Discussiones Mathematicae General Algebra and Applications 28 (2008) 161–178

WREATH PRODUCT OF A SEMIGROUP AND A Γ-SEMIGROUP

MRIDUL K. SEN

Department of Pure Mathematics, University of Calcutta 35, Ballygunge Circular Road, Kolkata-700019, India

e-mail: senmk6@yahoo.com

AND

Sumanta Chattopadhyay

Sri Ramkrishna Sarada Vidyamahapitha Kamarpukur, Hooghly-712612, West Bengal, India

e-mail: chatterjees04@yahoo.co.in

Abstract

Let $S = \{a, b, c, ...\}$ and $\Gamma = \{\alpha, \beta, \gamma, ...\}$ be two nonempty sets. S is called a Γ -semigroup if $a\alpha b \in S$, for all $\alpha \in \Gamma$ and $a, b \in S$ and $(a\alpha b)\beta c = a\alpha(b\beta c)$, for all $a, b, c \in S$ and for all $\alpha, \beta \in \Gamma$. In this paper we study the semidirect product of a semigroup and a Γ -semigroup. We also introduce the notion of wreath product of a semigroup and a Γ semigroup and investigate some interesting properties of this product.

Keywords: semigroup, Γ -semigroup, orthodox semigroup, right(left) orthodox Γ -semigroup, right(left) inverse semigroup, right(left) inverse Γ -semigroup, right(left) α - unity, Γ -group, semidirect product, wreath product.

2000 Mathematics Subject Classification: 20M17.

1. INTRODUCTION

The notion of a Γ -semigroup has been introduced by Sen and Saha [7] in the year 1986. Many classical notions of semigroup have been extended to Γ -semigroup. In [1] and [2] we have introduced the notions of right inverse Γ -semigroup and right orthodox Γ -semigroup. In [6] we have studied the semidirect product of a monoid and a Γ -semigroup as a generalization of [4] and [5]. We have obtained necessary and sufficient conditions for a semidirect product of the monoid and a Γ -semigroup to be right (left) orthodox Γ -semigroup and right (left) inverse Γ -semigroup. In [9] Zhang has studied the semidirect product of semigroups and also studied wreath product of semigroups. In this paper we generalize the results of Zhang to the semidirect product of a semigroup and a Γ -semigroup. We also study the wreath product of a semigroup and a Γ -semigroup.

2. Preliminaries

We now recall some definitions and results relating our discussion.

Definition 2.1. Let $S = \{a, b, c, ...\}$ and $\Gamma = \{\alpha, \beta, \gamma, ...\}$ be two nonempty sets. S is called a Γ -semigroup if

- (i) $a\alpha b \in S$, for all $\alpha \in \Gamma$ and $a, b \in S$ and
- (ii) $(a\alpha b)\beta c = a\alpha(b\beta c)$, for all $a, b, c \in S$ and for all $\alpha, \beta \in \Gamma$.

Let S be an arbitrary semigroup. Let 1 be a symbol not representing any element of S. We extend the binary operation defined on S to $S \cup \{1\}$ by defining 11 = 1 and 1a = a1 = a for all $a \in S$. It can be shown that $S \cup \{1\}$ is a semigroup with identity element 1. Let $\Gamma = \{1\}$. If we take ab = a1b, it can be shown that the semigroup S is a Γ -semigroup where $\Gamma = \{1\}$. Thus a semigroup can be considered to be a Γ -semigroup.

Let S be a Γ -semigroup and x be a fixed element of Γ . We define a.b = axb for all $a, b \in S$. We can show that (S, .) is a semigroup and we denote this semigroup by S_x .

Definition 2.2. Let S be a Γ -semigroup. An element $a \in S$ is said to be regular if $a \in a\Gamma S\Gamma a$ where $a\Gamma S\Gamma a = \{a\alpha b\beta a : b \in S, \alpha, \beta \in \Gamma\}$. S is said to be regular if every element of S is regular.

We now describe some examples of regular Γ -semigroup.

In [7] we find the following interesting example of a regular Γ -semigroup.

Example 2.3. Let S be the set of all 2×3 matrices and Γ be the set of all 3×2 matrices over a field. Then for all $A, B, C \in S$ and $P, Q \in \Gamma$ we have $APB \in S$ and since the matrix multiplication is associative, we have (APB)QC = AP(BQC). Hence S is a Γ -semigroup. Moreover it is regular shown in [7].

Here we give another example of a regular Γ -semigroup.

Example 2.4. Let *S* be a set of all negative rational numbers. Obviously *S* is not a semigroup under usual product of rational numbers. Let $\Gamma = \{-\frac{1}{p} : p \text{ is prime }\}$. Let $a, b, c \in S$ and $\alpha, \beta \in \Gamma$. Now if $a\alpha b$ is equal to the usual product of rational numbers a, α, b , then $a\alpha b \in S$ and $(a\alpha b)\beta c = a\alpha(b\beta c)$. Hence *S* is a Γ -semigroup. Let $a = \frac{m}{n} \in \Gamma$ where m > 0 and n < 0. $m = p_1 p_2 \dots p_k$ where p_i 's are prime. $\frac{p_1 p_2 \dots p_k}{n} (-\frac{1}{p_1}) \frac{n}{p_2 \dots p_{k-1}} (-\frac{1}{p_k}) \frac{m}{n} = \frac{p_1 p_2 \dots p_k}{n}$. Thus taking $b = \frac{n}{p_2 \dots p_{k-1}}$, $\alpha = (-\frac{1}{p_1})$ and $\beta = (-\frac{1}{p_k})$ we can say that *a* is regular. Hence *S* is a regular Γ -semigroup.

Definition 2.5 [7]. Let S be a Γ -semigroup and $\alpha \in \Gamma$. Then $e \in S$ is said to be an α -idempotent if $e\alpha e = e$. The set of all α -idempotents is denoted by E_{α} . We denote $\bigcup_{\alpha \in \Gamma} E_{\alpha}$ by E(S). The elements of E(S) are called idempotent elements of S.

Definition 2.6 [7]. Let $a \in M$ and $\alpha, \beta \in \Gamma$. An element $b \in M$ is called an (α, β) -inverse of a if $a = a\alpha b\beta a$ and $b = b\beta a\alpha b$. In this case we write $b \in V_{\alpha}^{\beta}(a)$.

Definition 2.7 [2]. A regular Γ -semigroup M is called a right (left) orthodox Γ -semigroup if for any α -idempotent e and β -idempotent f, $e\alpha f$ (resp. $f\alpha e$) is a β -idempotent.

Example 2.8 [2]. Let $A = \{1, 2, 3\}$ and $B = \{4, 5\}$. S denotes the set of all mappings from A to B. Here members of S are described by the images of the elements 1, 2, 3. For example the map $1 \rightarrow 4, 2 \rightarrow 5, 3 \rightarrow 4$ is written as (4, 5, 4) and (5, 5, 4) denotes the map $1 \rightarrow 5, 2 \rightarrow 5, 3 \rightarrow 4$. A map from B to A

is described in the same fashion. For example (1, 2) denotes $4 \rightarrow 1, 5 \rightarrow 2$. Now $S = \left\{ (4, 4, 4), (4, 4, 5), (4, 5, 4), (4, 5, 5), (5, 5, 5), (5, 4, 5), (5, 4, 4), (5, 5, 4) \right\}$ and let $\Gamma = \{(1, 1), (1, 2), (2, 3), (3, 1)\}$. Let $f, g \in S$ and $\alpha \in \Gamma$. We define $f \alpha g$ by $(f \alpha g)(a) = f \alpha \left(g(a)\right)$ for all $a \in A$. So $f \alpha g$ is a mapping from A to B and hence $f \alpha g \in S$ and we can show that $(f \alpha g)\beta h = f \alpha(g\beta h)$ for all $f, g, h \in S$ and $\alpha, \beta \in \Gamma$. We can show that each element x of S is an α -idempotent for some $\alpha \in \Gamma$ and hence each element is regular. Thus S is a regular Γ -semigroup. It is an idempotent Γ -semigroup. Moreover we can show that it is a right orthodox Γ -semigroup.

Theorem 2.9 [2]. A regular Γ -semigroup M is a right orthodox Γ -semigroup if and only if for $a, b \in M, V_{\alpha_1}^{\beta}(a) \cap V_{\alpha}^{\beta}(b) \neq \phi$ for some $\alpha, \alpha_1, \beta \in \Gamma$ implies that $V_{\alpha_1}^{\delta}(a) = V_{\alpha}^{\delta}(b)$ for all $\delta \in \Gamma$.

Definition 2.10 [1]. A regular Γ -semigroup is called a right (left) inverse Γ semigroup if for any α -idempotent e and for any β -idempotent f, $e\alpha f\beta e = f\beta e$ ($e\beta f\alpha e = e\beta f$).

Theorem 2.11 [7]. Let S be a Γ -semigroup. If S_{α} is a group for some $\alpha \in S$ then S_{α} is a group for all $\alpha \in \Gamma$.

Definition 2.12 [7]. A Γ -semigroup S is called a Γ -group if S_{α} is a group for some $\alpha \in \Gamma$.

Definition 2.13 [8]. A regular semigroup S is said to be a right (left) inverse semigroup if for any $e, f \in E(S)$, efe = fe(efe = ef).

Definition 2.14 [3]. A semigroup S is called orthodox semigroup if it is regular and the set of all idempotents forms a subsemigroup.

Definition 2.15 [7]. A nonempty subset I of a Γ -semigroup S is called a right (resp. left) ideal if $I\Gamma S \subseteq I$ (resp. $S\Gamma I \subseteq I$). If I is both a right ideal and a left ideal then we say that I is an ideal of S.

Definition 2.16 [7]. A Γ -semigroup S is called right (resp. left) simple if it contains no proper right (resp. left) ideal i.e, for every $a \in S, a\Gamma S =$ S(resp. $S\Gamma a = S$). A Γ - semigroup is said to be simple if it has no proper ideals.

Theorem 2.17 [7]. Let S be a Γ - semigroup. S is a Γ - group if and only if it is both left simple and right simple.

3. Semidirect product of a semigroup and a Γ -semigroup

Let S be a semigroup and T be a Γ -semigroup. Let End(T) denote the set of all endomorphisms on T i.e., the set of all mappings $f : T \to T$ satisfying $f(a\alpha b) = f(a)\alpha f(b)$ for all $a, b \in T$, $\alpha \in \Gamma$. Clearly End(T) is a semigroup. Let $\phi : S \not\to End(T)$ be a given antimorphism i.e., $\phi(sr) = \phi(r)\phi(s)$ for all $r, s \in S$. If $s \in S$ and $t \in T$, we write t^s for $(\phi(s))(t)$ and $T^s = \{t^s : t \in T\}$. Let $S \times_{\phi} T = \{(s,t) : s \in S, t \in T\}$. We define $(s_1, t_1) \alpha(s_2, t_2) = (s_1 s_2, t_1^{s_2} \alpha t_2)$ for all $(s_i, t_i) \in S \times_{\phi} T$ and $\alpha \in \Gamma$. Then $S \times_{\phi} T$ is a Γ -semigroup. This Γ -semigroup $S \times_{\phi} T$ is called the semidirect product of the semigroup S and the Γ -semigroup T. In [6] we have studied the semidirect product $S \times_{\phi} T$ assuming that S is a monoid. In this paper we investigate the properties of the semidirect product $S \times_{\phi} T$ without taking 1 in S.

Lemma 3.1. Let $S \times_{\phi} T$ be a semidirect product of a semigroup S and a Γ -semigroup T. Then

- (i) $(t\alpha u)^s = t^s \alpha u^s$ for all $s \in S$, $t, u \in T$ and $\alpha \in \Gamma$.
- (ii) $(t^s)^r = (t)^{sr}$ for all $s, r \in S$ and $t \in T$.

Proof. Let $s, r \in S$, $\alpha \in \Gamma$ and $t, u \in T$. Now $(t\alpha u)^s = (\phi(s))(t\alpha u) = (\phi(s))(t)\alpha(\phi(s))(u) = t^s \alpha u^s$ Hence (i) follows. Again $(t^s)^r = (\phi(r))(t^s) = (\phi(r))((\phi(s))(t)) = (\phi(r)\phi(s))(t) = (\phi(sr))(t) = (t)^{sr}$. Thus (ii) follows.

Theorem 3.2. Let $S \times_{\phi} T$ be a semidirect product of a semigroup S and a Γ -semigroup T. Then T^x is a Γ -semigroup for all $x \in S$ where $T^x = \{t^x : t \in T\}$. If moreover $S \times_{\phi} T$ is a regular Γ - semigroup then S is a regular semigroup and T^e is a regular Γ -semigroup for all $e \in E(S)$.

Proof. The first part is clear from the above lemma. Let $S \times_{\phi} T$ be regular. For $(s,t) \in S \times_{\phi} T$, there exist $(s',t') \in S \times_{\phi} T$ and $\alpha,\beta \in \Gamma$ such that $(s,t) = (s,t)\alpha(s',t')\beta(s,t) = (ss's,t^{s's}\alpha(t')^s\beta t)$ and $(s',t') = (s',t')\beta(s,t)\alpha(s',t') = (s'ss',(t')^{ss'}\beta t^{s'}\alpha t')$. This implies $s' \in V(s)$. Let $e \in E(S)$, then for (e,t^e) , there exist $(s',t') \in S \times_{\phi} T$ and $\alpha,\beta \in \Gamma$ such that $(e,t^e) = (e,t^e)\alpha(s',t')\beta(e,t^e) = (es'e,t^{es'e}\alpha t'^e\beta t^e)$ and $(s',t') = (s',t')\beta(e,t^e)\alpha(s',t') = (s'es',(t')^{es'}\beta t^{es'}\alpha t')$. Hence $s' \in V(e)$ and we have $t^e = t^e \alpha t'^e \beta t^e$ and $t'^e = t'^e \beta t^e \alpha t'^e$. i.e, $t'^e \in V_{\alpha}^{\beta}(t^e)$. Hence T^e is a regular Γ -semigroup.

Theorem 3.3. Let S be a semigroup and T be a Γ -semigroup, $\phi : S \not\rightarrow End(T)$ be a given antimorphism. If the semidirect product $S \times_{\phi} T$ is

- (i) a right (left) orthodox Γ-semigroup then S is an orthodox semigroup and T^e is a right (left) orthodox Γ-semigroup for every idempotent e ∈ S,
- (ii) a right (left) inverse Γ -semigroup then S is a right (left) inverse semigroup and T^e is a right (left) inverse Γ -semigroup.

Proof.

- (i) Let $S \times_{\phi} T$ be a right orthodox Γ -semigroup. Let $e, g \in E(S)$ and t^e be an α -idempotent and u^e be a β -idempotent in T^e . Then $(e, t^e)\alpha(e, t^e) =$ $(e, t^e \alpha t^e) = (e, t^e)$, i.e., (e, t^e) is an α -idempotent. Similarly (e, u^e) is a β -idempotent. Again $(g, u^{eg})\beta(g, u^{eg}) = (g, u^{eg}\beta u^{eg}) = (g, (u^e\beta u^e)^g) =$ (g, u^{eg}) . Thus (g, u^{eg}) is a β -idempotent of $S \times_{\phi} T$. Now $(e, (t^e \alpha u^e))$ $\beta(t^e \alpha u^e)) = (e, (t^e \alpha u^e))\beta(e, (t^e \alpha u^e)) = ((e, t^e)\alpha(e, u^e))\beta((e, t^e)\alpha(e, u^e))$ $= (e, t^e)\alpha(e, u^e) = (e, t^e \alpha u^e)$ which shows that $t^e \alpha u^e$ is a β -idempotent and hence T^e is a right orthodox Γ -semigroup. Again since $S \times_{\phi} T$ is a right orthodox Γ -semigroup we have $((eg)^2, (t^{eg}\alpha u^{eg})^{eg}\beta t^{eg}\alpha u^{eg}) =$ $(eg, t^{eg}\alpha u^{eg})\beta(eg, t^{eg}\alpha u^{eg}) = ((e, t^e)\alpha(g, u^{eg}))\beta((e, t^e)\alpha(g, u^{eg})) = (e, t^e)$ $\alpha(g, u^{eg}) = (eg, t^{eg}\alpha u^{eg})$. Thus $(eg)^2 = eg$ which shows that S is orthodox.
- (ii) Suppose that $S \times_{\phi} T$ is a right inverse Γ -semigroup. Let $e, g \in E(S)$ and t^e be an α -idempotent and u^e be a β -idempotent in T^e . Then (e, t^e) is an α -idempotent, $(e, u^e), (g, u^{eg})$ are β -idempotents of $S \times_{\phi} T$. Now $(e, t^e \alpha u^e \beta t^e) = (e, t^e) \alpha(e, u^e) \beta(e, t^e) = (e, u^e) \beta(e, t^e) = (e, u^e \beta t^e)$ and $(ege, t^{ege} \alpha u^{ege} \beta t^e) = (e, t^e) \alpha(g, u^{eg}) \beta(e, t^e) = (g, u^{eg}) \beta(e, t^e)$ $= (ge, u^{ege} \beta t^e)$. So we have $t^e \alpha u^e \beta t^e = u^e \beta t^e$ and ege = ge. Consequently we have S is a right inverse semigroup and T^e is a right inverse Γ -semigroup.

The proofs of the following two theorems are almost similar to our Lemma 3.3 and Lemma 3.4 proved in [6]. For completeness we give the proof here.

Theorem 3.4. Let $S \times_{\phi} T$ be the semidirect product of a semigroup S and a Γ -semigroup T corresponding to a given antimorphism $\phi : S \not\rightarrow End(T)$ and let $(s,t) \in S \times_{\phi} T$, then Wreath Product of a semigroup and a Γ -semigroup

- (i) if $(s',t') \in V_{\alpha}^{\beta}((s,t))$ then $(s',t') \in V_{\alpha}^{\beta}((s,t^{s's}))$. In particular if $s \in E(S)$, then $(s,(t')^{s}\beta t^{s's}\alpha t') \in V_{\alpha}^{\beta}((s,t^{s's}))$ and
- (ii) if t^s is an α -idempotent and $s' \in V(s)$, then $(s', t^{ss'}) \in V^{\alpha}_{\alpha}((s, t^s))$.

Proof.

(i) Since $(s', t') \in V_{\alpha}^{\beta}((s, t))$ we have,

$$(s',t') = (s',t')\beta(s,t)\alpha(s',t') = (s'ss',(t')^{ss'}\beta t^{s'}\alpha t')$$

and

$$(s,t) = (s,t)\alpha(s',t')\beta(s,t) = (ss's,t^{s's}\alpha(t')^s\beta t).$$

This shows that

(1)
$$s' \in V(s) \text{ and } t^{s's} \alpha(t')^s \beta t = t$$

(2)
$$(t')^{ss'}\beta t^{s'}\alpha t' = t'$$

From (1) we have, $(t^{s's}\alpha(t')^s\beta t)^{s's} = (t)^{s's}$ i.e., $t^{s's}\alpha(t')^s\beta t^{s's} = t^{s's}$ and from (2), $((t')^{ss'}\beta t^{s'}\alpha t')^s = (t')^s$ i.e., $(t')^s\beta t^{s's}\alpha(t')^s = (t')^s$. Now $(s',t')\beta(s,t^{s's})\alpha(s',t') = (s'ss',(t')^{ss'}\beta t^{s'ss'}\alpha t') = (s',t')$ by (2) and $(s,t^{s's})\alpha(s',t')\beta(s,t^{s's}) = (ss's,t^{s'ss's}\alpha(t')^s\beta t^{s's}) = (s,t^{s's}\alpha(t')^s\beta t^{s's}) =$ $(s,t^{s's})$. Thus we have $(s',t') \in V_{\alpha}^{\beta}((s,t^{s's}))$. Again if $s \in E(S)$, $((t')^s\beta t^{s's}\alpha t')^s = (t')^s\beta t^{s's}\alpha(t')^s = (t')^s$ and $(s,t^{s's})\alpha(s,(t')^s\beta t^{s's}\alpha t')$ $\beta(s,t^{s's}) = (sss,t^{s's}\alpha((t')^s\beta t^{s's}\alpha t')^s\beta t^{s's}) = (s,t^{s's}\alpha(t')^s\beta t^{s's}) = (s,t^{s's})^s$ and $(s,(t')^s\beta t^{s's}\alpha t')\beta$ $(s,t^{s's})\alpha(s,(t')^s\beta t^{s's}\alpha t') = (s,((t')^s\beta t^{s's}\alpha t')^s)^s$ $\beta t^{s'ss}\alpha(t')^s\beta t^{s's}\alpha t') = (s,(t')^s\beta t^{s's}\alpha(t')^s \beta t^{s's}\alpha t') = (s,(t')^s \beta t^{s's}\alpha t').$ Hence $(s,(t')^s\beta t^{s's}\alpha t') \in V_{\alpha}^{\beta}(s,t^{s's}).$

(ii) $(s,t^s)\alpha(s',t^{ss'})\alpha(s,t^s) = (ss's,t^{ss's}\alpha t^{ss's}\alpha t^s) = (s,t^s)$ since t^s is an α -idempotent and $(s',t^{ss'})\alpha(s,t^s)\alpha(s',t^{ss'}) = (s'ss',t^{ss'ss'}\alpha t^{ss'}\alpha t^{ss'}) = (s',t^{ss'}\alpha t^{ss'}\alpha t^{ss'}) = (s',(t^s\alpha t^s\alpha t^s)^{s'}) = (s',t^{ss'})$ i.e., $(s',t^{ss'}) \in V^{\alpha}_{\alpha}(s,t^s)$.

Theorem 3.5. Let S be a semigroup and T be a Γ -semigroup and $S \times_{\phi} T$ be the semidirect product corresponding to a given antimorphism $\phi : S \not\rightarrow$ End(T). Moreover, if $t \in t^e \Gamma T$ for every $e \in E(S)$ and every $t \in T$, then

- (i) (e,t) is an α -idempotent if and only if $e \in E(S)$ and t^e is an α -idempotent and
- (ii) if (e, t) is an α -idempotent, then $(e, t^e) \in V^{\alpha}_{\alpha}((e, t))$.

Proof.

(i) If (e, t) is an α -idempotent then

(3)
$$(e,t) = (e,t)\alpha(e,t) = (e^2, t^e \alpha t)$$
 i.e., $e = e^2$ and $t^e \alpha t = t$.

So, $t^e = (t^e \alpha t)^e = t^e \alpha t^e$ which implies that t^e is an α -idempotent. Conversely, let $e \in E(S)$ and t^e be an α -idempotent. Since $t \in t^e \Gamma T$, $t = t^e \beta t_1$ for some $\beta \in \Gamma$, $t_1 \in T$ and hence $t^e \alpha t = t^e \alpha t^e \beta t_1 = t$. Thus $(e,t)\alpha(e,t) = (e,t^e \alpha t) = (e,t)$ i.e., (e,t) is an α -idempotent.

(ii) If (e,t) is an α -idempotent, from (i) $e \in E(S)$ and t^e is an α -idempotent. Now $(e,t)\alpha(e,t^e)\alpha(e,t) = (e,t^e\alpha t^e\alpha t) = (e,t^e\alpha t) = (e,t)$ from (3) and $(e,t^e)\alpha(e,t)\alpha$ $(e,t^e) = (e,t^e\alpha t^e\alpha t^e) = (e,t^e)$. Thus $(e,t^e) \in V^{\alpha}_{\alpha}((e,t))$.

Theorem 3.6. Let S be a semigroup and T be a Γ -semigroup. Let $\phi : S \not\rightarrow End(T)$ be a given antimorphism. Then the semidirect product $S \times_{\phi} T$ is a right (left) orthodox Γ -semigroup if and only if

- (i) S is an orthodox semigroup and T^e is a right (left) orthodox Γ-semigroup for every e ∈ E(S),
- (ii) for every $e \in E(S)$ and every $t \in T$, $t \in t^e \Gamma T$ and
- (iii) for every α -idempotent t^e , t^{ge} is an α -idempotent, where $e, g \in E(S)$, $t \in T$.

Proof. Suppose $S \times_{\phi} T$ is a right orthodox Γ -semigroup. Then by Theorem 3.3 S is an orthodox semigroup and T^e is a right orthodox Γ -semigroup for every $e \in E(S)$. For (ii), let $(e,t) \in S \times_{\phi} T$ with $e \in E(S)$ and let $(e',t') \in V_{\alpha}^{\beta}((e,t))$ for some $\alpha, \beta \in \Gamma$. Then by Theorem 3.4 $(e',t'), (e',(t')^e\beta t^{e'e}\alpha t') \in V_{\alpha}^{\beta}((e,t^{e'e}))$. Thus $V_{\alpha}^{\beta}((e,t)) \cap V_{\alpha}^{\beta}((e,t^{e'e})) \neq \phi$ and hence by Theorem 2.9, $V_{\alpha}^{\beta}((e,t)) = V_{\alpha}^{\beta}((e,t^{e'e}))$. So $(e,(t')^e\beta t^{e'e}\alpha t') \in$ $V_{\alpha}^{\beta}((e,t))$. Thus $(e,t) = (e,t)\alpha(e,(t')^e\beta t^{e'e}\alpha t')\beta(e,t) = (e,t^e\alpha(t')^e\beta t^{e'e}\alpha t') \in$ $\alpha(t')^e\beta t)$ and hence $t = t^e\alpha(t')^e\beta t^{e'e}\alpha(t')^e\beta t \in t^e\Gamma T$.

For (iii) we shall first show that for an α -idempotent t^e of T if $e \in E(S), t^{e'}$ is an α -idempotent for any $e' \in V(e)$. If $e \in E(S)$ and t^e is an α -idempotent, then by Theorem 3.5, (e,t) is an α -idempotent in $S \times_{\phi} T$ and $(e,t^e) \in V^{\alpha}_{\alpha}((e,t))$. Again since t^e is an α -idempotent (e,t^e) is also an α -idempotent and thus $(e,t^e) \in V^{\alpha}_{\alpha}((e,t^e))$ i.e., $V^{\alpha}_{\alpha}((e,t^e)) \cap V^{\alpha}_{\alpha}((e,t)) \neq \phi$ and so $V^{\alpha}_{\alpha}((e,t^e)) = V^{\alpha}_{\alpha}((e,t))$ and by Theorem 3.5 $(e',t^{ee'}) \in V^{\alpha}_{\alpha}((e,t^e))$ i.e.,

168

 $\begin{array}{l} (e',t^{ee'})\in V^{\alpha}_{\alpha}((e,t)). \ \text{Thus}\ (e,t)=(e,t)\alpha(e',t^{ee'})\alpha(e,t)=(ee'e,t^{e'e}\alpha t^{ee'e}\alpha t)\\ =(e,t^{e'e}\alpha t^e\alpha t)=(e,t^{e'e}\alpha t)\ [\text{since}\ t=t^e\beta u\ \text{for some}\ \beta\in\Gamma,\ u\in T,t^e\alpha t=t].\\ \text{So}\ t=t^{e'e}\alpha t\ \text{and}\ \text{hence}\ t^{e'}=(t^{e'e}\alpha t)^{e'}=t^{e'}\alpha t^{e'}. \ \text{Thus}\ t^{e'}\ \text{is an}\ \alpha\text{-idempotent}.\\ \text{Let}\ e,g\in E(S)\ \text{and}\ \text{suppose}\ \text{that}\ t^e\ \text{is an}\ \alpha\text{-idempotent}\ \text{for}\ t\in T,\ \text{then}\ t^{eg}\alpha t^{eg}=(t^e\alpha t^e)^g=t^{eg}\ \text{i.e.}\ t^{eg}\ \text{is an}\ \alpha\text{-idempotent}\ \text{and}\ \text{we}\ \text{have}\ eg\in E(S)\\ \text{and}\ ge\in V(eg)\ \text{since}\ S\ \text{is orthodox}. \ \text{Then}\ \text{by}\ \text{the}\ \text{above}\ \text{fact}\ t^{ge}\ \text{is an}\ \alpha\text{-idempotent}. \end{array}$

We now prove the converse part. Suppose S and T satisfy (i), (ii) and (iii). Let $(s,t) \in S \times_{\phi} T$. Since S is regular, there exists $s' \in S$ such that s = ss's and s' = s'ss'. We take e = s's, then $e \in E(S)$. By (ii) $t \in t^e \Gamma T$ which implies $t = t^e \beta u$ for some $\beta \in \Gamma$, $u \in T$. Let $t' = v^{s'}$ where $v^e \in V_{\gamma}^{\delta}(t^e)$ where $\gamma, \delta \in \Gamma$. Now $t^{s's}\gamma(t')^s \delta t = t^{s's}\gamma v^{s's} \delta t^e \beta u = (t\gamma v \delta t)^e \beta u =$ $(t^e \gamma v^e \delta t^e)\beta u = t^e \beta u = t$ i.e, $(s,t) = (ss's, t^{s's}\gamma(t')^s \delta t) = (s,t)\gamma(s',t')\delta(s,t)$. Again $(t')^{ss'} \delta t^{s'} \gamma t' = (v^{s'})^{ss'} \delta t^{s'} \gamma v^{s'} = v^{s'} \delta t^{s'} \gamma v^{s'} = v^{s'ss'} \delta t^{s'ss'} \gamma v^{s'ss'} =$ $(v^e \delta t^e \gamma v^e)^{s'} = v^{es'} = v^{s'ss'} = v^{s'} = t'$ i.e., $(s',t') = (s'ss',(t')^{ss'} \delta t^{s'} \gamma t') =$ $(s',t')\delta(s,t)\gamma(s',t')$. Thus we have $(s',t') \in V_{\gamma}^{\delta}(s,t)$ which yields $S \times_{\phi} T$ is a regular Γ -semigroup.

Now let (e, t) be an α -idempotent and (g, u) be a β -idempotent. Then by Theorem 3.5 $e, g \in E(S)$, t^e is an α -idempotent and u^g is a β -idempotent. By (iii) t^{ge} is an α -idempotent, u^{eg} is a β -idempotent and $t^{geg}\alpha t^{geg} = (t^{ge}\alpha t^{ge})^g = t^{geg}$ i.e., t^{geg} is an α -idempotent. By our assumption $e, g \in E(S)$ and $(t^g \alpha u)^{eg} = t^{geg} \alpha u^{eg}$ is a β -idempotent. Thus by Theorem 3.5 $(e, t)\alpha(g, u) = (eg, t^g \alpha u)$ is a β -idempotent which shows that $S \times_{\phi} T$ is a right orthodox Γ -semigroup.

Theorem 3.7. Let S be a semigroup, T be a Γ -semigroup and $\phi : S \not\rightarrow End(T)$ be a given antimorphism. Then the semidirect product $S \times_{\phi} T$ is a right inverse Γ -semigroup if and only if

- (i) S is a right inverse semigroup and T^e is a right inverse Γ -semigroup for every $e \in E(S)$ and
- (ii) for every $e \in E(S)$ and every $t \in T$, $t \in t^e \Gamma T$.

Proof. Let $S \times_{\phi} T$ be a right inverse Γ -semigroup. Then by Theorem 3.3 S is a right inverse semigroup and T^e is a right inverse Γ -semigroup for every $e \in E(S)$. Again since every right inverse Γ -semigroup is a right orthodox Γ -semigroup from the above theorem, condition (ii) holds.

Conversely, suppose that S and T satisfy (i) and (ii). Then by Theorem 3.2 $S \times_{\phi} T$ is a regular Γ -semigroup. Let (e, t) be an α -idempotent and (g, u)

be a β -idempotent in $S \times_{\phi} T$. Then by Theorem 3.5 $e, g \in E(S)$, t^e is an α idempotent, u^g is a β -idempotent. From (ii) $t = t^e \gamma v$ for some $\gamma \in \Gamma$, $v \in T$ and thus $t^e \alpha t = t$ and similarly $u^g \beta u = u$. So $u^{ge} = (u^g \beta u)^{ge} = u^{ge} \beta u^{ge}$ and $t^{ge} = (t^e \alpha t)^{ge} = t^{ege} \alpha t^{ge} = t^{ge} \alpha t^{ge}$ since S is a right inverse semigroup. Now by (ii) we have $u^e \beta t = (u^e \beta t)^{ge} \delta v_1$ for some $\delta \in \Gamma$, $v_1 \in T$ and hence $u^e \beta t =$ $u^{ege} \beta t^{ge} \delta v_1 = u^{ge} \beta t^{ge} \delta v_1$. Thus we have $(e, t) \alpha(g, u) \beta(e, t) = (ege, t^{ge} \alpha u^e \beta t)$ $= (ge, t^{ge} \alpha u^{ge} \beta t^{ge} \delta v_1) = (ge, u^{ge} \beta t^{ge} \delta v_1) = (ge, u^e \beta t) = (g, u) \beta(e, t)$ which implies $S \times_{\phi} T$ is a right inverse Γ -semigroup.

Theorem 3.8. Let S be a semigroup, T be a Γ -semigroup and $\phi : S \not\rightarrow End(T)$ be a given antimorphism. Then the semidirect product $S \times_{\phi} T$ is a left inverse Γ -semigroup if and only if

- (i) S is a left inverse semigroup and T^e is a left inverse Γ-semigroup for every e ∈ E(S) and
- (ii) for every $e \in E(S)$ and every $t \in T$, $t = t^e$.

Proof. Let $S \times_{\phi} T$ be a left inverse Γ -semigroup. Then by Theorem 3.3 S is a left inverse semigroup and T^e is a left inverse Γ -semigroup. For (ii) let (e, u)be an α -idempotent in $S \times_{\phi} T$. Then $(e, u) = (e, u)\alpha(e, u) = (e, u^e\alpha u)$ i.e., $u^e \alpha u = u$. Again $(e, u^e)\alpha(e, u^e) = (e, u^{ee}\alpha u^e) = (e, u^e)$ which yields (e, u^e) is an α -idempotent and we have $(e, u^e)\alpha(e, u) = (e, u^e\alpha u) = (e, u)$. Since $S \times_{\phi}$ T is a left inverse Γ -semigroup, $(e, u) = (e, u^e)\alpha(e, u) = (e, u^e)\alpha(e, u)\alpha(e, u^e)$ $= (e, u^{eee}\alpha u^{ee}\alpha u^e) = (e, (u^e\alpha u)^{ee}\alpha u^e) = (e, u^{ee}\alpha u^e) = (e, u^e)$ i.e., $u = u^e$. Thus if (e, u) is an α -idempotent then $u = u^e$. Now $(e, t) \in S \times_{\phi} T$ with $e \in$ E(S) and let $(e', t') \in V^{\delta}_{\gamma}((e, t))$ for some $\gamma, \delta \in \Gamma$. Then we get $e' \in V(e)$, $t^{e'e}\gamma(t')^e\delta t = t$ i.e., $t^{e'e}\gamma(t')^{ee'e}\delta t^{e'e} = t^{e'e}$ which implies $t^{e'e}\gamma(t')^e\delta t^{e'e} = t^{e'e}$. Since $(e'e, (t')^e\delta t) = (e', t')\delta(e, t)$ and $S \times_{\phi} T$ is left orthodox (since it is left inverse), $(e'e, (t')^e\delta t)$ is a γ -idempotent and hence $(t')^e\delta t = ((t')^e\delta t)^{e'e}$ $= (t')^e \delta t^{e'e}$. Thus $t^{e'e} = t^{e'e}\gamma(t')^e \delta t^{e'e} = t^{e'e}\gamma(t')^e\delta t = t$ and hence $t^e =$ $(t^{e'e})^e = t^{e'e} = t$.

Conversely suppose that S and T satisfy (i) and (ii). Let $(s,t) \in S \times_{\phi} T$. Let $e \in E(S)$. Since S is regular there exists $s' \in S$ such that $s' \in V(s)$. From (*ii*) we have $t = t^e$. Since T^e is regular there exists $v \in T$ such that $v^e \in V_{\gamma}^{\delta}(t^e)$. We now take $t' = v^{s'}$. Now $t^{ss'}\gamma(t')^s\delta t = t^{s's}\gamma v^{s's}\delta t^e = t^e\gamma v^e\delta t^e = t^e = t$ and $(t')^{s's}\delta t^{s'}\gamma t' = (v^{s'})^{ss'}\delta t^{s'}\gamma v^{s'} = v^{s'}\delta t^{s'}\gamma v^{s'} = v^{s'ss'}\delta t^{s'ss'}\gamma v^{s'ss'} = (v^e\delta t^e\gamma v^e)^{s'} = v^{ss'} = v^{s'ss'} = v^{s'} = t'$. Thus we have $(s',t') \in V_{\gamma}^{\delta}(s,t)$. Hence $S \times_{\phi} T$ is regular. Now let (e,t) be an α -idempotent and (g,u) be a β -idempotent. Then $e^2 = e$ and $t = t^e \alpha t = t \alpha t$ [by (ii)] and similarly $g^2 = g$ and $u\beta u = u$ i.e., $e, g \in E(S)$ and t is an α -idempotent, u is a β -idempotent. Thus we have $(e, t)\beta(g, u)\alpha(e, t) = (ege, t^{ge}\beta u^e\alpha t) = (ege, t\beta u\alpha t)$ [by (ii)] $=(eg, t\beta u) = (eg, t^g\beta u) = (e, t)\beta(g, u)$. Thus $S \times_{\phi} T$ is a left inverse Γ -semigroup.

4. Wreath product of a semigroup and a Γ -semigroup

In this section we introduce the notion of wreath product of a semigroup Sand a Γ semigroup T. Let X be a nonempty set. Consider the set T^X of all mappings from X to T. For $f, g \in T^X$ and $\alpha \in \Gamma$, define $f \alpha g$ such that $T^X \times \Gamma \times T^X \to T^X$ by $(f \alpha g)(x) = f(x) \alpha g(x)$.

Before going to establish the relation between T and T^X we assume $\Gamma = \{\alpha\}$, a set consisting of single element. Then (T, \cdot) becomes a semigroup where $a \cdot b = a\alpha b$ and T^X also becomes a semigroup where $f \cdot g = f\alpha g$. Suppose T is a regular Γ -semigroup. Then (T, \cdot) is a semigroup. Let $f \in T^X$ and let $x \in X$. Now $f(x) \in T$ and $V(f(x)) \neq \phi$. We define $g: X \to T$ so that $g(x) \in V(f(x))$. Hence for each $x \in X$ we can choose a g(x) such that f(x)g(x)f(x) = f(x). Hence fgf = f which implies that (T^X, \cdot) is a regular semigroup and consequently T^X is a regular Γ -semigroup. In general we cannot extend the process when Γ contains more than one element. To explain this we consider the following example.

Example 4.1. Let $T = \{(a,0) : a \in Q\} \cup \{(0,b) : b \in Q\}, Q$ denote the set of all rational numbers. Let $\Gamma = \{(0,5), (0,1), (3,0), (1,0)\}$. Defining $T \times \Gamma \times T \to T$ by $(a,b)(\alpha,\beta)(c,d) = (a\alpha c, b\beta d)$ for all $(a,b), (c,d) \in T$ and $(\alpha,\beta) \in \Gamma$, we can show that T is a Γ -semigroup. Now let $(a,0) \in T$. If a = 0 then (a,0) is regular. Suppose $a \neq 0$, then $(a,0)(3,0)(\frac{1}{3a},0)(1,0)(a,0) = (a,0)$. Similarly we can show that (0,b) is also regular. Hence T is a regular Γ -semigroup. Let us now take a set $X = \{x, y\}$, the set consisting of two elements and let us define a mapping $f : X \to T$ by f(x) = (2,0) and f(y) = (0,3). We now show that f is not regular in T^X . If possible let f be regular. Then there exists a mapping $g : X \to T$ and two elements $\alpha, \beta \in \Gamma$ such that $f\alpha g\beta f = f$. i.e., $f(p)\alpha g(p)\beta f(p) = f(p)$ for all $p \in X$. Now if p = x, then $\alpha, \beta \notin \{(0,5), (0,1)\}$, since the first component of f(x) is nonzero. Thus a contradiction arises. Hence T^X is not a regular Γ -semigroup.

Before further discussion about the relation between T and T^X we now give the following definition.

Definition 4.2. Let S be a Γ -semigroup. An element $e \in S$ is said to be a left(resp. right) γ -unity for some $\gamma \in \Gamma$ if $e\gamma a = a(\text{resp. } a\gamma e = a)$ for all $a \in S$.

We now consider the following examples.

Example 4.3. Consider the Γ -semigroup S of Example 2.3. In this Γ semigroup $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$ is a left α -unity but not a right α -unity of S for $\alpha = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{pmatrix}$.

Example 4.4. Let S be the set of all integers of the form 4n+1 and Γ be the set of all integers of the form 4n+3 where n is an integer. If $a\alpha b$ is $a + \alpha + b$ for all $a, b \in S$ and $\alpha \in \Gamma$ then S is a Γ -semigroup. Here 1 is a left (-1)- unity and also right (-1)- unity.

Example 4.5. Let us consider N, the set of all natural numbers. Let S be the set of all mappings from N to $N \times N$ and Γ be the set of all mappings from $N \times N$ to N. Then the usual mapping product of two elements of S cannot be defined. But if we take f, g from S and α from Γ the usual mapping product $f\alpha g$ can be defined. Also, we find that $f\alpha g \in S$ and $(f\alpha g)\beta h = f\alpha(g\beta h)$. Hence S is a Γ -semigroup. Now we know that the set $N \times N$ is countable. Hence there exists a bijective mapping $f \in S$. Since f is bijective, there exists $\alpha : N \times N \longrightarrow N$ such that $f\alpha$ is the identity mapping on $N \times N$ and αf is the identity mapping on N. Then $f\alpha g = g\alpha f = g$ for all $g \in S$. Hence f is both left α -unity and right α -unity of S.

Let S be a Γ -semigroup and e be a left α -unity. Then $S\Gamma e$ is a left ideal such that $e = e\alpha e \in S\Gamma e$. Also we note that the element e is both left and right α -unity of $S\Gamma e$ in $S\Gamma e$.

Suppose S is a regular Γ -semigroup with a left α -unity e. Then we show that $S\Gamma e$ is a regular Γ -semigroup with a unity. We only show that $S\Gamma e$ is regular. Let $a\gamma e \in S\Gamma e$. Since S is regular there exist $\beta, \delta \in \Gamma$ and $b \in S$ such that $a\gamma e = a\gamma e\beta b\delta a\gamma e$ i.e., $a\gamma e = a\gamma e\beta b\delta e\alpha a\gamma e = (a\gamma e)\beta(b\delta e)\alpha(a\gamma e)$. Since $b\delta e \in S\Gamma e$, $a\gamma e$ is regular. Hence $S\Gamma e$ is a regular Γ -semigroup. Let us now consider T with a left γ -unity e and a right δ -unity g. Then the constant mapping $C_e: X \to T$ which is defined by $C_e(x) = e$ for all $x \in X$ is a left γ -unity of T^X . Similarly the constant mapping C_g is a right δ -unity of T^X .

Theorem 4.6. Let T be a Γ -semigroup with a left γ -unity and a right δ unity for some $\gamma, \delta \in \Gamma$. Then

- (i) T^X is a regular Γ -semigroup if and only if T is a regular Γ -semigroup,
- (ii) T^X is a right (resp. left) orthodox Γ -semigroup if and only if T is so and
- (iii) T^X is a right (resp. left) inverse Γ -semigroup if and only if T is a right (resp. left) inverse Γ -semigroup.

Proof. By $C_t, t \in T$ denotes the mapping in T^X such that $C_t(x) = t$ for all $x \in X$. Then it is clear that $(C_t)\alpha(C_u) = C_{(t\alpha u)}$ which shows that C_t is an α -idempotent if and only if t is an α -idempotent. Again we have that if f is an α -idempotent in T^X then f(x) is an α -idempotent in T for all $x \in X$.

(i) Assume that T^X is a regular Γ -semigroup. Then for each $t \in T$ there exist $f \in T^X$ and $\alpha, \beta \in \Gamma$ such that $C_t \alpha f \beta C_t = C_t$ so that $t \alpha f(x)\beta t = t$ for all $x \in X$ which shows that t is regular in T. Consequently T is a regular Γ -semigroup. Conversely let T be regular and let e be a left γ -unity and g be a right δ -unity of T. Then for each $f \in T^X$ and for each $x \in X$, $f(x) \in T$ is a regular element and hence there exists a triplet $(\alpha_x, t_x, \beta_x) \in \Gamma \times T \times \Gamma$ such that $f(x)\alpha_x t_x\beta_x f(x) = f(x)$. i.e., $f(x) = (f(x)\delta g)\alpha_x t_x\beta_x (e\gamma f(x)) = f(x)\delta(g\alpha_x t_x\beta_x e)\gamma f(x)$. Define $h: X \to T$ by $h(x) = g\alpha_x t_x\beta_x e$. Then for all $y \in X$, we have

$$(f\delta h\gamma f)(y) = f(y)\delta h(y)\gamma f(y)$$

= $f(y)\delta g\alpha_y t_y \beta_y e\gamma f(y)$
= $f(y)\alpha_y t_y \beta_y f(y)$
= $f(y).$

Hence f is regular in T^X . Consequently T^X is a regular Γ -semigroup.

- (ii) Let $t, u \in T$ such that t be an α -idempotent and u be a β -idempotent. Then C_t is an α -idempotent and C_u is a β -idempotent in T^X . Now if T^X is a right orthodox Γ -semigroup then $(C_t \alpha C_u) \beta(C_t \alpha C_u) = C_t \alpha C_u$ i.e., $t\alpha u$ is a β -idempotent in T which implies T is also a right orthodox Γ -semigroup. Similarly we can show that if T^X is a left orthodox Γ -semigroup then T is so. Let f be an α -idempotent and h be a β -idempotent in T^X . Let us now suppose that T is a right(resp. left) orthodox Γ -semigroup. Then $f(x)\alpha h(x)$ (resp. $f(x)\beta h(x)$) is a β -idempotent (resp. α -idempotent). Hence T^X is a right (resp. left) orthodox Γ -semigroup.
- (iii) Let T^X be a right (resp. left) inverse Γ -semigroup and let $t, u \in T$ such that t is an α -idempotent and u be a β -idempotent. Then C_t is an α -idempotent and C_u is a β -idempotent in T^X and $C_t \alpha C_u \beta C_t =$ $C_u \beta C_t$ (resp. $C_t \beta C_u \alpha C_t = C_t \beta C_u$). Thus we have $t \alpha u \beta t = u \beta t$ (resp. $t \beta u \alpha t = t \beta u$) which implies that T is a right(resp. left) inverse Γ semigroup. Again let T be a right (resp. left) inverse Γ -semigroup. Let fbe an α -idempotent and h be a β -idempotent in T^X . $f(x)\alpha h(x)\beta f(x) =$ $h(x)\beta f(x)$ (resp. $f(x)\beta h(x)\alpha f(x) = f(x)\beta h(x)$) for all $x \in X$ i.e, $f\alpha h\beta f = h\beta f$ (resp. $f\beta h\alpha f = f\beta h$). Thus T^X is a right (resp. left)inverse Γ -semigroup.

Let us now suppose that the semigroup S acts on X from the left i.e., $sx \in X, s(rx) = (sr)x$ and 1x = x if S is a monoid, for every $r, s \in S$ and every $x \in X$. If S acts on X from left we call it left S set X.

For every Γ -semigroup T, it is known that End(T) is a semigroup. Hence $End(T^X)$ is also a semigroup.

Let S be a semigroup, T a Γ -semigroup and X a nonempty set. Suppose S acts on X from left. Define $\phi: S \to End(T^X)$ by $((\phi(s))(f))(x) = f(sx)$ for all $s \in S, f \in T^X$ and $x \in X$. We now verify that $\phi(s) \in End(T^X)$. For this, let $f, g \in T^X, \alpha \in \Gamma$ and $x \in X$. Then $((\phi(s))(f\alpha g))(x) = (f\alpha g)(sx) =$ $f(sx)\alpha g(sx) = ((\phi(s))(f))(x)\alpha((\phi(s))(g))(x) = ((\phi(s))(f))\alpha((\phi(s))(g))(x)$. Hence $(\phi(s))(f\alpha g) = ((\phi(s))(f))\alpha((\phi(s))(g))$, which implies that $\phi(s) \in$ $End(T^X)$.

Let us now verify that $\phi: S \to End(T^X)$ is a semigroup antimorphism. For this let $s_1, s_2 \in S, f \in T^X$ and $x \in X$. Then $((\phi(s_1)\phi(s_2))(f))(x) = (\phi(s_1)(\phi(s_2)(f)))(x) = (\phi(s_2)(f))(s_1x) = f((s_2(s_1(x))) = f((s_2s_1)x) = (\phi(s_2s_1)(f))(x)$. Hence $\phi(s_2s_1) = \phi(s_1)\phi(s_2)$.

174

For this antimorphism $\phi : S \not\rightarrow End(T^X)$ we can define the semidirect product $S \times_{\phi} T^X$ of the semigroup S and the Γ -semigroup T^X . We call this semidirect product the wreath product of the semigroup S and the Γ semigroup T relative to the left S-set X. We denote it by SW_XT . We also denote $\phi(s)(f)(x)$ by $f^s(x)$. Hence $f^s(x) = f(sx)$.

If |T| = 1, then $|T^X| = 1$ and hence throughout the paper we assume that $|T| \ge 2$. We now give the relation between T and $(T^X)^e$ for all $e \in E(S)$.

Similar to the Theorems 3.6 and 3.7 we have following Theorems.

Theorem 4.7. Let S be a semigroup acting on the set X from the left and T be a Γ -semigroup with a left γ -unity and a right δ -unity for some $\gamma, \delta \in \Gamma$. Then

- (i) T is a regular Γ -semigroup if and only if $(T^X)^e$ is a regular Γ -semigroup,
- (ii) T is a right (resp. left) orthodox Γ -semigroup if and only if $(T^X)^e$ is so and
- (iii) T is a right (resp. left) inverse Γ -semigroup if and only if $(T^X)^e$ is a right (resp. left) inverse Γ -semigroup.

Theorem 4.8. Let S be a semigroup acting on the set X from the left and T be a Γ -semigroup with a left γ -unity and a right δ -unity for some $\gamma, \delta \in \Gamma$. Then the wreath product SW_XT is a right(left) orthodox Γ -semigroup if and only if

- (i) S is an orthodox semigroup and $(T^X)^e$ is a right(left) orthodox Γ semigroup for every $e \in E(S)$
- (ii) for every $x \in X, f \in T^X$ and $e \in E(S), f(x) \in f(ex)\Gamma T$ and
- (iii) f(ex) is an α -idempotent for every $x \in X$, implies that f(gex) is an α -idempotent for every $g \in E(S)$ where $e \in E(S), f \in T^X$.

We now prove the following Theorem.

Theorem 4.9. Let S be an orthodox semigroup acting on the set X from the left and T be a right orthodox Γ -semigroup with a left γ -unity and a right δ -unity for some $\gamma, \delta \in \Gamma$. Then the following statements are equivalent.

- (a) S and T^X satisfy (ii) and (iii) of Theorem 4.8.
- (b) S permutes X or T is a Γ group and geX \subseteq eX for every $e, g \in E(S)$.

Proof. (a) \Longrightarrow (b): Let us suppose that T is not a Γ -group. Then there exists $z \in T$ such that $z\Gamma T \neq T$. Let e_{δ} be a left δ - unity in T. For $x \in X$, define $f_x : X \to T$ by $f_x(y) = e_{\delta}$ if y = x and $f_x(y) = z$ if $y \neq x$. Then by (ii), $e_{\delta} = f_x(x) \in f_x(gx)\Gamma T$ for every $g \in E(S)$. If $f_x(gx) = z$ then $e_{\delta} \in z\Gamma T$. Thus $e_{\delta} = z\alpha v$ for some $v \in T$ and $\alpha \in \Gamma$. This implies that $u = e_{\delta}\delta u = z\alpha v\delta u$ for all $u \in T$. Hence $T = z\Gamma T$ which is a contradiction. Hence $f_x(gx) = e_{\delta}$ Thus we can conclude that gx = x for all $g \in E(S)$. Let $a \in S$ and $x, y \in X$ such that ax = ay. For $a' \in V(a), a'a \in E(S)$ and x = (a'a)x = (a'a)y = y. Again (aa')x = x implies that a(a'x) = x. Hence for each $a \in S$, the mapping $f_a : X \to X$ defined by $f_a(x) = ax$ is a permutation on X. This means that S permutes X.

Now T is a Γ - group. Note that e_{δ} is a δ - idempotent and since T is a Γ - group, $E_{\delta}(T) = \{e_{\delta}\}$. Let $t \neq e_{\delta} \in T$ and $e \in E(S)$. Define $h: X \longrightarrow T$ by $h(x) = e_{\delta}$ if $x \in eX$, otherwise h(x) = t. Now $h(ex) = e_{\delta}$ for every $x \in X$ and hence by (iii), $h(gex) = e_{\delta}$. This implies that $gex \in eX$ and hence $geX \subseteq eX$ for all $e, g \in E(S)$.

(b) \implies (a): The proof is almost similar to the proof of (2) \Rightarrow (1) of Lemma 3.2 [5].

From Theorem 4.7 and 4.9 we conclude that

Theorem 4.10. Let S be a semigroup acting on the set X from the left and T be a Γ -semigroup with a left γ -unity and a right δ -unity for some $\gamma, \delta \in \Gamma$. Then the wreath product SW_XT is a right orthodox Γ -semigroup if and only if

- (1) S is an orthodox semigroup and T is a right orthodox Γ -semigroup and
- (2) S permutes X or T is a Γ group and geX \subseteq eX for every $e, g \in E(S)$.

Theorem 4.11. Let S, T and X be as in Theorem 4.10. Then the wreath product SW_XT is a right inverse Γ -semigroup if and only if

- (i) S is a right inverse semigroup and T is a right inverse Γ -semigroup and
- (ii) S permutes X or T is a Γ -group.

Proof. Suppose that SW_XT is a right inverse Γ -semigroup. Then by Theorem 3.7 and Theorem 4.7 we have S is a right inverse semigroup and T is a right inverse Γ -semigroup and by Theorem 4.10 we have S permutes X or T is a Γ -group.

Conversely suppose that S, T and X satisfy (i) and (ii). Then by Theorem 4.6 T^X is a right inverse Γ -semigroup. If T is a Γ -group, then $f(x) \in f(ex)\Gamma T$ for every $f \in T^X$, $e \in E(S), x \in X$. If S permutes X, then $f(x) \in f(x)\Gamma T = f(ex)\Gamma T$ since ex = x for every $e \in E(S)$. Then by Theorem 3.7 $S \times_{\alpha} T^X = SW_X T$ is a right inverse Γ -semigroup.

Theorem 4.12. Let S, T and X be as in Theorem 4.10. Then the wreath product SW_XT is a left inverse Γ -semigroup if and only if S is a left inverse semigroup and T is a left inverse Γ -semigroup and S permutes X.

Proof. By Theorem 3.8 and Theorem 4.7, we have SW_XT is a left inverse Γ -semigroup if and only if S is a left inverse semigroup and T is a left inverse Γ -semigroup and f(ex) = f(x) for every $f \in T^X$, $e \in E(S), x \in X$. The remaining part of the proof is almost similar to the proof of Corollary 3.7 [5].

Open problem:

- (i) Find relation between T and T^X without assuming the existence of left α -unity and right β -unity in the Γ -semigroup T for some $\alpha, \beta \in \Gamma$.
- (ii) Study the Wreath product of a semigroup S and a Γ-semigroup T without assuming the existence of left α-unity and right β-unity in T for some α, β ∈ Γ.

Acknowledgement

We express our sincere thanks to the learned referee for his valuable suggestions and comments.

References

- S. Chattopadhyay, Right Inverse Γ-semigroup, Bull. Cal. Math. Soc. 93 (2001), 435–442.
- [2] S. Chattopadhyay, *Right Orthodox* Γ-semigroup, Southeast Asian Bull. of Math 29 (2005), 23–30.
- [3] J.M. Howie, An introduction to semigroup theory, Academic Press 1976.

- [4] W.R. Nico, On the regularity of semidirect products, J. Algebra 80 (1983), 29-36.
- [5] T. Saito, Orthodox semidirect product and wreath products of semigroups, Semigroup Forum 38 (1989), 347–354.
- [6] M.K. Sen and S. Chattopadhyay, Semidirect Product of a Semigroup and a Γ-semigroup, East-West J. of Math. 6 (2) (2004), 131–138.
- [7] M.K. Sen and N.K Saha, On Γ-semigroup I, Bull. Cal. Math. Soc. 78 (1986), 181–186.
- [8] P.S. Venkatesan, Right(left) inverse semigroup, J. of Algebra (1974), 209–217.
- [9] R. Zhang, A Note on Orthodox Semidirect Products and Wreath Products of Monoids, Semigroup Forum 58 (1999), 262–266.

Received 10 August 2007 Revised 14 September 2007