ON SOME PROPERTIES OF CHEBYSHEV POLYNOMIALS

Hacène Belbachir and Farid Bencherif USTHB, Faculty of Mathematics, P.O.Box 32, El Alia, 16111, Algiers, Algeria
e-mail: hbelbachir@usthb.dz
or hacenebelbachir@gmail.com
e-mail: fbencherif@usthb.dz
or fbencherif@gmail.com

Abstract

Letting T_{n} (resp. U_{n}) be the n-th Chebyshev polynomials of the first (resp. second) kind, we prove that the sequences $\left(X^{k} T_{n-k}\right)_{k}$ and $\left(X^{k} U_{n-k}\right)_{k}$ for $n-2\lfloor n / 2\rfloor \leq k \leq n-\lfloor n / 2\rfloor$ are two basis of the \mathbb{Q}-vectorial space $\mathbb{E}_{n}[X]$ formed by the polynomials of $\mathbb{Q}[X]$ having the same parity as n and of degree $\leq n$. Also T_{n} and U_{n} admit remarkableness integer coordinates on each of the two basis.

Keywords: Chebyshev polynomials, integer coordinates.
2000 Mathematics Subject Classification: 11B83, 33C45, 11B39.

1. Introduction and main results

For each integer $n \geq 0, T_{n}=T_{n}(X)$ and $U_{n}=U_{n}(X)$ denote the unique polynomials, with integer coefficients, satisfying

$$
\cos n x=T_{n}(\cos x) \text { and } \sin ((n+1) x)=\sin x U_{n}(\cos x), \quad(x \in \mathbb{R})
$$

The well known Simpson's formulae [2], for all $n \in \mathbb{N}$ and $x \in \mathbb{R}$:

$$
\begin{aligned}
\cos n x & =2 \cos x \cos (n-1) x-\cos (n-2) x \\
\sin (n+1) x & =2 \cos x \sin n x-\sin (n-1) x
\end{aligned}
$$

give the recurrence relations

$$
\begin{align*}
& T_{n}=2 X T_{n-1}-T_{n-2}, \quad \text { with } T_{0}=1, T_{1}=X \tag{1}\\
& U_{n}=2 X U_{n-1}-U_{n-2}, \text { with } U_{0}=1, U_{1}=2 X
\end{align*}
$$

We deduce (see [1]), for $n \geq 1$, the following relations

$$
\begin{equation*}
T_{n}=\sum_{k=0}^{\lfloor n / 2\rfloor}(-1)^{k} 2^{n-1-2 k} \frac{n}{n-k}\binom{n-k}{k} X^{n-2 k} \tag{3}
\end{equation*}
$$

$$
U_{n}=\sum_{k=0}^{\lfloor n / 2\rfloor}(-1)^{k} 2^{n-2 k}\binom{n-k}{k} X^{n-2 k}
$$

These relations allows to state that, for any $n \geq 0, T_{n}$ and U_{n} belong to $\mathbb{E}_{n}[X]$, (3) and (4) are their decompositions in the canonical basis $\mathfrak{B}_{n}:=\left(X^{n-2 k}\right)_{0 \leq k \leq\lfloor n / 2\rfloor}$

For instance, the first fifth values of thus polynomials are

$$
\begin{array}{ll}
T_{0}=1 & U_{0}=1 \\
T_{1}=X & U_{1}=2 X \\
T_{2}=2 X^{2}-1 & U_{2}=4 X^{2}-1 \\
T_{3}=4 X^{3}-3 X & U_{3}=8 X^{3}-4 X \\
T_{4}=8 X^{4}-8 X^{2}+1 & U_{4}=16 X^{4}-12 X^{2}+1
\end{array}
$$

The main goal of this paper is to prove that the families $\mathfrak{T}_{n}:=\left(X^{k} T_{n-k}\right)_{k}$ and $\mathfrak{U}_{n}:=\left(X^{k} U_{n-k}\right)_{k}$ for $n-2\lfloor n / 2\rfloor \leq k \leq n-\lfloor n / 2\rfloor$ constitute two other basis of $\mathbb{E}_{n}[X]$ (Theorem 1) for which T_{n} and U_{n} admit remarkableness integer coordinates.

Our first result is the following
Theorem 1. For any $n \geq 0, \mathfrak{T}_{n}$ and \mathfrak{U}_{n} are two basis of $\mathbb{E}_{n}[X]$.
So we can decompose $T_{2 n+1}$ and $U_{2 n+1}$ (resp. $T_{2 n}$ and $U_{2 n}$) over each of the basis $\mathfrak{T}_{2 n+1}$ and $\mathfrak{U}_{2 n+1}$ (resp. $\mathfrak{T}_{2 n}$ and $\mathfrak{U}_{2 n}$). Decompositions of $T_{2 n}$ over $\mathfrak{T}_{2 n}$ and $U_{2 n}$ over $\mathfrak{U}_{2 n}$ are trivial, it remains to examine the six decompositions:

1. The decomposition of $T_{2 n+1}$ over $\mathfrak{T}_{2 n+1}$ and $U_{2 n+1}$ over $\mathfrak{U}_{2 n+1}$ in Theorem 2.
2. The decomposition of $T_{2 n}$ over $\mathfrak{U}_{2 n}$ and $U_{2 n}$ over $\mathfrak{T}_{2 n}$ in Theorem 3.
3. The decomposition of $T_{2 n+1}$ over $\mathfrak{U}_{2 n+1}$ and $U_{2 n+1}$ over $\mathfrak{T}_{2 n+1}$ in Theorem 4.

Let us define the families of integers $\left(\alpha_{n, k}\right),\left(\beta_{n, k}\right)$ and $\left(\gamma_{n, k}\right)$ by the following equalities

$$
\begin{equation*}
-(1-2 X)^{n}=\sum_{k \geq 0} \alpha_{n, k} X^{k}, \tag{5}
\end{equation*}
$$

(6)

$$
(X-1)(1-2 X)^{n}=\sum_{k \geq 0} \beta_{n, k} X^{k},
$$

$$
\begin{equation*}
(2 X-1)^{n}+2\left(1+(2 X-1)+\cdots+(2 X-1)^{n-1}\right)=\sum_{k \geq 0} \gamma_{n, k} X^{k} \tag{7}
\end{equation*}
$$

we deduce then, for $(n, k) \in \mathbb{N}^{2}$, the following relations

$$
\begin{equation*}
\alpha_{n, k}=(-1)^{k+1} 2^{k}\binom{n}{k}, \tag{8}
\end{equation*}
$$

$$
\begin{equation*}
\beta_{n, k}=\alpha_{n, k}-\alpha_{n, k-1}, \tag{9}
\end{equation*}
$$

$$
\begin{equation*}
\gamma_{n, k}=(-1)^{n+1} \alpha_{n, k}+2 \sum_{j=0}^{n-1}(-1)^{j+1} \alpha_{j, k} . \tag{10}
\end{equation*}
$$

Theorem 2. For each $n \geq 0$, we have

$$
\begin{align*}
& T_{2 n+1}=\sum_{k=1}^{n+1} \beta_{n, k} X^{k} T_{2 n+1-k}, \tag{11}\\
& U_{2 n+1}=\sum_{k=1}^{n+1} \alpha_{n+1, k} X^{k} U_{2 n+1-k} .
\end{align*}
$$

Theorem 3. For each $n \geq 0$, we have

$$
\begin{align*}
& T_{2 n}=U_{2 n}-X U_{2 n-1}, \quad n \geq 1, \tag{13}\\
& U_{2 n}=\sum_{k=0}^{n} \gamma_{n, k} X^{k} T_{2 n-k} . \tag{14}
\end{align*}
$$

Theorem 4. For each $n \geq 0$, we have

$$
\begin{align*}
& T_{2 n+1}=\sum_{k=1}^{n+1}\left(\alpha_{n+1, k}-\delta_{k, 1}\right) X^{k} U_{2 n+1-k}, \tag{15}\\
& U_{2 n+1}=\sum_{k=1}^{n+1}\left(\gamma_{n, k-1}+\beta_{n, k}\right) X^{k} T_{2 n+1-k},
\end{align*}
$$

where $\delta_{i, j}$ denotes the Kronecker symbol.

The sequences of integers $\left(\alpha_{n, k}\right),\left(\beta_{n, k}\right)$ and $\left(\gamma_{n, k}\right)$ satisfy the following recurrence relation

$$
\begin{aligned}
& \left\{\begin{array}{l}
\alpha_{n, 0}=-1, \text { for } n \geq 0 \\
\alpha_{0, k}=0, \text { for } k \geq 1, \\
\alpha_{n, k}=\alpha_{n-1, k}-2 \alpha_{n-1, k-1}, \text { for } n, k \geq 1,
\end{array}\right. \\
& \left\{\begin{array}{l}
\beta_{n, 0}=-1, \text { for } n \geq 0, \\
\beta_{0,1}=1 \text { and } \beta_{0, k}=0, \text { for } k \geq 2, \\
\beta_{n, k}=\beta_{n-1, k}-2 \beta_{n-1, k-1}, \text { for } n, k \geq 1,
\end{array}\right. \\
& \left\{\begin{array}{l}
\gamma_{n, 0}=1, \text { for } n \geq 0, \\
\gamma_{0, k}=0, \text { for } k \geq 1, \\
\gamma_{n, k}=-\gamma_{n-1, k}+2 \gamma_{n-1, k-1}, \text { for } n, k \geq 1 .
\end{array}\right.
\end{aligned}
$$

The following tables give the values of $\alpha_{n, k}, \beta_{n, k}$ and $\gamma_{n, k}$ for $0 \leq n \leq 4$

n	$\alpha_{n, 0}$	$\alpha_{n, 1}$	$\alpha_{n, 2}$	$\alpha_{n, 3}$	$\alpha_{n, 4}$
0	-1				
1	-1	2			
2	-1	4	-4		
3	-1	6	-12	8	
4	-1	8	-24	32	-16

n	$\beta_{n, 0}$	$\beta_{n, 1}$	$\beta_{n, 2}$	$\beta_{n, 3}$	$\beta_{n, 4}$	$\beta_{n, 5}$
0	-1	1				
1	-1	3	-2			
2	-1	5	-8	4		
3	-1	7	-18	20	-8	
4	-1	9	-32	56	-48	16

n	$\gamma_{n, 0}$	$\gamma_{n, 1}$	$\gamma_{n, 2}$	$\gamma_{n, 3}$	$\gamma_{n, 4}$
0	1				
1	1	2			
2	1	0	4		
3	1	2	-4	8	
4	1	0	8	-16	16

Notice that $\alpha_{n, k}=\gamma_{n, k}=0$ for $k>n$ and $\beta_{n, k}=0$ for $k>n+1$.
According to these tables, one obtains

- Using Theorem 2

$$
\begin{aligned}
& T_{1}=X T_{0} \\
& T_{3}=3 X T_{2}-2 X^{2} T_{1} \\
& T_{5}=5 X T_{4}-8 X^{2} T_{3}+4 X^{3} T_{2} \\
& T_{7}=7 X T_{6}-18 X^{2} T_{5}+20 X^{3} T_{4}-8 X^{4} T_{3} \\
& T_{9}=9 X T_{8}-32 X^{2} T_{7}+56 X^{3} T_{6}-48 X^{4} T_{5}+16 X^{5} T_{4} \\
& U_{1}=2 X U_{0} \\
& U_{3}=4 X U_{2}-4 X^{2} U_{1} \\
& U_{5}=6 X U_{4}-12 X^{2} U_{3}+8 X^{3} U_{2} \\
& U_{7}=8 X U_{6}-24 X^{2} U_{5}+32 X^{3} U_{4}-16 X^{4} U_{3}
\end{aligned}
$$

- Using Theorem 3

$$
\begin{aligned}
& T_{0}=U_{0} \\
& T_{2}=U_{2}-X U_{1} \\
& T_{4}=U_{4}-X U_{3} \\
& T_{6}=U_{6}-X U_{5} \\
& T_{8}=U_{8}-X U_{7} \\
& U_{0}=T_{0} \\
& U_{2}=T_{2}+2 X T_{1} \\
& U_{4}=T_{4}+0 X T_{3}+4 X^{2} T_{2} \\
& U_{6}=T_{6}+2 X T_{5}-4 X^{2} T_{4}+8 X^{3} T_{3} \\
& U_{8}=T_{8}+0 X T_{7}+8 X^{2} T_{6}-16 X^{3} T_{5}+16 X^{4} T_{4}
\end{aligned}
$$

- Using Theorem 4

$$
\begin{aligned}
& T_{1}=X U_{0} \\
& T_{3}=3 X U_{2}-4 X^{2} U_{1} \\
& T_{5}=5 X U_{4}-12 X^{2} U_{3}+8 X^{3} U_{2} \\
& T_{7}=7 X U_{6}-24 X^{2} U_{5}+32 X^{3} U_{4}-16 X^{4} U_{3} \\
& T_{9}=9 X U_{8}-40 X^{2} U_{7}+80 X^{3} U_{6}-80 X^{4} U_{5}+32 X^{5} U_{4} \\
& U_{1}=2 X T_{0} \\
& U_{3}=4 X T_{2} \\
& U_{5}=6 X T_{4}-8 X^{2} T_{3}+8 X^{3} T_{2} \\
& U_{7}=8 X T_{6}-16 X^{2} T_{5}+16 X^{3} T_{4} \\
& U_{9}=10 X T_{8}-32 X^{2} T_{7}+64 X^{3} T_{6}-64 X^{4} T_{5}+32 X^{5} T_{4}
\end{aligned}
$$

2. Proofs of Theorems

2.1. Proof of Theorem 1

\mathfrak{T}_{n} and \mathfrak{U}_{n} are two families of polynomials of $\mathbb{E}_{n}[X]$ with $\operatorname{card} \mathfrak{T}_{n}=\operatorname{card} \mathfrak{U}_{n}=$ $\operatorname{dim} \mathbb{E}_{n}[X]=\lfloor n / 2\rfloor+1$. Using the following Lemma, we prove that the determinant of \mathfrak{T}_{n} and \mathfrak{U}_{n} relatively to the canonical basis \mathfrak{B}_{n} of $\mathbb{E}_{n}[X]$ are not zero. Theorem 1 follows.

Lemma 5. For any integer $n \geq 0$, by setting $m=\lfloor n / 2\rfloor$, we have

$$
\operatorname{det}_{\mathfrak{B}_{n}}\left(\mathfrak{T}_{n}\right)=2^{m(m-1) / 2} \text { and } \operatorname{det}_{\mathfrak{B}_{n}}\left(\mathfrak{U}_{n}\right)=2^{m(m+1) / 2} .
$$

Proof. For any integer $m \geq 0$ and for $1 \leq k \leq m+1$, set $V_{k}^{(m)}=$ $(2 X)^{k-1} T_{2 m+1-k}$ and $W_{k}^{(m)}=(2 X)^{k-1} U_{2 m+1-k}$. Notice that $V_{k}^{(m)}$ and $W_{k}^{(m)}$ are polynomials of $\mathbb{E}_{2 m}[X]$ with dominant coefficient $2^{2 m-1}$ and $2^{2 m}$ respectively. Using the recurrence equations (1) and (2), we obtain for $m \geq 1$

$$
V_{k+1}^{(m)}-V_{k}^{(m)}=V_{k}^{(m-1)} \quad \text { and } \quad W_{k+1}^{(m)}-W_{k}^{(m)}=W_{k}^{(m-1)} .
$$

Let $\quad \Delta_{m}=\operatorname{det}_{\mathfrak{B}_{2 m}}\left(V_{1}^{(m)}, V_{2}^{(m)}, \ldots, V_{m+1}^{(m)}\right) \quad$ and

$$
D_{m}=\operatorname{det}_{\mathfrak{B}_{2 m}}\left(W_{1}^{(m)}, W_{2}^{(m)}, \ldots, W_{m+1}^{(m)}\right) .
$$

We have

$$
\begin{aligned}
\Delta_{m} & =\operatorname{det}_{\mathfrak{B}_{2 m}}\left(V_{1}^{(m)}, V_{2}^{(m)}-V_{1}^{(m)}, V_{3}^{(m)}-V_{2}^{(m)}, \ldots, V_{m+1}^{(m)}-V_{m}^{(m)}\right) \\
& =\operatorname{det}_{\mathfrak{B}_{2 m}}\left(V_{1}^{(m)}, V_{1}^{(m-1)}, V_{2}^{(m-1)}, \ldots, V_{m}^{(m-1)}\right) \\
& =2^{2 m-1} \Delta_{m-1} \\
& =2^{(2 m-1)+(2 m-3)+\cdots+1} \Delta_{0} \\
& =2^{m^{2}}
\end{aligned}
$$

and similarly, we obtain $D_{m}=2^{2 m} D_{m-1}=2^{2 m+(2 m-2)+\cdots+2} D_{0}=2^{m(m+1)}$.
For $n=2 m+r$, with $m=\lfloor n / 2\rfloor$ and $r \in\{0,1\}$, we have

$$
\begin{aligned}
\operatorname{det}_{\mathfrak{B}_{n}}\left(\mathfrak{T}_{n}\right) & =\operatorname{det}_{\mathfrak{B}_{2 m+r}}\left(X^{r} T_{2 m}, X^{r+1} T_{2 m-1}, \ldots, X^{r+m} T_{m}\right) \\
& =\operatorname{det}_{\mathfrak{B}_{2 m}}\left(T_{2 m}, X T_{2 m-1}, \ldots, X^{m} T_{m}\right) \\
& =2^{-(1+2+\cdots+m)} \Delta_{m} \\
& =2^{m(m-1) / 2},
\end{aligned}
$$

and similarly $\operatorname{det}_{\mathfrak{B}_{n}}\left(\mathfrak{U}_{n}\right)=2^{-(1+2+\cdots+m)} D_{m}=2^{m(m+1) / 2}$.

2.2. Proof of Theorems 2, 3 and 4

Let us denote E denote the shift operator on $\mathbb{Q}[X]^{\mathbb{N}}$ defined by

$$
E\left(\left(W_{n}\right)_{n}\right)=\left(W_{n+1}\right)_{n},
$$

or in a more simple form

$$
E W_{n}=W_{n+1}, \quad(n \geq 0)
$$

For any $m \geq 0$, define the operators

$$
\begin{aligned}
A_{m} & =-(E-2 X)^{m}, \\
B_{m} & =(X-E)(E-2 X)^{m}, \\
C_{m} & =(2 X-E)^{m}+2 \sum_{k=1}^{m} E^{k}(2 X-E)^{m-k} .
\end{aligned}
$$

Using relations (5), (6) and (7), we have also

$$
\begin{aligned}
& A_{m}=\sum_{k=0}^{m} \alpha_{m, k} X^{k} E^{m-k} \\
& B_{m}=\sum_{k=0}^{m+1} \beta_{m, k} X^{k} E^{m+1-k} \\
& C_{m}=\sum_{k=0}^{m} \gamma_{m, k} X^{k} E^{m-k}
\end{aligned}
$$

Lemma 6. For any integer n, we have
(a) $(2 X-E)^{n} T_{m}=T_{m-n} \quad$ and $(2 X-E)^{n} U_{m}=U_{m-n},(m \geq n \geq 0)$.
(b) $T_{n}=U_{n}-X U_{n-1}(n \geq 1)$.
(c) $2 T_{n}=U_{n}-U_{n-2}(n \geq 2)$.
(d) $U_{2 n}=1+2 \sum_{k=1}^{n} T_{2 k}(n \geq 0)$.

Proof.

(a) For $m \geq 1$, one has $(2 X-E) T_{m}=2 X T_{m}-T_{m+1}=T_{m-1}$ and $(2 X-E) U_{m}=2 X U_{m}-U_{m+1}=U_{m-1}$. We conclude by induction.
(b) Letting for $n \geq 1, W_{n}=T_{n}-U_{n}+X U_{n-1}$. The sequence $\left(W_{n}\right)_{n \geq 1}$ satisfies the following relation

$$
W_{n}=2 X W_{n-1}-W_{n-2}, \quad(n \geq 3), \quad \text { with } W_{1}=W_{2}=0
$$

leading to $W_{n}=0$, for $n \geq 1$.
(c) For $n \geq 2$, one has $2 T_{n}=U_{n}+\left(U_{n}-2 X U_{n-1}\right)$ from (b) and thus $2 T_{n}=U_{n}-U_{n-2}$ from (2).
(d) For $n \geq 0$, one has $U_{2 n}=U_{0}+\sum_{k=1}^{n}\left(U_{2 k}-U_{2 k-2}\right)=1+2 \sum_{k=1}^{n} T_{2 k}$ from (c).

Proof of Theorem 2. Relations (11) and (12) are respectively equivalent to

$$
B_{n} T_{n}=0 \quad \text { and } A_{n+1} U_{n}=0, \text { for } n \geq 0
$$

These last relations follows from Lemma 6 (a). We have, for any integer $n \geq 0$

$$
\begin{aligned}
B_{n} T_{n} & =(-1)^{n}(X-E)(2 X-E)^{n} T_{n} \\
& =(-1)^{n}(X-E) T_{0} \\
& =(-1)^{n}\left(X T_{0}-T_{1}\right)=0,
\end{aligned}
$$

and

$$
\begin{aligned}
A_{n+1} U_{n} & =(-1)^{n+1}(2 X-E)(2 X-E)^{n} U_{n} \\
& =(-1)^{n+1}(2 X-E) U_{0} \\
& =(-1)^{n+1}\left(2 X U_{0}-U_{1}\right)=0 .
\end{aligned}
$$

Proof of Theorem 3. Relation (13) follows from Lemma 6 (b).
Relation (14) is equivalent to $U_{2 n}=C_{n} T_{n}$, for $n \geq 0$. One has indeed, for any $n \geq 0$

$$
\begin{aligned}
C_{n} T_{n} & =\left((2 X-E)^{n}+2 \sum_{k=1}^{n} E^{k}(2 X-E)^{n-k}\right) T_{n} \\
& =T_{0}+2 \sum_{k=1}^{n} T_{2 k} \\
& =U_{2 n}, \quad(\text { from (d) of Lemma } 6)
\end{aligned}
$$

Proof of Theorem 4. For any $n \geq 0$, we have

$$
\begin{aligned}
T_{2 n+1} & =U_{2 n+1}-X U_{2 n}, \quad \text { (from (b) of Lemma 6) } \\
& =\sum_{k=1}^{n+1} \alpha_{n+1, k} X^{k} U_{2 n+1-k}-X U_{2 n} \quad(\text { from (12)) } \\
& =\sum_{k=1}^{n+1}\left(\alpha_{n+1, k}-\delta_{k, 1}\right) X^{k} U_{2 n+1-k} .
\end{aligned}
$$

We have also, for any $n \geq 0$

$$
\begin{aligned}
U_{2 n+1} & =X U_{2 n}+T_{2 n+1}, \quad(\text { from (b) of Lemma 6) } \\
& =\sum_{k=0}^{n} \gamma_{n, k} X^{k+1} T_{2 n-k}+\sum_{k=1}^{n+1} \beta_{n, k} X^{k} T_{2 n+1-k}, \quad(\text { from (11) and (14)) } \\
& =\sum_{k=1}^{n+1}\left(\gamma_{n, k-1}+\beta_{n, k}\right) X^{k} T_{2 n+1-k} .
\end{aligned}
$$

References

[1] H. Belbachir and F. Bencherif, Linear recurrent sequences and powers of a square matrix, Integers 6 (A12) (2006), 1-17.
[2] E. Lucas, Théorie des Nombres, Ghautier-Villars, Paris 1891.
[3] T.J. Rivlin, Chebyshev Polynomials: From Approximation Theory to Algebra and Number Theory, second edition, Wiley Interscience 1990.

Received 30 April 2007
Revised 24 July 2007

