
Discussiones Mathematicae 121
General Algebra and Applications 28 (2008 ) 121–133

ON SOME PROPERTIES OF

CHEBYSHEV POLYNOMIALS

Hacène Belbachir and Farid Bencherif

USTHB, Faculty of Mathematics,

P.O.Box 32, El Alia, 16111, Algiers, Algeria

e-mail: hbelbachir@usthb.dz

or hacenebelbachir@gmail.com

e-mail: fbencherif@usthb.dz

or fbencherif@gmail.com

Abstract

Letting Tn (resp. Un) be the n-th Chebyshev polynomials of
the first (resp. second) kind, we prove that the sequences

(

XkTn−k

)

k

and
(

XkUn−k

)

k
for n − 2 bn/2c ≤ k ≤ n − bn/2c are two basis

of the Q-vectorial space En [X ] formed by the polynomials of Q [X ]
having the same parity as n and of degree ≤ n. Also Tn and Un admit
remarkableness integer coordinates on each of the two basis.
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1. Introduction and main results

For each integer n ≥ 0, Tn = Tn(X) and Un = Un(X) denote the unique
polynomials, with integer coefficients, satisfying

cos nx = Tn(cos x) and sin((n + 1)x) = sinx Un(cos x), (x ∈ R) .
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The well known Simpson’s formulae [2], for all n ∈ N and x ∈ R :

cos nx = 2 cos x cos (n − 1) x − cos (n − 2) x

sin (n + 1) x = 2 cos x sinnx − sin (n − 1) x

give the recurrence relations

Tn = 2XTn−1 − Tn−2, with T0 = 1, T1 = X,(1)

Un = 2XUn−1 − Un−2, with U0 = 1, U1 = 2X.(2)

We deduce (see [1]), for n ≥ 1, the following relations

Tn =

bn/2c
∑

k=0

(−1)k2n−1−2k n

n − k

(

n − k

k

)

Xn−2k,(3)

Un =

bn/2c
∑

k=0

(−1)k2n−2k

(

n − k

k

)

Xn−2k.(4)

These relations allows to state that, for any n ≥ 0, Tn and Un belong
to En [X] , (3) and (4) are their decompositions in the canonical basis
Bn :=

(

Xn−2k
)

0≤k≤bn/2c

For instance, the first fifth values of thus polynomials are

T0 = 1 U0 = 1

T1 = X U1 = 2X

T2 = 2X2 − 1 U2 = 4X2 − 1

T3 = 4X3 − 3X U3 = 8X3 − 4X

T4 = 8X4 − 8X2 + 1 U4 = 16X4 − 12X2 + 1
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The main goal of this paper is to prove that the families Tn :=
(

XkTn−k

)

k

and Un :=
(

XkUn−k

)

k
for n− 2 bn/2c ≤ k ≤ n−bn/2c constitute two other

basis of En [X] (Theorem 1) for which Tn and Un admit remarkableness
integer coordinates.

Our first result is the following

Theorem 1. For any n ≥ 0, Tn and Un are two basis of En [X] .

So we can decompose T2n+1 and U2n+1 (resp. T2n and U2n) over each of the
basis T2n+1 and U2n+1 (resp. T2n and U2n). Decompositions of T2n over T2n

and U2n over U2n are trivial, it remains to examine the six decompositions:

1. The decomposition of T2n+1 over T2n+1 and U2n+1 over U2n+1 in
Theorem 2.

2. The decomposition of T2n over U2n and U2n over T2n in Theorem 3.

3. The decomposition of T2n+1 over U2n+1 and U2n+1 over T2n+1 in
Theorem 4.

Let us define the families of integers (αn,k) , (βn,k) and (γn,k) by the following
equalities

− (1 − 2X)n =
∑

k≥0

αn,kX
k,(5)

(X − 1) (1 − 2X)n =
∑

k≥0

βn,kX
k,(6)

(2X − 1)n + 2
(

1 + (2X − 1) + · · · + (2X − 1)n−1
)

=
∑

k≥0

γn,kX
k,(7)

we deduce then, for (n, k) ∈ N2, the following relations

αn,k = (−1)k+12k

(

n

k

)

,(8)
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βn,k = αn,k − αn,k−1,(9)

γn,k = (−1)n+1αn,k + 2

n−1
∑

j=0

(−1)j+1αj,k.(10)

Theorem 2. For each n ≥ 0, we have

T2n+1 =
n+1
∑

k=1

βn,kX
kT2n+1−k,(11)

U2n+1 =

n+1
∑

k=1

αn+1,kX
kU2n+1−k.(12)

Theorem 3. For each n ≥ 0, we have

T2n = U2n − XU2n−1, n ≥ 1,(13)

U2n =

n
∑

k=0

γn,kX
kT2n−k.(14)

Theorem 4. For each n ≥ 0, we have

T2n+1 =

n+1
∑

k=1

(αn+1,k − δk,1)XkU2n+1−k,(15)

U2n+1 =
n+1
∑

k=1

(γn,k−1 + βn,k) XkT2n+1−k,(16)

where δi,j denotes the Kronecker symbol.
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The sequences of integers (αn,k) , (βn,k) and (γn,k) satisfy the following
recurrence relation



















αn,0 = −1, for n ≥ 0,

α0,k = 0, for k ≥ 1,

αn,k = αn−1,k − 2αn−1,k−1, for n, k ≥ 1,



















βn,0 = −1, for n ≥ 0,

β0,1 = 1 and β0,k = 0, for k ≥ 2,

βn,k = βn−1,k − 2βn−1,k−1, for n, k ≥ 1,



















γn,0 = 1, for n ≥ 0,

γ0,k = 0, for k ≥ 1,

γn,k = −γn−1,k + 2γn−1,k−1, for n, k ≥ 1.

The following tables give the values of αn,k, βn,k and γn,k for 0 ≤ n ≤ 4

n αn,0 αn,1 αn,2 αn,3 αn,4

0 −1

1 −1 2

2 −1 4 −4

3 −1 6 −12 8

4 −1 8 −24 32 −16
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n βn,0 βn,1 βn,2 βn,3 βn,4 βn,5

0 −1 1

1 −1 3 −2

2 −1 5 −8 4

3 −1 7 −18 20 −8

4 −1 9 −32 56 −48 16

n γn,0 γn,1 γn,2 γn,3 γn,4

0 1

1 1 2

2 1 0 4

3 1 2 −4 8

4 1 0 8 −16 16

Notice that αn,k = γn,k = 0 for k > n and βn,k = 0 for k > n + 1.

According to these tables, one obtains

• Using Theorem 2

T1= XT 0

T3= 3XT 2−2X2T1

T5= 5XT 4−8X2T3+4X3T2

T7= 7XT 6−18X2T5+20X3T4−8X4T3

T9= 9XT 8−32X2T7+56X3T6−48X4T5+16X5T4

U1= 2XU 0

U3= 4XU 2−4X2U1

U5= 6XU 4−12X2U3+8X3U2

U7= 8XU 6−24X2U5+32X3U4−16X4U3
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• Using Theorem 3

T0= U0

T2= U2−XU1

T4= U4−XU3

T6= U6−XU5

T8= U8−XU7

U0= T 0

U2= T 2+2XT 1

U4= T 4+0XT 3+4X2T2

U6= T 6+2XT 5−4X2T4+8X3T3

U8= T 8+0XT 7+8X2T6−16X3T5+16X4T4

• Using Theorem 4

T1= XU0

T3= 3XU 2−4X2U1

T5= 5XU 4−12X2U3+8X3U2

T7= 7XU 6−24X2U5+32X3U4−16X4U3

T9= 9XU 8−40X2U7+80X3U6−80X4U5+32X5U4

U1= 2XT 0

U3= 4XT 2

U5= 6XT 4−8X2T3+8X3T2

U7= 8XT 6−16X2T5+16X3T4

U9= 10XT 8−32X2T7+64X3T6−64X4T5+32X5T4
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2. Proofs of Theorems

2.1. Proof of Theorem 1

Tn and Un are two families of polynomials of En [X] with cardTn = cardUn =
dim En [X] = bn/2c + 1. Using the following Lemma, we prove that the
determinant of Tn and Un relatively to the canonical basis Bn of En [X] are
not zero. Theorem 1 follows.

Lemma 5. For any integer n ≥ 0, by setting m = bn/2c , we have

detBn
(Tn) = 2m(m−1)/2 and detBn

(Un) = 2m(m+1)/2.

Proof. For any integer m ≥ 0 and for 1 ≤ k ≤ m + 1, set V
(m)
k =

(2X)k−1 T2m+1−k and W
(m)
k = (2X)k−1 U2m+1−k. Notice that V

(m)
k and

W
(m)
k are polynomials of E2m [X] with dominant coefficient 22m−1 and 22m

respectively. Using the recurrence equations (1) and (2), we obtain for m ≥ 1

V
(m)
k+1 − V

(m)
k = V

(m−1)
k and W

(m)
k+1 − W

(m)
k = W

(m−1)
k .

Let ∆m = detB2m

(

V
(m)
1 , V

(m)
2 , . . . , V

(m)
m+1

)

and

Dm = detB2m

(

W
(m)
1 ,W

(m)
2 , . . . ,W

(m)
m+1

)

.

We have

∆m = detB2m

(

V
(m)
1 , V

(m)
2 − V

(m)
1 , V

(m)
3 − V

(m)
2 , . . . , V

(m)
m+1 − V (m)

m

)

= detB2m

(

V
(m)
1 , V

(m−1)
1 , V

(m−1)
2 , . . . , V (m−1)

m

)

= 22m−1∆m−1

= 2(2m−1)+(2m−3)+···+1∆0

= 2m2

,
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and similarly, we obtain Dm = 22mDm−1 = 22m+(2m−2)+···+2D0 = 2m(m+1).

For n = 2m + r, with m = bn/2c and r ∈ {0, 1} , we have

detBn
(Tn) = detB2m+r

(

XrT2m, Xr+1T2m−1, . . . , Xr+mTm

)

= detB2m
(T2m, XT2m−1, . . . , XmTm)

= 2−(1+2+···+m)∆m

= 2m(m−1)/2,

and similarly detBn
(Un) = 2−(1+2+···+m)Dm = 2m(m+1)/2.

2.2. Proof of Theorems 2, 3 and 4

Let us denote E denote the shift operator on Q [X]N defined by

E ((Wn)n) = (Wn+1)n,

or in a more simple form

EWn = Wn+1, (n ≥ 0) .

For any m ≥ 0, define the operators

Am = − (E − 2X)m ,

Bm = (X − E) (E − 2X)m ,

Cm = (2X − E)m + 2

m
∑

k=1

Ek (2X − E)m−k .
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Using relations (5) , (6) and (7) , we have also

Am =

m
∑

k=0

αm,kX
kEm−k,

Bm =

m+1
∑

k=0

βm,kX
kEm+1−k,

Cm =
m

∑

k=0

γm,kX
kEm−k.

Lemma 6. For any integer n, we have

(a) (2X − E)n Tm = Tm−n and (2X − E)n Um = Um−n, (m ≥ n ≥ 0) .

(b) Tn = Un − XUn−1 (n ≥ 1) .

(c) 2Tn = Un − Un−2 (n ≥ 2) .

(d) U2n = 1 + 2
∑n

k=1 T2k (n ≥ 0) .

Proof.

(a) For m ≥ 1, one has (2X − E) Tm = 2XTm − Tm+1 = Tm−1 and
(2X − E) Um = 2XUm − Um+1 = Um−1. We conclude by induction.

(b) Letting for n ≥ 1, Wn = Tn − Un + XUn−1. The sequence (Wn)n≥1

satisfies the following relation

Wn = 2XWn−1 − Wn−2, (n ≥ 3) , with W1 = W2 = 0,

leading to Wn = 0, for n ≥ 1.
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(c) For n ≥ 2, one has 2Tn = Un + (Un − 2XUn−1) from (b) and thus
2Tn = Un − Un−2 from (2) .

(d) For n ≥ 0, one has U2n = U0 +
∑n

k=1 (U2k − U2k−2) = 1 + 2
∑n

k=1 T2k

from (c).

Proof of Theorem 2. Relations (11) and (12) are respectively
equivalent to

BnTn = 0 and An+1Un = 0, for n ≥ 0.

These last relations follows from Lemma 6 (a). We have, for any integer
n ≥ 0

BnTn = (−1)n (X − E) (2X − E)n Tn

= (−1)n (X − E) T0

= (−1)n (XT0 − T1) = 0,

and

An+1Un = (−1)n+1 (2X − E) (2X − E)n Un

= (−1)n+1 (2X − E)U0

= (−1)n+1 (2XU0 − U1) = 0.

Proof of Theorem 3. Relation (13) follows from Lemma 6 (b).

Relation (14) is equivalent to U2n = CnTn, for n ≥ 0. One has indeed,
for any n ≥ 0
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CnTn =
(

(2X − E)n + 2
∑n

k=1 Ek (2X − E)n−k
)

Tn

= T0 + 2

n
∑

k=1

T2k

= U2n, (from (d) of Lemma 6).

Proof of Theorem 4. For any n ≥ 0, we have

T2n+1 = U2n+1 − XU2n, (from (b) of Lemma 6)

=

n+1
∑

k=1

αn+1,kX
kU2n+1−k − XU2n (from (12) )

=

n+1
∑

k=1

(αn+1,k − δk,1)XkU2n+1−k.

We have also, for any n ≥ 0

U2n+1 = XU2n + T2n+1, (from (b) of Lemma 6)

=
n

∑

k=0

γn,kX
k+1T2n−k +

n+1
∑

k=1

βn,kX
kT2n+1−k, (from (11) and (14) )

=
n+1
∑

k=1

(γn,k−1 + βn,k) XkT2n+1−k.
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