ∈ Γ. We define

fαg by (fαg)(a) = fα
(

g(a)
)

for all a ∈ A. So fαg is a mapping from A

to B and hence fαg ∈ S and we can show that (fαg)βh = fα(gβh) for
all f, g, h ∈ S and α, β ∈ Γ. We can show that each element x of S is an
α-idempotent for some α ∈ Γ and hence each element is regular. Thus S is
a regular Γ-semigroup. It is an idempotent Γ-semigroup. Moreover we can
show that it is a right orthodox Γ-semigroup.

Theorem 2.9 [2]. A regular Γ-semigroup M is a right orthodox Γ-semigroup

if and only if for a, b ∈ M,V
β
α

1
(a)∩V

β
α (b) 6= φ for some α, α

1
, β ∈ Γ implies

that V δ
α

1

(a) = V δ
α (b) for all δ ∈ Γ.

Definition 2.10 [1]. A regular Γ-semigroup is called a right (left) inverse Γ-
semigroup if for any α-idempotent e and for any β-idempotent f , eαfβe =
fβe ( eβfαe = eβf).

Theorem 2.11 [7] . Let S be a Γ-semigroup. If Sα is a group for some
α ∈ S then Sα is a group for all α ∈ Γ.

Definition 2.12 [7]. A Γ-semigroup S is called a Γ-group if Sα is a group
for some α ∈ Γ.

Definition 2.13 [8] . A regular semigroup S is said to be a right (left)
inverse semigroup if for any e, f ∈ E(S), efe = fe(efe = ef).

Definition 2.14 [3]. A semigroup S is called orthodox semigroup if it is
regular and the set of all idempotents forms a subsemigroup.

Definition 2.15 [7]. A nonempty subset I of a Γ-semigroup S is called a
right (resp. left) ideal if IΓS ⊆ I(resp. SΓI ⊆ I). If I is both a right ideal
and a left ideal then we say that I is an ideal of S.

Definition 2.16 [7]. A Γ-semigroup S is called right (resp. left) simple
if it contains no proper right (resp. left) ideal i.e, for every a ∈ S, aΓS =
S(resp. SΓa = S). A Γ- semigroup is said to be simple if it has no proper
ideals.

Theorem 2.17 [7]. Let S be a Γ- semigroup. S is a Γ- group if and only
if it is both left simple and right simple.
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3. Semidirect product of a semigroup and a Γ-semigroup

Let S be a semigroup and T be a Γ-semigroup. Let End(T ) denote the
set of all endomorphisms on T i.e., the set of all mappings f : T → T

satisfying f(aαb) = f(a)αf(b) for all a, b ∈ T , α ∈ Γ. Clearly End(T ) is
a semigroup. Let φ : S 6→ End(T ) be a given antimorphism i.e, φ(sr) =
φ(r)φ(s) for all r, s ∈ S. If s ∈ S and t ∈ T , we write ts for (φ(s))(t)
and T s = {ts : t ∈ T}. Let S ×φ T = {(s, t) : s ∈ S, t ∈ T}. We define
(s

1
, t

1
)α(s

2
, t

2
) = (s

1
s

2
, t

s
2

1
αt

2
) for all (si, ti) ∈ S ×φ T and α ∈ Γ. Then

S ×φ T is a Γ-semigroup. This Γ-semigroup S ×φ T is called the semidirect
product of the semigroup S and the Γ-semigroup T . In [6] we have studied
the semidirect product S×φT assuming that S is a monoid. In this paper we
investigate the properties of the semidirect product S ×φ T without taking
1 in S.

Lemma 3.1. Let S ×φ T be a semidirect product of a semigroup S and a
Γ-semigroup T . Then

(i) (tαu)s = tsαus for all s ∈ S, t, u ∈ T and α ∈ Γ.

(ii) (ts)r = (t)sr for all s, r ∈ S and t ∈ T .

Proof. Let s, r ∈ S, α ∈ Γ and t, u ∈ T . Now (tαu)s = (φ(s))(tαu) =
(φ(s))(t)α(φ(s))(u) = tsαus Hence (i) follows. Again (ts)r = (φ(r))(ts) =
(φ(r))((φ(s))(t)) = (φ(r)φ(s))(t) = (φ(sr))(t) = (t)sr. Thus (ii) follows.

Theorem 3.2. Let S ×φ T be a semidirect product of a semigroup S and a
Γ-semigroup T . Then T x is a Γ-semigroup for all x ∈ S where T x = {tx :
t ∈ T}. If moreover S ×φ T is a regular Γ - semigroup then S is a regular
semigroup and T e is a regular Γ-semigroup for all e ∈ E(S).

Proof. The first part is clear from the above lemma. Let S ×φ T be
regular. For (s, t) ∈ S ×φ T , there exist (s′, t′) ∈ S ×φ T and α, β ∈ Γ
such that (s, t) = (s, t)α(s′, t′)β(s, t) = (ss′s, ts

′sα(t′)sβt) and (s′, t′) =
(s′, t′)β(s, t)α(s′, t′) = (s′ss′, (t′)ss

′

βts
′

αt′). This implies s′ ∈ V (s). Let
e ∈ E(S), then for (e, te), there exist (s′, t′) ∈ S ×φ T and α, β ∈ Γ
such that (e, te) = (e, te)α(s′, t′)β(e, te) = (es′e, tes

′eαt′eβte) and (s′, t′) =
(s′, t′)β(e, te)α(s′, t′) = (s′es′, (t′)es

′

βtes
′

αt′). Hence s′ ∈ V (e) and we have

te = teαt′eβte and t′e = t′eβteαt′e. i.e, t′e ∈ V
β
α (te). Hence T e is a regular

Γ-semigroup.
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Theorem 3.3. Let S be a semigroup and T be a Γ-semigroup, φ : S 6→
End(T ) be a given antimorphism. If the semidirect product S ×φ T is

(i) a right (left) orthodox Γ-semigroup then S is an orthodox semigroup
and T e is a right (left) orthodox Γ-semigroup for every idempotent
e ∈ S,

(ii) a right (left) inverse Γ-semigroup then S is a right (left) inverse semi-
group and T e is a right (left) inverse Γ-semigroup.

Proof.

(i) Let S ×φ T be a right orthodox Γ-semigroup. Let e, g ∈ E(S) and te be
an α-idempotent and ue be a β-idempotent in T e. Then (e, te)α(e, te) =
(e, teαte) = (e, te), i.e., (e, te) is an α-idempotent. Similarly (e, ue) is a
β-idempotent. Again (g, ueg)β(g, ueg) = (g, uegβueg) = (g, (ueβue)g) =
(g, ueg). Thus (g, ueg) is a β-idempotent of S ×φ T . Now (e, (teαue)
β(teαue)) = (e, (teαue))β(e, (teαue)) = ((e, te)α(e, ue))β((e, te)α(e, ue))
= (e, te)α(e, ue) = (e, teαue) which shows that teαue is a β-idempotent
and hence T e is a right orthodox Γ-semigroup. Again since S ×φ T

is a right orthodox Γ-semigroup we have ((eg)2, (tegαueg)egβtegαueg) =
(eg, tegαueg)β(eg, tegαueg) = ((e, te)α(g, ueg))β((e, te)α(g, ueg)) = (e, te)
α(g, ueg) = (eg, tegαueg). Thus (eg)2 = eg which shows that S is
orthodox.

(ii) Suppose that S ×φ T is a right inverse Γ-semigroup. Let e, g ∈ E(S)
and te be an α-idempotent and ue be a β-idempotent in T e. Then
(e, te) is an α-idempotent, (e, ue), (g, ueg) are β-idempotents of S ×φ T .
Now (e, teαueβte) = (e, te)α(e, ue)β(e, te) = (e, ue)β(e, te) = (e, ueβte)
and (ege, tegeαuegeβte) = (e, te)α(g, ueg)β(e, te) = (g, ueg)β(e, te)
= (ge, uegeβte). So we have teαueβte = ueβte and ege = ge. Conse-
quently we have S is a right inverse semigroup and T e is a right inverse
Γ-semigroup.

The proofs of the following two theorems are almost similar to our Lemma
3.3 and Lemma 3.4 proved in [6]. For completeness we give the proof here.

Theorem 3.4. Let S ×φ T be the semidirect product of a semigroup S and
a Γ-semigroup T corresponding to a given antimorphism φ : S 6→ End(T )
and let (s, t) ∈ S ×φ T , then
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(i) if (s′, t′) ∈ V
β
α ((s, t)) then (s′, t′) ∈ V

β
α ((s, ts

′s)). In particular if s ∈

E(S), then (s, (t′)sβts
′sαt′) ∈ V

β
α ((s, ts

′s)) and

(ii) if ts is an α-idempotent and s′ ∈ V (s), then (s′, tss
′

) ∈ V α
α ((s, ts)).

Proof.

(i) Since (s′, t′) ∈ V
β
α ((s, t)) we have,

(s′, t′) = (s′, t′)β(s, t)α(s′, t′) = (s′ss′, (t′)ss
′

βts
′

αt′)

and
(s, t) = (s, t)α(s′, t′)β(s, t) = (ss′s, ts

′sα(t′)sβt).

This shows that

(1) s′ ∈ V (s) and ts
′sα(t′)sβt = t

(2) (t′)ss
′

βts
′

αt′ = t′.

From (1) we have, (ts
′sα(t′)sβt)s

′s = (t)s′s i.e., ts
′sα(t′)sβts

′s = ts
′s

and from (2), ((t′)ss
′

βts
′

αt′)s = (t′)s i.e., (t′)sβts
′sα(t′)s = (t′)s. Now

(s′, t′)β(s, ts
′s)α(s′, t′) = (s′ss′, (t′)ss

′

βts
′ss′αt′) = (s′, t′) by (2) and

(s, ts
′s)α(s′, t′)β(s, ts

′s) = (ss′s, ts
′ss′sα(t′)sβts

′s) = (s, ts
′sα(t′)sβts

′s) =

(s, ts
′s). Thus we have (s′, t′) ∈ V

β
α ((s, ts

′s)). Again if s ∈ E(S),
((t′)sβts

′sαt′)s = (t′)sβts
′sα(t′)s = (t′)s and (s, ts

′s)α(s, (t′)sβts
′sαt′)

β(s, ts
′s) = (sss, ts

′sα((t′)sβts
′sαt′)sβts

′s) = (s, ts
′sα(t′)sβts

′s) = (s, ts
′s)

and (s, (t′)sβts
′sαt′)β (s, ts

′s)α(s, (t′)sβts
′sαt′) = (s, ((t′)sβts

′sαt′)s

βts
′ssα(t′)sβts

′sαt′) = (s, (t′)sβts
′sα(t′)s βts

′sαt′) = (s, (t′)s βts
′sαt′).

Hence (s, (t′)sβts
′sαt′) ∈ V

β
α (s, ts

′s).

(ii) (s, ts)α(s′, tss
′

)α(s, ts) = (ss′s, tss
′sαtss

′sαts) = (s, ts) since ts is an
α-idempotent and (s′, tss

′

)α(s, ts)α(s′, tss
′

) = (s′ss′, tss
′ss′αtss

′

αtss
′

)
= (s′, tss

′

αtss
′

αtss
′

)=(s′, (tsαtsαts)s
′

)=(s′, tss
′

) i.e., (s′, tss
′

) ∈ V α
α (s, ts).

Theorem 3.5. Let S be a semigroup and T be a Γ-semigroup and S ×φ T

be the semidirect product corresponding to a given antimorphism φ : S 6→
End(T ). Moreover, if t ∈ teΓT for every e ∈ E(S) and every t ∈ T , then

(i) (e, t) is an α-idempotent if and only if e ∈ E(S) and te is an α-
idempotent and

(ii) if (e, t) is an α-idempotent, then (e, te) ∈ V α
α ((e, t)).
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Proof.

(i) If (e, t) is an α-idempotent then

(3) (e, t) = (e, t)α(e, t) = (e2, teαt) i.e., e = e2 and teαt = t.

So, te = (teαt)e = teαte which implies that te is an α-idempotent. Con-
versely, let e ∈ E(S) and te be an α-idempotent. Since t ∈ teΓT, t =
teβt

1
for some β ∈ Γ, t

1
∈ T and hence teαt = teαteβt

1
= t. Thus

(e, t)α(e, t) = (e, teαt) = (e, t) i.e., (e, t) is an α-idempotent.

(ii) If (e, t) is an α-idempotent, from (i) e ∈ E(S) and te is an α-idempotent.
Now (e, t)α(e, te)α(e, t) = (e, teαteαt) = (e, teαt) = (e, t) from (3) and
(e, te)α(e, t)α (e, te) = (e, teαteαte) = (e, te). Thus (e, te) ∈ V α

α ((e, t)).

Theorem 3.6. Let S be a semigroup and T be a Γ-semigroup. Let φ : S 6→
End(T ) be a given antimorphism. Then the semidirect product S ×φ T is a
right (left) orthodox Γ-semigroup if and only if

(i) S is an orthodox semigroup and T e is a right (left) orthodox Γ-semigroup
for every e ∈ E(S),

(ii) for every e ∈ E(S) and every t ∈ T, t ∈ teΓT and

(iii) for every α-idempotent te, tge is an α-idempotent, where e, g ∈ E(S),
t ∈ T .

Proof. Suppose S ×φ T is a right orthodox Γ-semigroup. Then by
Theorem 3.3 S is an orthodox semigroup and T e is a right orthodox
Γ-semigroup for every e ∈ E(S). For (ii), let (e, t) ∈ S ×φ T with e ∈ E(S)

and let (e′, t′) ∈ V
β
α ((e, t)) for some α, β ∈ Γ. Then by Theorem 3.4

(e′, t′), (e′, (t′)eβte
′eαt′) ∈ V

β
α ((e, te

′e)). Thus V
β
α ((e, t)) ∩ V

β
α ((e, te

′e)) 6= φ

and hence by Theorem 2.9, V
β
α ((e, t)) = V

β
α ((e, te

′e)). So (e, (t′)eβte
′eαt′) ∈

V
β
α ((e, t)). Thus (e, t) = (e, t)α(e, (t′)eβte

′eαt′)β(e, t) = (e, teα(t′)eβte
′e

α(t′)eβt) and hence t = teα(t′)eβte
′eα(t′)eβt ∈ teΓT .

For (iii) we shall first show that for an α-idempotent te of T if e ∈
E(S), te

′

is an α-idempotent for any e′ ∈ V (e). If e ∈ E(S) and te is an
α-idempotent, then by Theorem 3.5, (e, t) is an α-idempotent in S×φ T and
(e, te) ∈ V α

α ((e, t)). Again since te is an α-idempotent (e, te) is also an α-
idempotent and thus (e, te) ∈ V α

α ((e, te)) i.e., V α
α ((e, te))∩V α

α ((e, t)) 6= φ and
so V α

α ((e, te)) = V α
α ((e, t)) and by Theorem 3.5 (e′, tee

′

) ∈ V α
α ((e, te)) i.e.,
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(e′, tee
′

) ∈ V α
α ((e, t)). Thus (e, t) = (e, t)α(e′, tee

′

)α(e, t) = (ee′e, te
′eαtee

′eαt)
= (e, te

′eαteαt) = (e, te
′eαt) [since t = teβu for some β ∈ Γ, u ∈ T, teαt = t].

So t = te
′eαt and hence te

′

= (te
′eαt)e

′

= te
′

αte
′

. Thus te
′

is an α-idempotent.
Let e, g ∈ E(S) and suppose that te is an α-idempotent for t ∈ T , then
tegαteg = (teαte)g = teg i.e, teg is an α-idempotent and we have eg ∈ E(S)
and ge ∈ V (eg) since S is orthodox. Then by the above fact tge is an
α-idempotent.

We now prove the converse part. Suppose S and T satisfy (i), (ii) and
(iii). Let (s, t) ∈ S ×φ T . Since S is regular, there exists s′ ∈ S such that
s = ss′s and s′ = s′ss′. We take e = s′s, then e ∈ E(S). By (ii) t ∈ teΓT

which implies t = teβu for some β ∈ Γ, u ∈ T . Let t′ = vs′ where ve ∈
V δ

γ (te) where γ, δ ∈ Γ. Now ts
′sγ(t′)sδt = ts

′sγvs′sδteβu = (tγvδt)eβu =

(teγveδte)βu = teβu = t i.e, (s, t) = (ss′s, ts
′sγ(t′)sδt) = (s, t)γ(s′, t′)δ(s, t).

Again (t′)ss
′

δts
′

γt′ = (vs′)ss
′

δts
′

γvs′ = vs′δts
′

γvs′ = vs′ss′δts
′ss′γvs′ss′ =

(veδteγve)s
′

= ves′ = vs′ss′ = vs′ = t′ i.e., (s′, t′) = (s′ss′, (t′)ss
′

δts
′

γt′) =
(s′, t′)δ(s, t)γ(s′, t′). Thus we have (s′, t′) ∈ V δ

γ (s, t) which yields S ×φ T is
a regular Γ-semigroup.

Now let (e, t) be an α-idempotent and (g, u) be a β-idempotent. Then
by Theorem 3.5 e, g ∈ E(S), te is an α-idempotent and ug is a β-idempotent.
By (iii) tge is an α-idempotent, ueg is a β-idempotent and tgegαtgeg =
(tgeαtge)g = tgeg i.e., tgeg is an α-idempotent. By our assumption e, g ∈
E(S) and (tgαu)eg = tgegαueg is a β-idempotent. Thus by Theorem 3.5
(e, t)α(g, u) = (eg, tgαu) is a β-idempotent which shows that S ×φ T is a
right orthodox Γ-semigroup.

Theorem 3.7. Let S be a semigroup, T be a Γ-semigroup and φ : S 6→
End(T ) be a given antimorphism. Then the semidirect product S ×φ T is a
right inverse Γ-semigroup if and only if

(i) Sis a right inverse semigroup and T e is a right inverse Γ-semigroup
for every e ∈ E(S) and

(ii) for every e ∈ E(S) and every t ∈ T, t ∈ teΓT .

Proof. Let S×φT be a right inverse Γ-semigroup. Then by Theorem 3.3 S

is a right inverse semigroup and T e is a right inverse Γ-semigroup for every
e ∈ E(S). Again since every right inverse Γ-semigroup is a right orthodox
Γ-semigroup from the above theorem, condition (ii) holds.

Conversely, suppose that S and T satisfy (i) and (ii). Then by Theorem
3.2 S×φT is a regular Γ-semigroup . Let (e, t) be an α-idempotent and (g, u)
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be a β-idempotent in S ×φ T . Then by Theorem 3.5 e, g ∈ E(S), te is an α-
idempotent, ug is a β-idempotent. From (ii) t = teγv for some γ ∈ Γ, v ∈ T

and thus teαt = t and similarly ugβu = u. So uge = (ugβu)ge = ugeβuge and
tge = (teαt)ge = tegeαtge = tgeαtge since S is a right inverse semigroup. Now
by (ii) we have ueβt = (ueβt)geδv

1
for some δ ∈ Γ, v

1
∈ T and hence ueβt =

uegeβtgeδv
1

= ugeβtgeδv
1
. Thus we have (e, t)α(g, u)β(e, t) = (ege, tgeαueβt)

= (ge, tgeαugeβtgeδv
1
) = (ge, ugeβtgeδv

1
) = (ge, ueβt) = (g, u)β(e, t) which

implies S ×φ T is a right inverse Γ-semigroup.

Theorem 3.8. Let S be a semigroup, T be a Γ-semigroup and φ : S 6→
End(T ) be a given antimorphism. Then the semidirect product S ×φ T is a
left inverse Γ-semigroup if and only if

(i) S is a left inverse semigroup and T e is a left inverse Γ-semigroup for
every e ∈ E(S) and

(ii) for every e ∈ E(S) and every t ∈ T, t = te.

Proof. Let S×φT be a left inverse Γ-semigroup. Then by Theorem 3.3 S is
a left inverse semigroup and T e is a left inverse Γ-semigroup. For (ii) let (e, u)
be an α-idempotent in S ×φ T . Then (e, u) = (e, u)α(e, u) = (e, ueαu) i.e.,
ueαu = u. Again (e, ue)α(e, ue) = (e, ueeαue) = (e, ue) which yields (e, ue) is
an α-idempotent and we have (e, ue)α(e, u) = (e, ueαu) = (e, u). Since S×φ

T is a left inverse Γ-semigroup, (e, u) = (e, ue)α(e, u) = (e, ue)α(e, u)α(e, ue)
= (e, ueeeαueeαue) = (e, (ueαu)eeαue) = (e, ueeαue) = (e, ue) i.e., u = ue.
Thus if (e, u) is an α-idempotent then u = ue. Now (e, t) ∈ S ×φ T with e ∈
E(S) and let (e′, t′) ∈ V δ

γ ((e, t)) for some γ, δ ∈ Γ. Then we get e′ ∈ V (e),

te
′eγ(t′)eδt = t i.e., te

′eγ(t′)ee
′eδte

′e = te
′e which implies te

′eγ(t′)eδte
′e = te

′e.
Since (e′e, (t′)eδt) = (e′, t′)δ(e, t) and S ×φ T is left orthodox (since it is
left inverse), (e′e, (t′)eδt) is a γ-idempotent and hence (t′)eδt = ((t′)eδt)e

′e

= (t′)eδte
′e. Thus te

′e = te
′eγ(t′)eδte

′e = te
′eγ(t′)eδt = t and hence te =

(te
′e)e = te

′e = t.

Conversely suppose that S and T satisfy (i) and (ii). Let (s, t) ∈ S×φT .
Let e ∈ E(S). Since S is regular there exists s′ ∈ S such that s′ ∈ V (s).
From (ii) we have t = te. Since T e is regular there exists v ∈ T such that ve ∈
V δ

γ (te). We now take t′ = vs′ . Now tss
′

γ(t′)sδt = ts
′sγvs′sδte = teγveδte =

te = t and (t′)s
′sδts

′

γt′ = (vs′)ss
′

δts
′

γvs′ = vs′δts
′

γvs′ = vs′ss′δts
′ss′γvs′ss′ =

(veδteγve)s
′

= ves′ = vs′ss′ = vs′ = t′. Thus we have (s′, t′) ∈ V δ
γ (s, t).

Hence S ×φ T is regular. Now let (e, t) be an α-idempotent and (g, u) be a
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β-idempotent. Then e2 = e and t = teαt = tαt [by (ii)] and similarly g2 = g

and uβu = u i.e., e, g ∈ E(S) and t is an α-idempotent, u is a β-idempotent.
Thus we have (e, t)β(g, u)α(e, t) = (ege, tgeβueαt) = (ege, tβuαt) [by (ii)]
=(eg, tβu) = (eg, tgβu) = (e, t)β(g, u). Thus S ×φ T is a left inverse Γ-
semigroup.

4. Wreath product of a semigroup and a Γ-semigroup

In this section we introduce the notion of wreath product of a semigroup S

and a Γ semigroup T . Let X be a nonempty set. Consider the set T X of
all mappings from X to T . For f, g ∈ T X and α ∈ Γ, define fαg such that
TX × Γ × T X → T X by (fαg)(x) = f(x)αg(x).

Before going to establish the relation between T and T X we assume
Γ = {α}, a set consisting of single element. Then (T, ·) becomes a semigroup
where a · b = aαb and T X also becomes a semigroup where f · g = fαg.
Suppose T is a regular Γ-semigroup. Then (T, ·) is a semigroup. Let f ∈ T X

and let x ∈ X. Now f(x) ∈ T and V (f(x)) 6= φ. We define g : X → T

so that g(x) ∈ V (f(x)). Hence for each x ∈ X we can choose a g(x) such
that f(x)g(x)f(x) = f(x). Hence fgf = f which implies that (T X , ·) is a
regular semigroup and consequently T X is a regular Γ-semigroup. In general
we cannot extend the process when Γ contains more than one element. To
explain this we consider the following example.

Example 4.1. Let T = {(a, 0) : a ∈ Q} ∪ {(0, b) : b ∈ Q}, Q denote the
set of all rational numbers. Let Γ = {(0, 5), (0, 1), (3, 0), (1, 0)}. Defining
T × Γ× T → T by (a, b)(α, β)(c, d) = (aαc, bβd) for all (a, b), (c, d) ∈ T and
(α, β) ∈ Γ, we can show that T is a Γ-semigroup. Now let (a, 0) ∈ T . If a = 0
then (a, 0) is regular. Suppose a 6= 0, then (a, 0)(3, 0)( 1

3a
, 0)(1, 0)(a, 0) =

(a, 0). Similarly we can show that (0, b) is also regular. Hence T is a regular
Γ-semigroup. Let us now take a set X = {x, y}, the set consisting of two
elements and let us define a mapping f : X → T by f(x) = (2, 0) and
f(y) = (0, 3). We now show that f is not regular in T X . If possible let
f be regular. Then there exists a mapping g : X → T and two elements
α, β ∈ Γ such that fαgβf = f . i.e., f(p)αg(p)βf(p) = f(p) for all p ∈ X.
Now if p = x, then α, β 6∈ {(0, 5), (0, 1)}, since the first component of f(x) is
nonzero but if p = y, then α, β ∈ {(0, 5), (0, 1)}, since the second component
of f(y) is nonzero. Thus a contradiction arises. Hence T X is not a regular
Γ-semigroup.
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Before further discussion about the relation between T and T X we now give
the following definition.

Definition 4.2. Let S be a Γ-semigroup. An element e ∈ S is said to be
a left(resp. right) γ-unity for some γ ∈ Γ if eγa = a(resp. aγe = a) for all
a ∈ S.

We now consider the following examples.

Example 4.3. Consider the Γ-semigroup S of Example 2.3. In this Γ-

semigroup
(

1 0 0
0 1 0

)

is a left α-unity but not a right α-unity of S for

α =

(

1 0
0 1
0 0

)

.

Example 4.4. Let S be the set of all integers of the form 4n+1 and Γ be
the set of all integers of the form 4n+3 where n is an integer. If aαb is
a + α + b for all a, b ∈ S and α ∈ Γ then S is a Γ-semigroup. Here 1 is a left
(-1)- unity and also right (-1)- unity.

Example 4.5. Let us consider N , the set of all natural numbers. Let S be
the set of all mappings from N to N × N and Γ be the set of all mappings
from N × N to N . Then the usual mapping product of two elements of
S cannot be defined. But if we take f, g from S and α from Γ the usual
mapping product fαg can be defined. Also, we find that fαg ∈ S and
(fαg)βh = fα(gβh). Hence S is a Γ-semigroup. Now we know that the set
N×N is countable. Hence there exists a bijective mapping f ∈ S. Since f is
bijective, there exists α : N ×N −→ N such that fα is the identity mapping
on N × N and αf is the identity mapping on N . Then fαg = gαf = g for
all g ∈ S. Hence f is both left α-unity and right α-unity of S.

Let S be a Γ-semigroup and e be a left α-unity. Then SΓe is a left ideal
such that e = eαe ∈ SΓe. Also we note that the element e is both left and
right α-unity of SΓe in SΓe .

Suppose S is a regular Γ-semigroup with a left α-unity e. Then we show
that SΓe is a regular Γ-semigroup with a unity . We only show that SΓe is
regular. Let aγe ∈ SΓe. Since S is regular there exist β, δ ∈ Γ and b ∈ S

such that aγe = aγeβbδaγe i.e., aγe = aγeβbδeαaγe = (aγe)β(bδe)α(aγe).
Since bδe ∈ SΓe, aγe is regular. Hence SΓe is a regular Γ-semigroup.
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Let us now consider T with a left γ-unity e and a right δ-unity g. Then the
constant mapping Ce : X → T which is defined by Ce(x) = e for all x ∈ X

is a left γ-unity of T X . Similarly the constant mapping Cg is a right δ-unity
of T X .

Theorem 4.6. Let T be a Γ-semigroup with a left γ-unity and a right δ-
unity for some γ, δ ∈ Γ. Then

(i) T X is a regular Γ-semigroup if and only if T is a regular Γ-semigroup,

(ii) T X is a right (resp. left) orthodox Γ-semigroup if and only if T is so
and

(iii) T X is a right (resp. left) inverse Γ-semigroup if and only if T is a
right (resp. left) inverse Γ-semigroup.

Proof. By Ct, t ∈ T denotes the mapping in T X such that Ct(x) = t for
all x ∈ X. Then it is clear that (Ct)α(Cu) = C(tαu) which shows that Ct is
an α-idempotent if and only if t is an α-idempotent. Again we have that
if f is an α-idempotent in T X then f(x) is an α-idempotent in T for all
x ∈ X.

(i) Assume that T X is a regular Γ-semigroup. Then for each t ∈ T there
exist f ∈ T X and α, β ∈ Γ such that CtαfβCt = Ct so that tαf(x)βt = t

for all x ∈ X which shows that t is regular in T . Consequently T is a
regular Γ-semigroup. Conversely let T be regular and let e be a left
γ-unity and g be a right δ-unity of T . Then for each f ∈ T X and
for each x ∈ X, f(x) ∈ T is a regular element and hence there exists
a triplet (αx, tx, βx) ∈ Γ × T × Γ such that f(x)αxtxβxf(x) = f(x).
i.e., f(x) = (f(x)δg)αxtxβx(eγf(x)) = f(x)δ(gαxtxβxe)γf(x). Define
h : X → T by h(x) = gαxtxβxe. Then for all y ∈ X, we have

(fδhγf)(y)=f(y)δh(y)γf(y)

=f(y)δgαytyβyeγf(y)

=f(y)αytyβyf(y)

=f(y).

Hence f is regular in T X . Consequently T X is a regular Γ-semigroup.
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(ii) Let t, u ∈ T such that t be an α-idempotent and u be a β-idempotent.
Then Ct is an α-idempotent and Cu is a β-idempotent in T X . Now if
TX is a right orthodox Γ-semigroup then (CtαCu)β(CtαCu) = CtαCu

i.e., tαu is a β-idempotent in T which implies T is also a right ortho-
dox Γ-semigroup. Similarly we can show that if T X is a left ortho-
dox Γ-semigroup then T is so. Let f be an α-idempotent and h be
a β-idempotent in T X . Let us now suppose that T is a right(resp.
left) orthodox Γ-semigroup. Then f(x)αh(x)( resp. f(x)βh(x)) is a
β-idempotent ( resp. α-idempotent ). Hence T X is a right (resp. left)
orthodox Γ-semigroup.

(iii) Let T X be a right (resp. left) inverse Γ-semigroup and let t, u ∈ T

such that t is an α-idempotent and u be a β-idempotent. Then Ct is
an α-idempotent and Cu is a β-idempotent in T X and CtαCuβCt =
CuβCt(resp. CtβCuαCt = CtβCu). Thus we have tαuβt = uβt(resp.
tβuαt = tβu) which implies that T is a right(resp. left) inverse Γ-
semigroup. Again let T be a right (resp. left) inverse Γ-semigroup. Let f

be an α-idempotent and h be a β-idempotent in T X . f(x)αh(x)βf(x) =
h(x)βf(x) (resp. f(x)βh(x)αf(x) = f(x)βh(x)) for all x ∈ X i.e,
fαhβf = hβf (resp. fβhαf = fβh). Thus T X is a right (resp.
left)inverse Γ-semigroup.

Let us now suppose that the semigroup S acts on X from the left i.e.,
sx ∈ X, s(rx) = (sr)x and 1x = x if S is a monoid, for every r, s ∈ S and
every x ∈ X. If S acts on X from left we call it left S set X.

For every Γ-semigroup T , it is known that End(T ) is a semigroup. Hence
End(T X) is also a semigroup.

Let S be a semigroup, T a Γ-semigroup and X a nonempty set. Suppose
S acts on X from left. Define φ : S → End(T X) by ((φ(s))(f))(x) = f(sx)
for all s ∈ S, f ∈ T X and x ∈ X. We now verify that φ(s) ∈ End(T X). For
this, let f, g ∈ T X , α ∈ Γ and x ∈ X. Then ((φ(s))(fαg))(x) = (fαg)(sx) =
f(sx)αg(sx) = ((φ(s))(f))(x)α((φ(s))(g))(x) = ((φ(s))(f))α((φ(s))(g))(x).
Hence (φ(s))(fαg) = ((φ(s))(f))α((φ(s))(g)), which implies that φ(s) ∈
End(T X).

Let us now verify that φ : S → End(T X) is a semigroup antimorphism.
For this let s

1
, s

2
∈ S, f ∈ T X and x ∈ X. Then ((φ(s

1
)φ(s

2
))(f))(x) =

(φ(s
1
)(φ(s

2
)(f)))(x) = (φ(s

2
)(f))(s

1
x) = f((s

2
(s

1
(x))) = f((s

2
s

1
)x) =

(φ(s
2
s

1
)(f))(x). Hence φ(s

2
s

1
) = φ(s

1
)φ(s

2
).
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For this antimorphism φ : S 6→ End(T X) we can define the semidirect
product S ×φ TX of the semigroup S and the Γ-semigroup T X . We call
this semidirect product the wreath product of the semigroup S and the Γ-
semigroup T relative to the left S-set X. We denote it by SWXT . We also
denote φ(s)(f)(x) by f s(x). Hence f s(x) = f(sx).

If |T | = 1, then |T X | = 1 and hence throughout the paper we assume
that |T | ≥ 2. We now give the relation between T and (T X)e for all e ∈ E(S).

Similar to the Theorems 3.6 and 3.7 we have following Theorems.

Theorem 4.7. Let S be a semigroup acting on the set X from the left and
T be a Γ-semigroup with a left γ-unity and a right δ-unity for some γ, δ ∈ Γ.
Then

(i) T is a regular Γ-semigroup if and only if (T X)e is a regular Γ-semigroup,

(ii) T is a right (resp. left) orthodox Γ-semigroup if and only if (T X)e is
so and

(iii) T is a right (resp. left) inverse Γ-semigroup if and only if (T X)e is a
right (resp. left ) inverse Γ-semigroup.

Theorem 4.8. Let S be a semigroup acting on the set X from the left and
T be a Γ-semigroup with a left γ-unity and a right δ-unity for some γ, δ ∈ Γ.
Then the wreath product SWXT is a right(left ) orthodox Γ-semigroup if and
only if

(i) S is an orthodox semigroup and (T X)e is a right(left) orthodox Γ-
semigroup for every e ∈ E(S)

(ii) for every x ∈ X, f ∈ T X and e ∈ E(S), f(x) ∈ f(ex)ΓT and

(iii) f(ex) is an α-idempotent for every x ∈ X, implies that f(gex) is an
α-idempotent for every g ∈ E(S) where e ∈ E(S), f ∈ T X .

We now prove the following Theorem.

Theorem 4.9. Let S be an orthodox semigroup acting on the set X from
the left and T be a right orthodox Γ-semigroup with a left γ-unity and a right
δ-unity for some γ, δ ∈ Γ. Then the following statements are equivalent.

(a) S and T X satisfy (ii) and (iii) of Theorem 4.8.

(b) S permutes X or T is a Γ- group and geX ⊆ eX for every e, g ∈ E(S).
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Proof. (a) =⇒ (b): Let us suppose that T is not a Γ-group. Then there
exists z ∈ T such that zΓT 6= T . Let eδ be a left δ- unity in T . For x ∈ X,
define fx : X → T by fx(y) = eδ if y = x and fx(y) = z if y 6= x. Then
by (ii), eδ = fx(x) ∈ fx(gx)ΓT for every g ∈ E(S). If fx(gx) = z then
eδ ∈ zΓT . Thus eδ = zαv for some v ∈ T and α ∈ Γ. This implies that
u = eδδu = zαvδu for all u ∈ T . Hence T = zΓT which is a contradiction.
Hence fx(gx) = eδ Thus we can conclude that gx = x for all g ∈ E(S).
Let a ∈ S and x, y ∈ X such that ax = ay. For a′ ∈ V (a), a′a ∈ E(S)
and x = (a′a)x = (a′a)y = y. Again (aa′)x = x implies that a(a′x) = x.
Hence for each a ∈ S, the mapping fa : X → X defined by fa(x) = ax is a
permutation on X. This means that S permutes X.

Now T is a Γ- group. Note that eδ is a δ- idempotent and since T is a
Γ- group, Eδ(T ) = {eδ}. Let t 6= eδ ∈ T and e ∈ E(S). Define h : X −→ T

by h(x) = eδ if x ∈ eX, otherwise h(x) = t. Now h(ex) = eδ for every
x ∈ X and hence by (iii), h(gex) = eδ . This implies that gex ∈ eX and
hence geX ⊆ eX for all e, g ∈ E(S).

(b)=⇒ (a): The proof is almost similar to the proof of (2) ⇒ (1) of
Lemma 3.2 [5].

From Theorem 4.7 and 4.9 we conclude that

Theorem 4.10. Let S be a semigroup acting on the set X from the left and
T be a Γ-semigroup with a left γ-unity and a right δ-unity for some γ, δ ∈ Γ.
Then the wreath product SWXT is a right orthodox Γ-semigroup if and only
if

(1) S is an orthodox semigroup and T is a right orthodox Γ-semigroup and

(2) S permutes X or T is a Γ- group and geX ⊆ eX for every e, g ∈ E(S).

Theorem 4.11. Let S, T and X be as in Theorem 4.10. Then the wreath
product SWXT is a right inverse Γ-semigroup if and only if

(i) S is a right inverse semigroup and T is a right inverse Γ-semigroup
and

(ii) S permutes X or T is a Γ-group.

Proof. Suppose that SWXT is a right inverse Γ-semigroup. Then by
Theorem 3.7 and Theorem 4.7 we have S is a right inverse semigroup and
T is a right inverse Γ-semigroup and by Theorem 4.10 we have S permutes
X or T is a Γ-group.
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Conversely suppose that S, T and X satisfy (i) and (ii). Then by Theorem
4.6 T X is a right inverse Γ-semigroup. If T is a Γ-group, then f(x) ∈
f(ex)ΓT for every f ∈ T X , e ∈ E(S), x ∈ X. If S permutes X, then
f(x) ∈ f(x)ΓT = f(ex)ΓT since ex = x for every e ∈ E(S). Then by
Theorem 3.7 S ×α TX = SWXT is a right inverse Γ-semigroup.

Theorem 4.12. Let S, T and X be as in Theorem 4.10. Then the wreath
product SWXT is a left inverse Γ-semigroup if and only if S is a left inverse
semigroup and T is a left inverse Γ-semigroup and S permutes X.

Proof. By Theorem 3.8 and Theorem 4.7, we have SWXT is a left inverse
Γ-semigroup if and only if S is a left inverse semigroup and T is a left inverse
Γ-semigroup and f(ex) = f(x) for every f ∈ T X , e ∈ E(S), x ∈ X. The
remaining part of the proof is almost similar to the proof of Corollary 3.7 [5].

Open problem:

(i) Find relation between T and T X without assuming the existence
of left α-unity and right β-unity in the Γ-semigroup T for some
α, β ∈ Γ.

(ii) Study the Wreath product of a semigroup S and a Γ-semigroup T

without assuming the existence of left α-unity and right β-unity in T

for some α, β ∈ Γ.
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