ON SOME PROPERTIES OF CHEBYSHEV POLYNOMIALS

HACÈNE BELBACHIR AND FARID BENCHERIF

USTHB, Faculty of Mathematics, P.O.Box 32, El Alia, 16111, Algiers, Algeria

 $\begin{array}{c} \textbf{e-mail:} \ hbelbachir@usthb.dz\\ \\ or \ hacenebelbachir@gmail.com \end{array}$

e-mail: fbencherif@usthb.dz or fbencherif@gmail.com

Abstract

Letting T_n (resp. U_n) be the n-th Chebyshev polynomials of the first (resp. second) kind, we prove that the sequences $(X^kT_{n-k})_k$ and $(X^kU_{n-k})_k$ for $n-2\lfloor n/2\rfloor \leq k \leq n-\lfloor n/2\rfloor$ are two basis of the \mathbb{Q} -vectorial space $\mathbb{E}_n[X]$ formed by the polynomials of $\mathbb{Q}[X]$ having the same parity as n and of degree $\leq n$. Also T_n and U_n admit remarkableness integer coordinates on each of the two basis.

Keywords: Chebyshev polynomials, integer coordinates.

2000 Mathematics Subject Classification: 11B83, 33C45, 11B39.

1. Introduction and main results

For each integer $n \geq 0$, $T_n = T_n(X)$ and $U_n = U_n(X)$ denote the unique polynomials, with integer coefficients, satisfying

 $\cos nx = T_n(\cos x)$ and $\sin((n+1)x) = \sin x \ U_n(\cos x), \quad (x \in \mathbb{R}).$

The well known Simpson's formulae [2], for all $n \in \mathbb{N}$ and $x \in \mathbb{R}$:

$$\cos nx = 2\cos x \cos(n-1)x - \cos(n-2)x$$

$$\sin((n+1)) x = 2\cos x \sin nx - \sin((n-1)) x$$

give the recurrence relations

(1)
$$T_n = 2XT_{n-1} - T_{n-2}$$
, with $T_0 = 1$, $T_1 = X$,

(2)
$$U_n = 2XU_{n-1} - U_{n-2}$$
, with $U_0 = 1$, $U_1 = 2X$.

We deduce (see [1]), for $n \geq 1$, the following relations

(3)
$$T_n = \sum_{k=0}^{\lfloor n/2 \rfloor} (-1)^k 2^{n-1-2k} \frac{n}{n-k} \binom{n-k}{k} X^{n-2k},$$

(4)
$$U_n = \sum_{k=0}^{\lfloor n/2 \rfloor} (-1)^k 2^{n-2k} \binom{n-k}{k} X^{n-2k}.$$

These relations allows to state that, for any $n \geq 0$, T_n and U_n belong to $\mathbb{E}_n[X]$, (3) and (4) are their decompositions in the canonical basis $\mathfrak{B}_n := (X^{n-2k})_{0 \leq k \leq \lfloor n/2 \rfloor}$

For instance, the first fifth values of thus polynomials are

$$T_0 = 1$$
 $U_0 = 1$ $U_1 = 2X$ $U_2 = 4X^2 - 1$ $U_3 = 8X^3 - 4X$ $U_4 = 16X^4 - 12X^2 + 1$

The main goal of this paper is to prove that the families $\mathfrak{T}_n := (X^k T_{n-k})_k$ and $\mathfrak{U}_n := (X^k U_{n-k})_k$ for $n-2 \lfloor n/2 \rfloor \le k \le n-\lfloor n/2 \rfloor$ constitute two other basis of $\mathbb{E}_n[X]$ (Theorem 1) for which T_n and U_n admit remarkableness integer coordinates.

Our first result is the following

Theorem 1. For any $n \geq 0$, \mathfrak{T}_n and \mathfrak{U}_n are two basis of $\mathbb{E}_n[X]$.

So we can decompose T_{2n+1} and U_{2n+1} (resp. T_{2n} and U_{2n}) over each of the basis \mathfrak{T}_{2n+1} and \mathfrak{U}_{2n+1} (resp. \mathfrak{T}_{2n} and \mathfrak{U}_{2n}). Decompositions of T_{2n} over \mathfrak{T}_{2n} and U_{2n} over \mathfrak{U}_{2n} are trivial, it remains to examine the six decompositions:

- 1. The decomposition of T_{2n+1} over \mathfrak{T}_{2n+1} and U_{2n+1} over \mathfrak{U}_{2n+1} in Theorem 2.
- 2. The decomposition of T_{2n} over \mathfrak{U}_{2n} and U_{2n} over \mathfrak{T}_{2n} in Theorem 3.
- 3. The decomposition of T_{2n+1} over \mathfrak{U}_{2n+1} and U_{2n+1} over \mathfrak{T}_{2n+1} in Theorem 4.

Let us define the families of integers $(\alpha_{n,k})$, $(\beta_{n,k})$ and $(\gamma_{n,k})$ by the following equalities

(5)
$$-(1-2X)^n = \sum_{k>0} \alpha_{n,k} X^k,$$

(6)
$$(X-1) (1-2X)^n = \sum_{k\geq 0} \beta_{n,k} X^k,$$

(7)
$$(2X-1)^n + 2\left(1 + (2X-1) + \dots + (2X-1)^{n-1}\right) = \sum_{k\geq 0} \gamma_{n,k} X^k,$$

we deduce then, for $(n,k) \in \mathbb{N}^2$, the following relations

(8)
$$\alpha_{n,k} = (-1)^{k+1} 2^k \binom{n}{k},$$

$$\beta_{n,k} = \alpha_{n,k} - \alpha_{n,k-1},$$

(10)
$$\gamma_{n,k} = (-1)^{n+1} \alpha_{n,k} + 2 \sum_{j=0}^{n-1} (-1)^{j+1} \alpha_{j,k}.$$

Theorem 2. For each $n \ge 0$, we have

(11)
$$T_{2n+1} = \sum_{k=1}^{n+1} \beta_{n,k} X^k T_{2n+1-k},$$

(12)
$$U_{2n+1} = \sum_{k=1}^{n+1} \alpha_{n+1,k} X^k U_{2n+1-k}.$$

Theorem 3. For each $n \geq 0$, we have

$$(13) T_{2n} = U_{2n} - XU_{2n-1}, \quad n \ge 1,$$

(14)
$$U_{2n} = \sum_{k=0}^{n} \gamma_{n,k} X^k T_{2n-k}.$$

Theorem 4. For each $n \geq 0$, we have

(15)
$$T_{2n+1} = \sum_{k=1}^{n+1} (\alpha_{n+1,k} - \delta_{k,1}) X^k U_{2n+1-k},$$

(16)
$$U_{2n+1} = \sum_{k=1}^{n+1} (\gamma_{n,k-1} + \beta_{n,k}) X^k T_{2n+1-k},$$

where $\delta_{i,j}$ denotes the Kronecker symbol.

The sequences of integers $(\alpha_{n,k}), (\beta_{n,k})$ and $(\gamma_{n,k})$ satisfy the following recurrence relation

$$\begin{cases} \alpha_{n,0} = -1, \text{ for } n \geq 0, \\ \alpha_{0,k} = 0, \text{ for } k \geq 1, \\ \alpha_{n,k} = \alpha_{n-1,k} - 2\alpha_{n-1,k-1}, \text{ for } n, k \geq 1, \end{cases}$$

$$\begin{cases} \beta_{n,0} = -1, \text{ for } n \geq 0, \\ \beta_{0,1} = 1 \text{ and } \beta_{0,k} = 0, \text{ for } k \geq 2, \\ \beta_{n,k} = \beta_{n-1,k} - 2\beta_{n-1,k-1}, \text{ for } n, k \geq 1, \end{cases}$$

$$\begin{cases} \gamma_{n,0} = 1, \text{ for } n \geq 0, \\ \gamma_{0,k} = 0, \text{ for } k \geq 1, \\ \gamma_{n,k} = -\gamma_{n-1,k} + 2\gamma_{n-1,k-1}, \text{ for } n, k \geq 1. \end{cases}$$

The following tables give the values of $\alpha_{n,k}, \beta_{n,k}$ and $\gamma_{n,k}$ for $0 \le n \le 4$

n	$\alpha_{n,0}$	$\alpha_{n,1}$	$\alpha_{n,2}$	$\alpha_{n,3}$	$\alpha_{n,4}$
0	-1				
1	-1	2			
2	-1	4	-4		
3	-1	6	-12	8	
4	-1	8	-24	32	-16

n	$\beta_{n,0}$	$\beta_{n,1}$	$\beta_{n,2}$	$\beta_{n,3}$	$\beta_{n,4}$	$\beta_{n,5}$
0	-1	1				
1	-1	3	-2			
2	-1	5	-8	4		
3	-1	7	-18	20	-8	
4	-1	9	-32	56	-48	16

n	$\gamma_{n,0}$	$\gamma_{n,1}$	$\gamma_{n,2}$	$\gamma_{n,3}$	$\gamma_{n,4}$
0	1				
1	1	2			
2	1	0	4		
3	1	2	-4	8	
4	1	0	8	-16	16

Notice that $\alpha_{n,k} = \gamma_{n,k} = 0$ for k > n and $\beta_{n,k} = 0$ for k > n + 1. According to these tables, one obtains

• Using Theorem 2

$$\begin{split} T_1 &= XT_0 \\ T_3 &= 3XT_2 - 2X^2T_1 \\ T_5 &= 5XT_4 - 8X^2T_3 + 4X^3T_2 \\ T_7 &= 7XT_6 - 18X^2T_5 + 20X^3T_4 - 8X^4T_3 \\ T_9 &= 9XT_8 - 32X^2T_7 + 56X^3T_6 - 48X^4T_5 + 16X^5T_4 \\ U_1 &= 2XU_0 \\ U_3 &= 4XU_2 - 4X^2U_1 \\ U_5 &= 6XU_4 - 12X^2U_3 + 8X^3U_2 \\ U_7 &= 8XU_6 - 24X^2U_5 + 32X^3U_4 - 16X^4U_3 \end{split}$$

• Using Theorem 3

$$\begin{split} T_0 &= U_0 \\ T_2 &= U_2 - XU_1 \\ T_4 &= U_4 - XU_3 \\ T_6 &= U_6 - XU_5 \\ T_8 &= U_8 - XU_7 \\ \\ U_0 &= T_0 \\ U_2 &= T_2 + 2XT_1 \\ U_4 &= T_4 + 0XT_3 + 4X^2T_2 \\ U_6 &= T_6 + 2XT_5 - 4X^2T_4 + 8X^3T_3 \\ U_8 &= T_8 + 0XT_7 + 8X^2T_6 - 16X^3T_5 + 16X^4T_4 \end{split}$$

• Using Theorem 4

$$\begin{split} T_1 &= XU_0 \\ T_3 &= 3XU_2 - 4X^2U_1 \\ T_5 &= 5XU_4 - 12X^2U_3 + 8X^3U_2 \\ T_7 &= 7XU_6 - 24X^2U_5 + 32X^3U_4 - 16X^4U_3 \\ T_9 &= 9XU_8 - 40X^2U_7 + 80X^3U_6 - 80X^4U_5 + 32X^5U_4 \\ U_1 &= 2XT_0 \\ U_3 &= 4XT_2 \\ U_5 &= 6XT_4 - 8X^2T_3 + 8X^3T_2 \\ U_7 &= 8XT_6 - 16X^2T_5 + 16X^3T_4 \\ U_9 &= 10XT_8 - 32X^2T_7 + 64X^3T_6 - 64X^4T_5 + 32X^5T_4 \end{split}$$

2. Proofs of Theorems

2.1. Proof of Theorem 1

 \mathfrak{T}_n and \mathfrak{U}_n are two families of polynomials of $\mathbb{E}_n[X]$ with $card\mathfrak{T}_n = card\mathfrak{U}_n = \dim \mathbb{E}_n[X] = \lfloor n/2 \rfloor + 1$. Using the following Lemma, we prove that the determinant of \mathfrak{T}_n and \mathfrak{U}_n relatively to the canonical basis \mathfrak{B}_n of $\mathbb{E}_n[X]$ are not zero. Theorem 1 follows.

Lemma 5. For any integer $n \ge 0$, by setting $m = \lfloor n/2 \rfloor$, we have

$$\det_{\mathfrak{B}_n} (\mathfrak{T}_n) = 2^{m(m-1)/2}$$
 and $\det_{\mathfrak{B}_n} (\mathfrak{U}_n) = 2^{m(m+1)/2}$.

Proof. For any integer $m \geq 0$ and for $1 \leq k \leq m+1$, set $V_k^{(m)} = (2X)^{k-1} T_{2m+1-k}$ and $W_k^{(m)} = (2X)^{k-1} U_{2m+1-k}$. Notice that $V_k^{(m)}$ and $W_k^{(m)}$ are polynomials of $\mathbb{E}_{2m}[X]$ with dominant coefficient 2^{2m-1} and 2^{2m} respectively. Using the recurrence equations (1) and (2), we obtain for $m \geq 1$

$$V_{k+1}^{(m)} - V_k^{(m)} = V_k^{(m-1)} \quad \text{and} \quad W_{k+1}^{(m)} - W_k^{(m)} = W_k^{(m-1)}.$$

Let
$$\Delta_m = \det_{\mathfrak{B}_{2m}} \left(V_1^{(m)}, V_2^{(m)}, \dots, V_{m+1}^{(m)} \right)$$
 and

$$D_m = \det_{\mathfrak{B}_{2m}} \left(W_1^{(m)}, W_2^{(m)}, \dots, W_{m+1}^{(m)} \right).$$

We have

$$\Delta_{m} = \det_{\mathfrak{B}_{2m}} \left(V_{1}^{(m)}, \ V_{2}^{(m)} - V_{1}^{(m)}, \ V_{3}^{(m)} - V_{2}^{(m)}, \dots, \ V_{m+1}^{(m)} - V_{m}^{(m)} \right)$$

$$= \det_{\mathfrak{B}_{2m}} \left(V_{1}^{(m)}, \ V_{1}^{(m-1)}, \ V_{2}^{(m-1)}, \dots, \ V_{m}^{(m-1)} \right)$$

$$= 2^{2m-1} \Delta_{m-1}$$

$$= 2^{(2m-1)+(2m-3)+\dots+1} \Delta_{0}$$

$$= 2^{m^{2}},$$

and similarly, we obtain $D_m = 2^{2m}D_{m-1} = 2^{2m+(2m-2)+\cdots+2}D_0 = 2^{m(m+1)}$.

For
$$n = 2m + r$$
, with $m = \lfloor n/2 \rfloor$ and $r \in \{0, 1\}$, we have

$$\det_{\mathfrak{B}_n} (\mathfrak{T}_n) = \det_{\mathfrak{B}_{2m+r}} \left(X^r T_{2m}, \ X^{r+1} T_{2m-1}, \dots, \ X^{r+m} T_m \right)$$

$$= \det_{\mathfrak{B}_{2m}} \left(T_{2m}, \ X T_{2m-1}, \dots, \ X^m T_m \right)$$

$$= 2^{-(1+2+\dots+m)} \Delta_m$$

$$= 2^{m(m-1)/2},$$

and similarly $\det_{\mathfrak{B}_n}(\mathfrak{U}_n) = 2^{-(1+2+\cdots+m)}D_m = 2^{m(m+1)/2}$.

2.2. Proof of Theorems 2, 3 and 4

Let us denote E denote the shift operator on $\mathbb{Q}[X]^{\mathbb{N}}$ defined by

$$E\left((W_n)_n\right) = (W_{n+1})_n,$$

or in a more simple form

$$EW_n = W_{n+1}, \quad (n \ge 0).$$

For any $m \geq 0$, define the operators

$$A_m = -(E - 2X)^m,$$

$$B_m = (X - E)(E - 2X)^m,$$

$$C_m = (2X - E)^m + 2\sum_{k=1}^m E^k (2X - E)^{m-k}.$$

Using relations (5), (6) and (7), we have also

$$A_m = \sum_{k=0}^m \alpha_{m,k} X^k E^{m-k},$$

$$B_m = \sum_{k=0}^{m+1} \beta_{m,k} X^k E^{m+1-k},$$

$$C_m = \sum_{k=0}^m \gamma_{m,k} X^k E^{m-k}.$$

Lemma 6. For any integer n, we have

(a)
$$(2X - E)^n T_m = T_{m-n}$$
 and $(2X - E)^n U_m = U_{m-n}$, $(m \ge n \ge 0)$.

(b)
$$T_n = U_n - XU_{n-1} \ (n \ge 1)$$
.

(c)
$$2T_n = U_n - U_{n-2} \ (n \ge 2)$$
.

(d)
$$U_{2n} = 1 + 2 \sum_{k=1}^{n} T_{2k} \ (n \ge 0)$$
.

Proof.

- (a) For $m\geq 1$, one has $(2X-E)\,T_m=2XT_m-T_{m+1}=T_{m-1}$ and $(2X-E)\,U_m=2XU_m-U_{m+1}=U_{m-1}.$ We conclude by induction.
- (b) Letting for $n \geq 1$, $W_n = T_n U_n + XU_{n-1}$. The sequence $(W_n)_{n\geq 1}$ satisfies the following relation

$$W_n = 2XW_{n-1} - W_{n-2}, \ (n \ge 3), \ \text{with} \ W_1 = W_2 = 0,$$

leading to $W_n = 0$, for $n \ge 1$.

- (c) For $n \geq 2$, one has $2T_n = U_n + (U_n 2XU_{n-1})$ from (b) and thus $2T_n = U_n U_{n-2}$ from (2).
- (d) For $n \ge 0$, one has $U_{2n} = U_0 + \sum_{k=1}^n (U_{2k} U_{2k-2}) = 1 + 2 \sum_{k=1}^n T_{2k}$ from (c).

Proof of Theorem 2. Relations (11) and (12) are respectively equivalent to

$$B_nT_n = 0$$
 and $A_{n+1}U_n = 0$, for $n \ge 0$.

These last relations follows from Lemma 6 (a). We have, for any integer $n \ge 0$

$$B_n T_n = (-1)^n (X - E) (2X - E)^n T_n$$
$$= (-1)^n (X - E) T_0$$
$$= (-1)^n (XT_0 - T_1) = 0,$$

and

$$A_{n+1}U_n = (-1)^{n+1} (2X - E) (2X - E)^n U_n$$
$$= (-1)^{n+1} (2X - E) U_0$$
$$= (-1)^{n+1} (2XU_0 - U_1) = 0.$$

Proof of Theorem 3. Relation (13) follows from Lemma 6 (b).

Relation (14) is equivalent to $U_{2n}=C_nT_n$, for $n\geq 0$. One has indeed, for any $n\geq 0$

$$C_n T_n = \left((2X - E)^n + 2 \sum_{k=1}^n E^k (2X - E)^{n-k} \right) T_n$$

$$= T_0 + 2 \sum_{k=1}^n T_{2k}$$

$$= U_{2n}, \quad \text{(from (d) of Lemma 6)}.$$

Proof of Theorem 4. For any $n \ge 0$, we have

$$T_{2n+1} = U_{2n+1} - XU_{2n}, \quad \text{(from (b) of Lemma 6)}$$

$$= \sum_{k=1}^{n+1} \alpha_{n+1,k} X^k U_{2n+1-k} - XU_{2n} \quad \text{(from (12))}$$

$$= \sum_{k=1}^{n+1} (\alpha_{n+1,k} - \delta_{k,1}) X^k U_{2n+1-k}.$$

We have also, for any $n \geq 0$

$$U_{2n+1} = XU_{2n} + T_{2n+1}, \quad \text{(from (b) of Lemma 6)}$$

$$= \sum_{k=0}^{n} \gamma_{n,k} X^{k+1} T_{2n-k} + \sum_{k=1}^{n+1} \beta_{n,k} X^{k} T_{2n+1-k}, \quad \text{(from (11) and (14))}$$

$$= \sum_{k=0}^{n+1} (\gamma_{n,k-1} + \beta_{n,k}) X^{k} T_{2n+1-k}.$$

References

- [1] H. Belbachir and F. Bencherif, *Linear recurrent sequences and powers of a square matrix*, Integers **6** (A12) (2006), 1–17.
- [2] E. Lucas, Théorie des Nombres, Ghautier-Villars, Paris 1891.
- [3] T.J. Rivlin, Chebyshev Polynomials: From Approximation Theory to Algebra and Number Theory, second edition, Wiley Interscience 1990.

Received 30 April 2007 Revised 24 July 2007