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Abstract

In this paper we study some interesting properties of regular ternary
semigroups, completely regular ternary semigroups, intra-regular ternary
semigroups and characterize them by using various ideals of ternary
semigroups.
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1. Introduction

In [5], J. Los studied some properties of ternary semigroups and proved that
every ternary semigroup can be embedded in a semigroup. In [9], F.M.
Sioson studied ideal theory in ternary semigroups. He also introduced the
notion of regular ternary semigroups and characterized them by using the
notion of quasi-ideals. In [8], M.L. Santiago developed the theory of ternary
semigroups and semiheaps. The notion of regularity was introduced and
studied by J. von Neumann [7] in 1936. Subsequently the notion of regular
semiring was also introduced and studied as a generalization of regular ring.
In [10], Vasile introduced and studied the notion of regular ternary rings.
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In [2, 3], Dutta and Kar introduced and studied the notion of regular ternary
semirings. Recently, a number of mathematicians have worked on ternary
structures, see ([1, 6]) and references therein.

In this paper we study some interesting properties of regular ternary
semigroup, completely regular ternary semigroup and intra-regular ternary
semigroup.

2. Preliminaries

Definition 2.1. A non-empty set S together with a ternary multiplication,
denoted by juxtaposition, is said to be a ternary semigroup if (abc)de =
a(bcd)e = ab(cde) for all a, b, c, d, e ∈ S.

Example 2.2. Let Z− be the set of all negative integers. Then together
with usual ternary multiplication of negative integers, Z− forms a ternary
semigroup.

Example 2.3. Let S be the set of all odd polynomials in one variable with
negative integral coefficients. Then S forms a ternary semigroup with re-
spect to ternary multiplication of polynomials.

Example 2.4. Let S be the set of all real numbers and k be a fixed number
in S. If we define a ternary multiplication in S by abc = a + b + c + k

for all a, b, c ∈ S, then with this ternary multiplication, S forms a ternary
semigroup.

Example 2.5. Let S be the set of all continuous functions f : X −→ R−,
where X is a topological space and R− is the set of all negative real numbers.

Now we define a ternary multiplication on S by

(fgh)(x) = f(x)g(x)h(x) for all f, g, h ∈ S and x ∈ X.

Then together with this ternary multiplication, S forms a ternary semigroup.

Definition 2.6. A ternary semigroup S is said to be commutative if
x1x2x3 = xσ(1)xσ(2)xσ(3) for every permutation σ of {1, 2, 3} and x1, x2,

x3 ∈ S.
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Definition 2.7. A ternary semigroup S is said to be

(i) left cancellative (LC) if abx = aby =⇒ x = y for all a, b, x, y ∈ S;

(ii) right cancellative (RC) if xab = yab =⇒ x = y for all a, b, x, y ∈ S;

(iii) laterally cancellative (LLC) if axb = ayb =⇒ x = y for all
a, b, x, y ∈ S;

(iv) cancellative if S is left, right and laterally cancellative.

Definition 2.8 [8]. A pair (a, b) of elements in a ternary semigroup S is
said to be an idempotent pair if ab(abx) = abx and (xab)ab = xab for all
x ∈ S.

Definition 2.9 [8]. Two idempotent pairs (a, b) and (c, d) of a ternary
semigroup S are said to be equivalent, in notation we write (a, b) ∼ (c, d),
if abx = cdx and xab = xcd for all x ∈ S.

Definition 2.10. A non-empty subset I of a ternary semigroup S is called

(i) a left ideal of S if SSI ⊆ I

(ii) a lateral ideal of S if SIS ⊆ I

(iii) a right ideal of S if ISS ⊆ I

(iv) an ideal of S if I is a left, a right, a lateral ideal of S. An ideal I of a
ternary semigroup S is called a proper ideal if I 6= S.

Proposition 2.11 [9]. Let S be a ternary semigroup and a ∈ S. Then the
principal

(i) left ideal generated by ‘a’ is given by < a >l= SSa ∪ {a}

(ii) right ideal generated by ‘a’ is given by < a >r= aSS ∪ {a}

(iii) lateral ideal generated by ‘a’ is given by < a >m= SaS∪SSaSS∪{a}

(iv) ideal generated by ‘a’ is given by < a >= SSa∪ aSS ∪ SaS ∪ SSaSS

∪ {a}.
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Definition 2.12. An ideal I of a ternary semigroup S is called idempotent
if I3 = I.

Definition 2.13. A proper ideal Q of a ternary semigroup S is called a
semiprime ideal of S if I3 ⊆ Q implies I ⊆ Q for any ideal I of S.

Definition 2.14. A proper ideal Q of a ternary semigroup S is called a
completely semiprime ideal of S if x3 ∈ Q implies that x ∈ Q for any
element x of S.

Definition 2.15. A subsemigroup B of a ternary semigroup S is called a
bi-ideal of S if BSBSB ⊆ B.

Definition 2.16. An element a of a ternary semigroup S is said to be
invertible in S if there exists an element b in S such that abx = bax = xab =
xba = x for all x ∈ S.

Definition 2.17. A ternary semigroup S is called a ternary group if for
a, b, c ∈ S, the equations abx = c, axb = c and xab = c have solutions in S.

Remark 2.18. In a ternary group S, for a, b, c ∈ S, the equations abx = c,
axb = c and xab = c have unique solutions in S.

Remark 2.19. In a ternary group S, every element has unique inverse in S.

3. Regular ternary semigroups

F.M. Sioson [9] defined the notion of regular ternary semigroup as follows:

Definition 3.1 [9]. A ternary semigroup S is said to be regular if for each
a ∈ S, there exist elements x, y in S such that axaya = a.

Subsequently, M.L. Santiago [8] modified the definition of regular ternary
semigroup as follows:

Definition 3.2 [8]. An element a in a ternary semigroup S is called regular
if there exists an element x in S such that axa = a.

A ternary semigroup S is called regular if all of its elements are regular.
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Clearly, we see that the above definition of regular ternary semigroup is
equivalent to the definition of regular ternary semigroup given by Sioson [9].

Example 3.3.

(i) Every ternary group is a regular ternary semigroup.

(ii) Let S = {(m,n) : m,n ∈ Q−

0
(set of all non-positive rational numbers)}.

Then it can be verified that w.r.t. componentwise usual ternary multi-
plication of non-positive rational numbers S is a regular ternary semi-
group.

Remark 3.4. A regular ternary semigroup may not be a ternary group.
We see later that under certain conditions a regular ternary semigroup is a
ternary group.

We note that every left and right ideal of a regular ternary semigroup may
not be a regular ternary semigroup; however, for a lateral ideal of a regular
ternary semigroup, we have the following result:

Lemma 3.5. Every lateral ideal of a regular ternary semigroup S is a regular
ternary semigroup.

Proof. Let L be a lateral ideal of a regular ternary semigroup S. Then for
each a ∈ L, there exists x ∈ S such that a = axa. Now a = axa = axaxa =
a(xax)a = aba, where b = xax ∈ L. This implies that L is a regular ternary
semigroup.

Note 3.6. Every ideal of a regular ternary semigroup S is a regular ternary
semigroup.

Now we have the following characterization theorem for regular ternary semi-
group:

Theorem 3.7. The following conditions in a ternary semigroup S are equiv-
alent:

(i) S is regular

(ii) For any right ideal R, lateral ideal M and left ideal L of S, RML =
R ∩ M ∩ L
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(iii) For a, b, c ∈ S; < a >r< b >m< c >l=< a >r ∩ < b >m ∩ < c >l

(iv) For a ∈ S; < a >r< a >m< a >l=< a >r ∩ < a >m ∩ < a >l.

Proof. (i)=⇒(ii).

Suppose S is a regular ternary semigroup.

Let R, M and L be a right ideal, a lateral ideal and a left ideal of S re-
spectively. Then clearly, RML ⊆ R∩M∩L. Now for a ∈ R∩M∩L, we have
a = axa for some x ∈ S. This implies that a = axa = (axa)(xax)(axa) ∈
RML. Thus we have R∩M∩L ⊆ RML. So we find that RML = R∩M∩L.

Clearly, (ii)=⇒(iii) and (iii)=⇒(iv).

To complete the proof, it remains to show that (iv)=⇒(i).

Let a ∈ S. Clearly, a ∈< a >r ∩ < a >m ∩ < a >l=< a >r< a >m<

a >l. Then we have, a ∈ (aSS∪{a})(SaS∪SSaSS∪{a})(SSa∪{a}) ⊆ aSa.
So we find that a ∈ aSa and hence there exists an element x ∈ S such that
a = axa. This implies that a is regular and hence S is regular.
From Theorem 3.7, we have the following corollary:

Corollary 3.8. The following conditions on a ternary semigroup S are
equivalent:

(i) S is regular

(ii) A ∩ B = ASB for every right ideal A and every left ideal B of S

(iii) For a, b ∈ S; < a >r ∩ < b >l=< a >r S < b >l

(iv) For a ∈ S; < a >r ∩ < a >l=< a >r S < a >l.

Theorem 3.9 [8]. The following conditions in a ternary semigroup S are
equivalent:

(i) S is regular and cancellative;

(ii) S is regular and the idempotent pairs in S are all equivalent;

(iii) Every element of S is invertible in S;

(iv) S is a ternary group;

(v) S contains no proper one-sided ideals.
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Theorem 3.10. A ternary semigroup S is regular if and only if every ideal
of S is idempotent.

Proof. Let S be a regular ternary semigroup and I be any ideal of S.
Then I3 = III ⊆ SSI ⊆ I. Let a ∈ I. Then there exists x ∈ S such
that a = axa = axaxa. Since I is an ideal and a ∈ I, xax ∈ I. Thus
a = axa = axaxa ∈ I3. Consequently, I ⊆ I3 and hence I3 = III = I i.e.,
I is idempotent.

Conversely, suppose that every ideal of S is idempotent. Let A, B and
C be three ideals of S. Then ABC ⊆ ASS ⊆ A, ABC ⊆ SBS ⊆ B

and ABC ⊆ SSC ⊆ C. This implies that ABC ⊆ A ∩ B ∩ C. Also,
(A ∩ B ∩ C)(A ∩ B ∩ C)(A ∩ B ∩ C) ⊆ ABC. Again, since A ∩ B ∩ C is
an ideal of S, (A ∩ B ∩ C)(A ∩ B ∩ C)(A ∩ B ∩ C) = A ∩ B ∩ C. Thus
A ∩ B ∩ C ⊆ ABC and hence A ∩ B ∩ C = ABC. Therefore, by Theorem
3.7, S is a regular ternary semigroup.

Theorem 3.11. A commutative ternary semigroup S is regular if and only
if every ideal of S is semiprime.

Proof. Let S be a commutative regular ternary semigroup and Q be any
ideal of S such that A3 ⊆ Q for any ideal A of S. From Theorem 3.7, it
follows that A3 = A. Consequently, A ⊆ Q and hence Q is a semiprime
ideal of S.

Conversely, suppose every ideal of a commutative ternary semigroup S

is semiprime. Let a ∈ S. Then aSa is an ideal of S. Now by hypothesis,
aSa is a semiprime ideal of S. If aSa = S, then we are done. Now suppose
that aSa 6= S.

Then

< a >< a >< a >

= (SSa ∪ aSS ∪ SaS ∪ SSaSS ∪ {a})(SSa ∪ aSS ∪ SaS ∪ SSaSS ∪ {a})

(SSa ∪ aSS ∪ SaS ∪ SSaSS ∪ {a}) ∈ aSa i.e., < a >< a >< a >⊆ aSa.

This implies that < a >⊆ aSa, since aSa is a semiprime ideal of S. Conse-
quently, a = axa for some x ∈ S and hence S is a regular ternary semigroup.

Definition 3.12. An element a in a ternary semigroup S is said to be left
(resp. right) regular if there exists an element x ∈ S such that xaa = a

(resp. aax = a).
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If all the elements of a ternary semigroup S are left (resp. right) regular,
then S is called left (resp. right) regular.

The following theorem gives a characterization of left (resp. right) regularity
of a ternary semigroup S in terms of completely semiprime ideals of S.

Theorem 3.13. A ternary semigroup S is left (resp. right) regular if and
only if every left (resp. right) ideal of S is completely semiprime.

Proof. Let S be a left regular ternary semigroup and L be any left ideal of
S. Suppose a3 = aaa ∈ L for a ∈ S. Since S is left regular, there exists an
element x ∈ S such that a = xaa = x(xaa)a = xx(aaa) ∈ SSL ⊆ L. Thus
L is completely semiprime.

Conversely, suppose that every left ideal of S is completely semiprime.
Now for any a ∈ S, Saa is a left ideal of S. Then by hypothesis, Saa is
a completely semiprime ideal of S. Now a3 = aaa ∈ Saa. Since Saa is
completely semiprime, it follows that a ∈ Saa. So there exists an element
x ∈ S such that a = xaa. Consequently, a is left regular. Since a is arbitrary,
it follows that S is left regular.

Similarly, we can prove the theorem for right regularity.

Definition 3.14. An element a of a ternary semigroup S is said to be
completely regular if there exists an element x ∈ S such that axa = a and
the idempotent pairs (a, x) and (x, a) are equivalent.

If all the elements of S are completely regular, then S is called com-
pletely regular.

We have the following characterization theorem for completely regular ternary
semigroup:

Theorem 3.15. The following conditions in a ternary semigroup S are
equivalent:

(i) S is completely regular

(ii) S is left and right regular i.e., a ∈ a2S ∩ Sa2 for all a ∈ S.

(iii) a ∈ a2Sa2 for all a ∈ S.
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Proof. (i)=⇒(ii).

Suppose S is a completely regular ternary semigroup.

Let a ∈ S. Then there exists an element x ∈ S such that axa = a and
the idempotent pairs (a, x) and (x, a) are equivalent i.e., axy = xay and
yax = yxa for all y ∈ S. Now in particular, putting y = a we find that
axa = xaa and aax = axa. This implies that a ∈ a2S and a ∈ Sa2 i.e.,
a ∈ a2S ∩ Sa2.

(ii)=⇒(iii).

Suppose that S is both left and right regular.

Let a ∈ S. Then there exist x, y ∈ S such that a = aax and a = yaa. This
implies that axz = yaaxz = yaz for all z ∈ S. Now a = aax = a(aax)x =
a2(axx) = a2(yax) = a2y(yaa)x = a2y2(aax) = a2y2a = a2y2(yaa) =
a2y3a2 ∈ a2Sa2.

(iii)=⇒(iv).

Suppose a ∈ a2Sa2 for all a ∈ S. Then there exists x ∈ S such that
a = a2xa2. Now a = a2xa2 = a(axa)a = aya, where y = axa ∈ S. This
implies that S is regular. Also ayz = a(axa)z = a2xa2xa2z and yaz =
(axa)az = a2xa2xa2z for all z ∈ S. This shows that the idempotent pairs
(a, y) and (y, a) are equivalent. Consequently, S is a completely regular
ternary semigroup.

Theorem 3.16. A ternary semigroup S is completely regular if and only if
every bi-ideal of S is completely semiprime.

Proof. First suppose that S is a completely regular ternary semigroup. Let
B be any bi-ideal of S. Let b3 ∈ B for b ∈ S. Since S is completely regular,
from Theorem 3.15, it follows that b ∈ b2Sb2. This implies that there exists
x ∈ S such that b = b2xb2 = b(b2xb2)x(b2xb2)b = b3(xb2x)b(b2xb2)xb3 =
b3(xb2x)b3(xb2x)b3 ∈ BSBSB ⊆ B. This shows that B is completely
semiprime.

Conversely, suppose that every bi-ideal of S is completely semiprime.
Since every left and right ideal of a ternary semigroup S is a bi-ideal of
S, it follows that every left and right ideal of S is completely semiprime.
Consequently, we have from Theorem 3.13 that S is both left and right
regular. Now by using Theorem 3.15, we find that S is a completely regular
ternary semigroup.
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Theorem 3.17. If S is a completely regular ternary semigroup, then every
bi-ideal of S is idempotent.

Proof. Let S be a completely regular ternary semigroup and B be a bi-
ideal of S. Since S is a completely regular ternary semigroup, it is also
a regular ternary semigroup. Let b ∈ B. Then there exists x ∈ S such
that b = bxb. This implies that b ∈ BSB and hence B ⊆ BSB. Also
BSB ⊆ BSBSB ⊆ B. Thus we find that B = BSB. Again, we have from
Theorem 3.15 that b ∈ b2Sb2 ⊆ B2SB2. This implies that B ⊆ B2SB2 =
B(BSB)B = BBB ⊆ B. Consequently, B3 = B.

Definition 3.18. A ternary semigroup S is called intra-regular if for each
element a ∈ S, there exist elements x, y ∈ S such that xa3y = a.

Theorem 3.19. If S is an intra-regular ternary semigroup then for any left
ideal L, lateral ideal M and right ideal R of S, L ∩ M ∩ R ⊆ LMR.

Proof. Suppose that S is an intra-regular ternary semigroup. Let L, M

and R be a left ideal, a lateral ideal and a right ideal of S respectively.
Now for a ∈ L ∩ M ∩ R, we have a = xa3y for some x, y ∈ S. This
implies that a = xa3y = (xxa3)(yxa3yx)(a3yy) ∈ LMR. Thus we have
L ∩ M ∩ R ⊆ LMR.

Proposition 3.20. Let S be an intra-regular ternary semigroup. Then a
non-empty subset I of S is an ideal of S if and only if I is a lateral ideal
of S.

Proof. Clearly, if I is an ideal of S, then I is a lateral ideal of S.
Conversely, let I be a lateral ideal of an intra-regular ternary semigroup.

Let a ∈ I and s, t ∈ S. Then a ∈ S and hence there exist elements x, y ∈ S

such that a = xa3y. Now sta = stxa3y ∈ SIS ⊆ I and ast = xa3yst ∈
SIS ⊆ I. This implies that I is both a left ideal and a right ideal of S.
Consequently, I is an ideal of S.

Lemma 3.21. Every lateral ideal of an intra-regular ternary semigroup S

is an intra-regular ternary semigroup.

Proof. Let L be a lateral ideal of an intra-regular ternary semigroup
S. Then for each a ∈ L, there exists x, y ∈ S such that a = xa3y.
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Now a = xa3y = x(xa3y)(xa3y)(xa3y)y = (xxa3yx)a3(yxa3yy) ∈ La3L.
This implies that there exist u, v ∈ L such that a = ua3v. Consequently, L

is an intra-regular ternary semigroup.

From Proposition 3.20, we have the following result:

Corollary 3.22. Every ideal of an intra-regular ternary semigroup S is an
intr-regular ternary semigroup.

In ring theory, we note that if I is an ideal of a ring R and J is an ideal of
I, then J need not be an ideal of the entire ring R. But it is well known
that the result is true for regular ring. Like ring theory, we note that if I

is an ideal of a ternary semigroup S and J is an ideal of I, then J need
not be an ideal of the entire ternary semigroup S. But in particular, for an
intra-regular ternary semigroup S, we have the following result:

Theorem 3.23. Let I be an ideal of an intra-regular ternary semigroup S

and J be an ideal of I. Then J is an ideal of the entire ternary semigroup S.

Proof. It is sufficient to show that J is a lateral ideal of S. Let a ∈ J ⊆ I

and s, t ∈ S. Then sat ∈ I. We have to show that sat ∈ J . From Corollary
3.22, it follows that I is an intra-regular ternary semigroup. Thus there exist
u, v ∈ I such that sat = u(sat)3v = u(sat)(sat)(sat)v = (usats)a(tsatv) ∈
IJI ⊆ J . Consequently, J is a lateral ideal of S.

Theorem 3.24. A ternary semigroup S is intra-regular if and only if every
ideal of S is completely semiprime.

Proof. Let S be an intra-regular ternary semigroup and I be an ideal of
S. Let a3 ∈ I for a ∈ S. Since S is intra-regular, there exist x, y ∈ S such
that a = xa3y ∈ I. Consequently, I is completely semiprime.

Conversely, suppose that every ideal of S is completely semiprime. Let
a ∈ S. Then a3 ∈< a3 >. This implies that a ∈< a3 >, since < a3 > is
completely semiprime. Now < a3 >= SSa3 ∪ a3SS ∪ Sa3S ∪ SSa3SS ∪ a3.
So we have the following cases:

If a ∈ SSa3, then a3 ∈ SSa3a2. Hence a ∈ SSSSa3a2 ⊆ SSSa2aS ⊆
Sa3S.
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If a ∈ a3SS, then a3 ∈ a2a3SS. Hence a ∈ a2a3SSSS ⊆ Saa2SSS ⊆
Sa3S.

If a ∈ Sa3S, then we are done.

If a ∈ SSa3SS, then a3 ∈ aSSa3SSa.

Hence a ∈ SSaSSa3SSaSS ⊆ SSSa3SSS ⊆ Sa3S.

If a = a3, then a = a3 = (a3)(a3)(a3) ⊆ Sa3S.

So we find that in any case, S is intra-regular.
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