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Abstract

Letting T, (resp. U,) be the n-th Chebyshev polynomials of
the first (resp. second) kind, we prove that the sequences (X an,k) k
and (X’“Un,k)]C for n — 2|n/2] < k < n — |n/2] are two basis
of the Q-vectorial space E,, [X] formed by the polynomials of Q [X]
having the same parity as n and of degree < n. Also T,, and U,, admit
remarkableness integer coordinates on each of the two basis.
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1. INTRODUCTION AND MAIN RESULTS

For each integer n > 0, T,, = T,,(X) and U,, = U,(X) denote the unique
polynomials, with integer coefficients, satisfying

cosnx = Ty (cosz) and sin((n + 1)z) = sinz U,(cosz), (z € R).
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The well known Simpson’s formulae [2], for all n € N and z € R :
cosnx =2coszcos(n—1)x —cos(n—2)x
sin(n+1)x =2coszsinne —sin(n — 1) x
give the recurrence relations
(1) T, =2XT, 1 — Ty 9, withTh=1, T} = X,
2) Up = 2XUp_1 — Un_s, with Uy = 1, U; = 2X.

We deduce (see [1]), for n > 1, the following relations

[n/2] n In—k
Tn — -1 k2n—1—2k‘ - Xn—Zk‘
3) > (1) (" ,
[n/2] n—k
(4) U, = Z(_Ukz“’f( N )X”%.
k=0

These relations allows to state that, for any n > 0, T,, and U, belong
to E, [X], (3) and (4) are their decompositions in the canonical basis

— —2k
B, = (X" )0§k§[n/2j

For instance, the first fifth values of thus polynomials are

Ty =1 Up=1
=X Uy =2X

T, =2X%2-1 Uy=4X? -1
Ty =4X3 —3X Us =8X3 —4X

Ty =8X*—-8X2+1 U, =16X*—12X2+1
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The main goal of this paper is to prove that the families ¥, := (X an—k) &
and 8, := (X*U,_ k), for n—2[n/2] <k <n—|n/2] constitute two other
basis of E,, [X] (Theorem 1) for which T,, and U, admit remarkableness
integer coordinates.

Our first result is the following

Theorem 1. For any n >0, T, and L, are two basis of E, [X].

So we can decompose Toy,+1 and Uz, 11 (resp. Toy, and Us,) over each of the
basis To,1 and oy, 11 (resp. Top, and Lsy,). Decompositions of Th, over T,
and Us, over s, are trivial, it remains to examine the six decompositions:

1. The decomposition of To,11 over To,i1 and Us,i1 over Uopyq in
Theorem 2.

2. The decomposition of Ty, over Us, and Us, over Ts, in Theorem 3.

3. The decomposition of To,y1 over Ls,+1 and Usyiq over To,yq in

Theorem 4.

Let us define the families of integers (o, i) , (Bnk) and (7, 1) by the following
equalities

(5) (1-2X)" =) anpX”,
k>0

(6) (X -1 (1-2X)"=> BupX",
k>0

(7) (2X—1)”+2(1+(2X—1)+ +(2X - 1)" ) 3 X",
k>0

we deduce then, for (n, k) € N2, the following relations

¥ ani = (1125 (1),
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(9) ﬂn,k =0Onk — Qp k-1,
n—1 .

(10) Yoge = ()" Mo +2) (1) .
=0

Theorem 2. For each n > 0, we have

n+1

(11) Tont1 =3 Bk X Toni1k,
k=1
n+1

(12) Usni1 = Y g1k X U1k
k=1

Theorem 3. For each n > 0, we have

(13> Top = U2n - XU2n—17 n = 17
(14) U2n = Z 'Yn,k:XkT2n7k-
k=0

Theorem 4. For each n > 0, we have

n+1

(15) Tong1 =Y (@ng1k — k1) X Uzng1k,
k=1

n+1
(16) Uspt1 = Z (Y1 + Bug) X Toni1-,

k=1

where 0; j denotes the Kronecker symbol.
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The sequences of integers (o, k), (Bnk) and (v,) satisfy the following

recurrence relation

ano = —1, forn >0,

apr =0, for k> 1,

Qp ke = Qp_1k — 200p_1 —1, for n, k> 1,

o = —1, forn =0,

)

Boa =1 and By =0, for k > 2,

ﬁn,k = ﬁn—l,k - Qﬂn—l,k—la for n, k> 1a

Yn,o =1, for n >0,

Yo,r = 0, for k > 1,

T,k = —TYn—1,k + 2’7n—1,k—1a for n, kE>1.

The following tables give the values of ay, ., By and vy, for 0 <n <4

n amo Oén71 Oén72 Oén73 Oén74
0 -1

1 -1 2

2 -1 4 —4

3 -1 6 | -12 | 8

4 -1 8 | =24 | 32 | —16
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n | Bno | B | Bn2 | Bns | Bna | Bus
0 -1 1
1 -1 3 -2
2 -1 5 -8 4
3 -1 7 | =18 ] 20 | -8
4 -1 9 | —32 | 56 | —48 | 16
n Tn,0 | n,1 | Tn,2 .3 | Tn,4d
0 1
1 1 2
2 1 0 4
3 1 2 —4 8
4 1 0 8 | —16| 16

Notice that oy, = v, =0 for £ >n and 8, =0 for k >n + 1.
According to these tables, one obtains

e Using Theorem 2

Ti= XT,
Ty=3XTy—2X°T)

Ts= 5XT4—8X2T3+4X>3T,
Tr=TXTs—18X>T5+20X 3T, —8 X Ty

To= 9XT3—32XTr+56 X 3T —48X 4 T5+16X°T)

U= 2XU,

Us= 4XUy—4X2U,

Us= 6XU4—12X2U3+8X3U,

Ur= 8XU¢—24X2Us+32X3U,—16 X 1Us
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e Using Theorem 3

To= U,
Ty=U,— XU,
Ty=Us—XUs
Te= Ug—XUs
Ty= Us—XUs7

Uo=To

Up=T9+2XT

Us= T4+0XT3+4X%T,

Us= T6+2XT5—4X>Ty+8X3Ts

Us= Ts+0XT7+8X*Ts—16X>Ts+16 X 4T}

e Using Theorem 4

T1= XU,

Ts=3XUy—4X2U;

Ts= 5XU,—12X2U3+8X3U,
Tr=TXUg—24X2Us+32X3U;—16 X U3

To= 9XUg—40X2Ur4+80X3Us—80X U5 +32X°Uy

Ui=2XT,

Us=4XT,

Us= 6XT,—8XT3+8X>T)
Ur=8XTs—16X>T5s+16X3T)

Up= 10XTg—32X 2 T7+64X3Ts—64X *T5+32X°T)
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2. PROOFS OF THEOREMS

2.1. Proof of Theorem 1

%, and 4, are two families of polynomials of E,, [X] with card¥,, = cardi, =
dimE, [X] = |n/2] + 1. Using the following Lemma, we prove that the
determinant of ¥,, and 4L, relatively to the canonical basis 9B, of E,, [X] are
not zero. Theorem 1 follows.

Lemma 5. For any integer n > 0, by setting m = [n/2] , we have

detss,, (‘In) — 2m(m—1)/2 and detos, (un) _ 2m(m+1)/2.

Proof. For any integer m > 0 and for 1 < &k < m + 1, set Vk(m) =
2X)*  Typi1_p and W™ = (2X)" ! Uppyy_p. Notice that V™ and
Wém) are polynomials of Es,, [X] with dominant coefficient 22"~1 and 2%™
respectively. Using the recurrence equations (1) and (2), we obtain for m > 1

m m m—1 m m m—1
V) =D and W g =

Let A, = detoy, (V1 ™y ,V,g’i)l) and

Dy, = dete, (Wl(’”), Wi, ,W,;’i)1> .
We have

Ay, = detg,,, (Vl(m)7 Yy ym oy v<m>>
= detwy,,, (Vl(m), Vl(mfl)’ V2(m*1), o V(mfl))

— 22m— 1 Amfl

2(2m—1)+(2m—3)+---+1 Ay

_om?

9
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and similarly, we obtain D,, = 22™D,,_; = 22m+T@m=2)+-+2p, — gm(m+1)

For n = 2m + r, with m = |n/2] and r € {0,1}, we have

detes, (Tp) = detss,, . (X Tom, X oy 1,..., X"TT,)

= det%gm (T2m7 XTmel, R Xme)

=9~ (I424dm) A
— 2m(m—1)/2’

and similarly detsg () = 9—(42+-4m)p  — gm(m+1)/2 -

2.2. Proof of Theorems 2, 3 and 4
Let us denote E denote the shift operator on Q [X ]N defined by

E((Wn)n) = Wat1)n,
or in a more simple form
EW, = Wn+1, (n > 0) :

For any m > 0, define the operators
Ap=—(E-2X)",

B,=(X—-FE)(F-2X)",
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Using relations (5), (6) and (7), we have also

m
Ap = amp X E™F,
k=0

m+1

B, = Z ﬁm,kaEerlika
k=0

m
Cn = YmsX E"F.
k=0

Lemma 6. For any integer n, we have

(a) 22X —E)"Tyy=Tmn and (2X —E)"Up, =Uppn, (m>n>0).
(b) T =Up—XUp_1 (n>1).
(¢) 2T, =U, —Up—2 (n>2).

(d) Usp, =1 —|—2ZZ:1 Tor (n > 0) .

Proof.

a) For m > 1, one has — m = m — dmt+1 = 1p—1 an
F 1 h 2X — BT, 2XT, + T, d
(2X — E)U,, =2XU,, — Up41 = Up—1. We conclude by induction.

(b) Letting for n > 1, W,, = T;, — U, + XUp—1. The sequence (W,,), ~,
satisfies the following relation B

Wn = QXanl — Wn72, (n > 3), with W1 = W2 = 0,

leading to W,, =0, for n > 1.
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(c) For n > 2, one has 27,, = U,, + (U,, —2XU,_1) from (b) and thus
2T, = U, —U,—2 from (2) .

(d) For n > 0, one has Us, = Up+ >y (Uak — Ugg—2) = 1+2 ) Tog,
from (c).
| ]

Proof of Theorem 2. Relations (11) and (12) are respectively
equivalent to

B, T,,=0 and A,1U, =0, forn > 0.

These last relations follows from Lemma 6 (a). We have, for any integer
n>0

BT, = (-1)" (X — E) (2X — E)" T,
=(-D"(X-E)Ty

— (~1)" (XTy — T3) =0,

and

AU, = (-1)" (2X — E) (2X - B)" U,
= (-)"" (2X — E) Uy

= (-1)""' (2XUy - U;) = 0.

Proof of Theorem 3. Relation (13) follows from Lemma 6 (b).

Relation (14) is equivalent to Us, = C,T,, for n > 0. One has indeed,
for any n > 0
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CoT, = <(2X —BE)" +257 EF (2X — E)"_k> T,

n
:T0+2ZT%
k=1

= Uy, (from (d) of Lemma 6).

Proof of Theorem 4. For any n > 0, we have

Tont1 = Uspt1 — XUsp, (from (b) of Lemma 6)

n+1

= ZanJrLkaUgnJrl,k — XUy, (from (12))

k=1

1

=Y (anr1k — k1) X Usny1 s
1

3
+

e
Il

We have also, for any n > 0

Uznt1 = XUzp + Tont1,  (from (b) of Lemma 6)

n n+1
k+1 k
= jg:’%%k)( + 13n—%7+'§£:/1%k)( I&n+1—k7
k=0 k=1

n+1

= Z (Yk=1+ Bre) X Top 1.
k=1

(from (11) and (14))
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