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1. INTRODUCTION

Let 7 be a fixed type, with fundamental operation symbols f;, ¢ € I, and let
W, (X) be the set of all terms of type 7. If A = (A;(f{')ics) is an algebra
of type 7, then we can get a new algebra of type 7 with the universe A if
we replace the fundamental operations by term operations of A4 of the same
arity. This informal definition shows that we are interested in a map which
associates to every operation symbol f; of a given type 7 a term o(f;) of
type 7, of the same arity as f;. Any such map is called a hypersubstitution
(of type 7) and the algebra o(A) = (A; (o(fi)*)ier) is called derived algebra.
Here o(f;)? are the n;-ary term operations induced by the terms o(f;). If
the algebra A belongs to a given variety V of algebras of type 7, then one
can ask if the derived algebra o(A) belongs also to the variety V.

Let Hyp(7) be the set of all hypersubstitutions of type 7. Any hypersub-
stition can be uniquely extended to a map ¢ on W, (X) defined inductively
as follows:

(i) If t = x; for some ¢ > 1, then 6[t] = z;.

(ii) Ift = f(t1,...,t,) for some n-ary operation symbol f and some terms
t1, ... ty, then &[t] = o(f)(6[t1],...,0tn)).

Here the right hand side is the composition of the term o(f) with the terms
&[tl], e ,&[tn].

We can define a binary operation oj on the set Hyp(r) of all
hypersubstitutions of type 7, by letting o1 op 02 be the hypersubstitution
which maps each fundamental operation symbol f to the term &1[o2(f)].
The set Hyp(7) of all hypersubstitutions of type 7 is closed under this
associative composition operation, and so forms a semigroup. In fact Hyp(7)
is a monoid, since the identity hypersubstitution ¢;4 (mapping every f; to
fi(z1,...,zp,)) acts as an identity element. A variety V is called solid if
every derived algebra o(A) belongs to V' and M-solid if this holds for every
hypersubstitution from a submonoid M of Hyp(r).

Now suppose that M is any submonoid of Hyp(7). An identity u ~ v
of a variety V is called an M-hyperidentity, and a hyperidentity for M =
Hyp(7), of V if for every hypersubstitution o € M the equation &[u| ~ &[v]
holds in V. M-solid (solid) varieties V' are characterized by the property
that every identity of V' is an M-hyperidentity (hyperidentity) of V.
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Alternatively M-solid varieties V' can be characterized by the property that
there is a set X of equations such that an algebra belongs to V' if and only if
it satisfies all equations from ¥ as M-hyperidentities. In this case we write
V = HpyMod X or simply V= HMod ¥ for M = Hyp(7) and speak of an
M-hyper model class (or hyper model class for M = Hyp(r)).

In this paper we are interested in varieties of type 7 = (2); that is,
in varieties with one binary operation symbol f. Type (2), and especially
varieties of semigroups, seem simple enough to be accessible but rich
enough to be interesting, and much has been done in the investigation of
hyperidentities and M-solidity for these varieties. (See for example [2]).

Let SEM be the variety of all semigroups. We are looking for such sub-
varieties of SEM which contain with any semigroup A = (4; f4) also all
derived semigroups o(A) = (A;0(f)?), i.e., such that o(f)4 is associative.
In the variety SEM this is in general not the case as the following example
shows. We consider the hypersubstitution o ¢, f(y.,)) Which maps the binary
operation symbol f to the binary term f(z, f(y,y)). Then the correspond-
ing term operation is not associative since o(f)* (o (f)?(a,b),c) = ab®c? and
a(f)*a,o(f)A(b,c)) = a(bc?)? are in general not equal. So we are looking
for the greatest subvariety of SEM which contains all those derived alge-
bras. It makes sense to concentrate on hypersubstitutions which map f to
binary terms containing both variables x and y. (We notice that terms which
contain only one variable can also be regarded as binary). In this case the
induced term operations o( f)A are essentially binary. Hypersubstitutions
of this kind are called regular and the corresponding M-hyperidentities are
called regular hyperidentities. The set Reg of all regular hypersubstitutions
of type 7 = (2) forms a submonoid of the monoid Hyp of all hypersubstitu-
tions of type 7 = (2). M-solid varieties of semigroups for M = Reg are called
reqular solid and we want to give an equational description of the greatest
regular solid variety of semigroups. It turns out that this is the variety
Vir = Mod{x(yz) = (xy)z, xyzzeyr ~ vyzyz, v2y*z ~ r’yrlyz, vy?2? ~
ryz2yz?}, i.e., the variety generated by these identities.

Our results can be used for a very short proof of the fact, proved first in
[7], that the variety Vs defined by the identities z(yz) ~ (zy)z, zyxzayr ~
zyzyz, v? ~ at, 2?%y’r ~ 2?yrlyz, xy’2? ~ wyz’yz? is the greatest solid
variety of semigroups.

For more background on hypersubstitutions and M-solid varieties we
refer to [2] and to [4], respectively.
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2. THE TWO-GENERATED FREE ALGEBRA OVER Vgp

The Reg-hyper model class of the associative law is the greatest regular
solid variety of semigroups. By definition this class HpeqModAss is the
class of all semigroups which satisfy the associative identity (Ass) as regular
hyperidentity. The class HgegModAss is a variety (see e.g. [2]) and therefore
there is some interest to find a generating system for the set of all
identities satisfied in HpgeqM odAss and to know whether or not Hpg.,ModAss
is finitely axiomatizable by identities. If we apply the following regular
hypersubstitutions to the associative identity, we obtain the identities listed
in the following table.

hypersubstitution | identity

Tf(ay) z(yz) = (vy)z
Tf(f(zy)x) TYZYT R TYLZTYT
Tf(f(z,z).y) ?y?z ~ alyxiyz
T f(x.f (y9)) zyz2yz? ~ xy?2?

All these identities have to be satisfied in HgeyModAss. Therefore we have
HpegModAss C Vg == Mod{z(yz) ~ (zy)z, zyzzayr ~ vyzyz, 22y’z ~
2?yxlyz, xy?2? = xyz?yz?}. Our aim is to prove the converse inclusion.
The basic idea is to calculate all normal forms of binary terms with respect
to the variety Vg and to apply the corresponding hypersubstitutions to
the associative law. If all resulting identities are satisfied in the variety
ViR, this variety satisfies the associative law as a regular hyperidentity
and Vgr C HpegModAss. First of all we determine some more identities
satisfied in Vgg.

Lemma 2.1. The following equations are identities in the variety Viggr:

(i)

(i)

(i) 2°~a”,
)

zyF2yte ~ zyFatzayle,1 < k,l,a € N,

xyzyr = xy®zytc for a > 2,

(iv) zyizyzr ~ zyzyz,
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ryzySr ~ TyzyT,

)

(vi) z?yz?t =~ 2?y2?,
) ziya? = 2?y2?,
)

rylzyr ~ rvyzy’e.

i ithout restriction of the generality we may assume tha < I

i) Without tricti f th lit that £ < [
Then we have zy¥zyle ~ (zy)* x0T 229 (y2)! ~ 2yFr?22% 2 using
the identity xyxzayxr ~ ryzyx.

(ii) Using again zyxzryr ~ xyzyr we obtain zyzyr ~ zyrzaryr ~
zyzy® 2yt loyr ~ zy*ayl.

(iii) This follows from (x2y)?z ~ 22y?2 if we identify all three variables.
(iv) Here we have
ryzyx ~ xyS2ySr by (i)
~ xyS2ySz by ° ~ 27
~ zyzyx by (ii).
Follows similar as (iv).

)

(vi) 2?yx? =~ zryrds ~ rzyzr by (v).
) This can be derived in a similar way.
)

By (ii) and (iv) we have zy?zyz ~ zy32y%z ~ zyzy’c. [

Lemma 2.2. For a,b,c,d > 1,a,b,c,d € IN the following equations are
identities in the variety Vggr:

a+c+2

zytzbyts ~ zy x if b is even,

(i)

(ii) xy®xby°z ~ zyxyx if b is odd and a + c is even,

(iii) ay®abyr ~ zy’ryr if b and a + c are odd,
)

(iv) x0byx ~ x0yxtP, if a > 2,
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(v) z%Platy? ~ xvteyttd if a b c,d > 2,
(vi) xytz =~ xy® 2z € [dVyR if a > 5,
(vii) zyaby ~ xy®zP2y if a,b > 3,

) zyaby ~ xy® 22y if a,b > 3,

22y ~ 22y 22 if a > 4,

xy?;xay ~ xyxa+2y7

)

(x) xy®2? ~xy* 222 ifa > 4,
)

) wy'aty ~ ay ey,

(xiii) 2%lzyz ~ x0Tyt Hy ifa > 2,
zyrybr® ~ xy? Tzt ifa > 2,

a,b,.c,d a+tc

)
xv) yxty’rylr ~ yx btdy
(xv) yaty’zy'z ~y

)

)

Y
r4bx ~ 20 2ylx if a > 4,0 > 2,

zybr® ~ oyt 2 ifa > 4,0 > 2.

Proof.
(i) Assume that a < ¢. Then by Lemma 2.1 (i) we have

zytzbyte ~ zytrlaba?yte

~ zyay?aby?a?yCr by zyrzryr ~ zyzyx

2,2,.2,2..2, ¢

~ zytax yr y*z y°x by Lemma 2.1 (vi) since b is even

~ zya®y’ry’ryr by Lemma 2.1 (ii)

2,2.2,c 2

~ xy ey’ z?yce by (¢%y)?z ~ 2y 2

a+c+2

~ oy x by Lemma 2.1 (i).

(ii) We have
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ryxbyCer ~ ry®rotlabyctatly by Lemma 2.1 (i)
~ ryzPyx by Lemma 2.1 (v), (iv)
~ vyryx by ryrzryr ~ ryzyr.
(iii) In this case we have
zyxbyte ~ ry®alycte by Lemma 2.1 (ii)
~ zy?2Pyx by Lemma 2.1 (v)
~ zy’ryxr by Lemma 2.1 (i).
(iv) We have

b+b+a

x0Tyt o potby g by Lemma 2.1 (vi)

~ 2%z*t? by Lemma 2.1 (ii).
(v) There holds
wybacyd m aote2y2a2y =2 by (iv)
~ 10222y =2 by Lemma 2.1 (iv)

~ wa+cyx2yw2yd+bf2

~o ey 2y b1
~ 20T¢ydtt using (22y)%z ~ 22y?2
and x(y22)? ~ xy?22, respectively.
(vi) Using zyzzryx ~ ryzyr we get

ryte ~ ryryy® tyxys

~ zyry® ey

97
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(vii)

(viii)

(ix)

(xii)

(xiii)
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By Lemma 2.1 (i) we have

zytzby ~ zytryryx’ 2y

~ xya+2wb72y
~ zy®zP2y by (vi).
can be proved similar to (vii).
Using (22y)%z =~ 2%y%2 we have
2292 ~ pyrlyriyay® 3z
~ r?yx’a?r?yt 32 using xyrzryr ~ vyzyx

2,,a—3

~ 2?yz?y? 32 by Lemma 2.1 (vi)

2 2,2

~ 22y* 2z using (22y)%z ~ 2%y°2.
can be proved similar to (ix).

Using Lemma 2.1 (i) we obtain

P rty ~ vyryrysty
~ ryxt?y.

can be proved similar to (xi).

By Lemma 2.1 (ii) we have

xaybxyw ~ mayb—l—lxny

~ z%%ry’ Tz by (iv)

~ 291y ly using x(y2?)? ~ xy?22.
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(xiv) can be proved in a similar way.

(xv) There holds

a,b,.c,d a+2

yaybrtyle ~ yx b+2wc+2yd+2

y x by Lemma 2.1 (ii)

~ yma+c+2y2x2yd+b+2x by (iV)

~ yx®tey? 2%y 2 by Lemma 2.1 (iv)

r Yzt tet2yd o2y by (v)
~ yxoTeydthy by (ix).
(xvi) We have
2yt ~ x% 2z by (x)
~ r%yxybryr using ryrzryr ~ zyzys
~ x%zy’r3yx by Lemma 2.1 (iv)

~ 29 2yzyPadyx by (iv)

a

“2yxybryr by Lemma 2.1 (iv)

=~

~ 2% 2yb 2y using xyrzryr ~ ryzyT

~ 292z by (ix).

(xvii) can be proved similar to (xvi). ]

We use these identities to determine the elements of the 2-generated free
algebra with respect to Vygr. First of all we want to reduce the length of
the terms.

Definition 2.3. Let ¢ be a term built up by the variables x and y. If
there are natural numbers n, kq,...,k, > 1 such that ¢t ~ m]fl ... zF" where

zj € {x,y} for 1 < j <nand z; # x;1, then n is called the periodic length
of t and is denoted by 1,(t).



100 K. DENECKE, J. KoPPITZ AND N. PABHAPOTE

Theorem 2.4. For every t € W({xz,y}) there is a term r € W({x,y}) with
~r and with l,(r) <5.

Proof. Assume that there is a binary term ¢ € W ({x,y}) such that for all
r € W({x,y}) with ¢t ~ r we have [,(r) > 6. Let ' be a binary term with
t =~ r’" € Vgr where ' has minimal periodic length. Then [,(r') > 6. By
Lemma 2.2 (xv) there is a binary term s with s = r’ € Vg and [,(s) =
l,(r") — 2. Since s ~ t this contradicts the minimality of r’. |

Theorem 2.4 together with Lemma 2.1 (iii) show that there are finitely many
binary terms over the variety Vi, i.e., the two-generated free algebra over
Vir is finite. Remark that the variety Vg is locally finite. This can be
shown using results from [3] and the identity zyzzryxr ~ zyzyr which is
satisfied in V. The word xyxzxyx is said to be a Zimin word.

Theorem 2.4 gives us a set of hypersubstitutions which we have to apply
to the associative law if we want to check if the associative law is satisfied as
a regular hyperidentity. But we can reduce the number of hypersubstitutions
which are needed, more. From now on we assume that the first variable of
the considered term t is x, i.e., leftmost(t) = z. In the corresponding way
one defines rightmost(t).

Theorem 2.5. Let t € W({z,y}) such that l,(t) =5 and leftmost(t) = x.
Then t ~ zy*zyxr € 1dVggr for some s € {1,2} or there is a term r €
W({x,y}) witht =~ r and l,(r) < 4.

Proof. By Lemma 2.1 (iii) there are natural numbers a,b,c,d,e < 6
with ¢ ~ z%Pz°y%2°. Here the right hand side has to start with z since
for every identity s & ¢t which belongs to the generating system of the set of
all identities in Vg we have le ftmost(s) = le ftmost(t) and rightmost(s) =
rightmost(t). If c is even, then by Lemma 2.2 (i) we have t ~ x%ybTd+2z¢
and if ¢ is odd, then by Lemma 2.2 (ii) we get t ~ x%yzyx® if b+ d is
even and t ~ z%y?xyx® if b+ d is odd. Now for a > 2 we apply Lemma
2.2(xiii) and obtain t ~ z%t1y22¢ in the first case and ¢t ~ x%F1y32° in
the second one. So, it is left to consider the cases t ~ zxy?zyz® and

~ ryzryz®. If e > 2, then by Lemma 2.1 (viii) and Lemma 2.2 (xiv) we have
t =~ zy3zet! or t = xy?xt! otherwise; ie., if e = 1, we have t ~ zy’zyz
or t = ryxryc. ]
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Theorem 2.6. Lett € W({z,y}) with l,(t) = 4 and le ftmost(t) = x. Then
~ zyFry € IdVgg for some k € {2,4} or
~ xyazfy € IdVyg for some k € {2,4} or
t ~xydzy € IdVgg or
~ zFylay € IdVgg or for some k,1 € {2,3}
t ~ xyaty! € IdVyg for some k,l € {2,3} or
~ x?yx’y € IdVgR or
t ~ xy’xy® € IdVyg or
t ~ aFyry € IdVyg for some k € {2,3} or
t ~ zyry® € IdVyg for some k € {2,3} or
t ~ xy’2x’y € IdVyg or
t ~ x?yxy® € IdVgR or
there is an r € W ({x,y}) with t =~ r and l,(r) < 3.
Proof. There are a,b,c,d € IN with t ~ z%"2z°?. By Lemma 2.1 (iii) we

may assume that a,b,c,d < 6. Suppose that b,c > 2. By Lemma 2.2 (ix),

(x) we may assume that b, ¢ < 3.

If b=3 or ¢ = 3 we get t ~ z%xt2y? and t ~ 2% 2zy?, respectively,

by Lemma 2.2 (xi), (xii). If b=c=2,a =1 and d > 2, then

~ zytzy? by Lemma 2.1 (vi)
~ zyP2%y%Tt by Lemma 2.2 (iv)
~ zyzty?*! by Lemma 2.2 (xi)

~ zyz’y®*! by Lemma 2.2 (x)

~ zyz’yP for some p < 3 by Lemma 2.2 (xvii).
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Ifb=c=2,d=1 and a > 2, then in a similar way we show the existence
of a number p < 3 such that t ~ 2Py’zy.

Ifb=c=2and a=d=1, then we get t ~ xy’z>y.
Now we consider the case b = 1. Then t ~ z%yxy? € IdVyr.
If a,c,d > 2, then

t ~ x%z°T2y? by Lemma 2.1 (vi)

~ 2%>z°y? by Lemma 2.2 (xi)

~ x0Teyd3 by Lemma 2.2 (v).

If ¢ = 1, then t ~ 2%zy?. Because of Lemma 2.2 (ix),(x) we may
assume that a,d < 5. Suppose that a > 3 and d > 2. Then we have

xaymyd ~ :L,a—l (xy)2yd—1

~ et ay)a? (ey)y®! (using 2%yy ~ 2Pya’z)
~ wa—lyw2yyd*1 (using xyzrzryr ~ ryzyx)
A g0~ lydt1 (using 2%y?z ~ z?ya?yz).

If a > 2 and d > 3, then dually we get ¢t ~ z®t1yd—1,
For a = 4,5 there holds

riyzy ~ 10322 (1y)?

~ 29 3z (wy)?x(zy)?  (using x(y2?)? ~ zy?2?)

~ % Y2 eyry (using zyzzryr ~ ryzyw)
~ 2y lrySay (using Lemma 2.1 (v))

~ %>y (using z(y2z2)? ~ zy?2?)
~ 2% 23y (using Lemma 2.2 (xvi)).

For d = 4,5 we dually have zyzy? ~ zyz3y® 2 Ifc¢>2and a =d = 1,

then ¢ =~ xyx‘y.
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By Lemma 2.2 (vi) we may assume that ¢ < 4. If ¢ = 3, then we have
rydzy ~ xyrdy by Lemma 2.2 (xi).
If c,d > 2 and a = 1, then t ~ zyz°y?. Here by Lemma 2.2 (xvi) and

Lemma 2.2 (x) we may assume that d < 3 and ¢ < 3.

If c,a > 2 and d = 1, then t ~ 2%2y ~ x?yz°T* 2y by Lemma 2.2 (iv).

Using Lemma 2.1 (vi) we get for some p € {2, 3} the identity ¢ ~ x2yxPy. If
p = 3, then 22y23y ~ 22y3zy by Lemma 2.2 (xi).

In the case ¢ = 1 in a similar way we get t ~ zy*zy for some k € {2,4} or
t ~ zyzFy for some k,1 € {2,3} or t = xy?axy? or t ~ 2?yxy® or t ~ xFyxy €
Vg or t = zyzy"® for some k € {1,2,3} or there is an r € W ({z,y}) with
ly(r)y<3and t~r. ]

Theorem 2.7. Lett € W({z,y}) with l,(t) = 3 and leftmost(t) = x. Then

~ 2Pyx € IdVyg for some k € {1,...,5} or
t ~ xyxk € IdVyg for some k € {1,...,5} or
~ zFyle € IdVyg for some k,l € {2,3} or
t ~ xyla® € IdVyg for some k,1 € {2,3} or
t~xy*fx € IdVyg for some k € {2,3,4} or

t =~ x?yla® € IdVyg for some | € {1,2,3},k € {2,3}.

Proof. There are natural numbers a,b, ¢ with t ~ 2%’z¢. By Lemma 2.1
(iii) we may assume that 1 < a,b,c < 6.

If a,c > 2, then
t ~ x?ybzt*2 by Lemma 2.2 (iv)
~ x2ylaP for some p € {2,3} by Lemma 2.1 (vi)
~ x2ylxP for some ¢ € {1,2,3} by Lemma 2.2 (ix).

If a = 1 and b, ¢ > 2, then t ~ zybzP for some p € {2,3} by Lemma 2.2
(xvii) and then t ~ zy%aP for some ¢ € {2,3} by Lemma 2.2 (x).
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If a=0=1, then t = zyz°.

If ¢ = 6, then ¢ ~ zyz* by Lemma 2.2 (x).

If a = ¢ =1, then t ~ zybu.

If b= 5,6, then t ~ xy*2z by Lemma 2.2 (vi).

If c=1 and a,b > 2, then ¢t =~ 2Py%x for some p,q € {2,3} by Lemma
2.2 (ix) and (xvi), respectively.

Ifa>2and b=c=1, then t =~ z%yx.

If @ = 6, then t ~ z%yx by Lemma 2.2 (ix). |

Theorem 2.8. Lett € W({z,y}) with l,(t) = 2 and leftmost(t) = x. Then
t~ay® € IdVyg for some k € {1,...,5} or

~ 2Py € IdVyg for some k € {1,...,5} or
t ~ xkyl € IdVyg for some k,1 € {2,3} or

t~ m2y4 € IdVyp.

Proof. There are natural numbers a, b with t ~ z%°. We may assume that
1<a,b<6. If a,b > 2, then t = zPy? for some p,q € {2,3,4} by Lemma
2.2 (ix), (x). If a = 1, then ¢t ~ xy®. If b = 6 then we get t ~ xy* by Lemma
2.2 (x). If b = 1, then dually we get t ~ zFy. Moreover, we have

4

22yt ~ 2290 (using Lemma 2.2 (ix))

~ 22y?2?y* (using 2292 ~ r2yx’yz)

~ 2ty%x?y? (using Lemma 2.1 (vi), (vii))

6,2

~ 2y (using z(y2?)? ~ zy?2?)

4,2

~ xty (using Lemma 2.2 (x)). -
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Theorems 2.4-2.8 allow us to determine a set of binary terms. To prove
that no proper subset of this set represents all binary terms in Vg we need
some technical lemmas.

Proposition 2.9. FEvery equation s ~ t € IdVyp satisfies the following
condition (x):

(%) (1) The first letter in s agrees with the first letter in t and the second
letter in s agrees with the second letter in t.

(ii) The last letter in s agrees with the last letter in t and the second
last letter in s agrees with the second last letter in t.

Proof. Every equation from the set consisting of the four equations which
generate IdVyp has this property. If we can show that all equations satisfy-
ing (%) form an equational theory, then IdVyg satisfies condition (x). But
this becomes clear if we check the five derivation rules for identities. [ |

If we denote by c;(s) the number of occurrences of the variable x in the
term s, then IdVyp satisfies the following condition (s:x):

Proposition 2.10. Every equation s ~t € IdVygr and every x € X satisfies
the following condition (xx):

(xx) (1) cz(8) = cx(t)mod 2,
(ii) cx(s) =1iff c,(t) = 1.

Proof. We will give a proof by induction on the length of a proof. If
s &~ t belongs to the generating system of IdVypg, i.e., if s =t € {(xy)z ~
r(y2), (2%y)%2 =~ 2%y?z,2(y2?)? ~ zy?2? vyxzayr ~ wyzyr}, then obvi-
ously s ~ ¢ satisfies (i) and (ii). For every term r the identity r ~ r satisfies
(xx). If s = t,t = w € IdVyp satisfy (xx), then ¢t = s and s = w sat-
isfy (%x) too. By subl(s) we denote the term which arises from s if we
substitute for r € X the term w € W(X). Let s = t € IdVyp satisfying
(#%), 7 € X and w € W(X). If r = z, then c,(sub?(s)) = cz(w)cy(s) and
cr(sub¥(t)) = cp(w)ex(t). From cy(s) = cx(t)mod 2 it follows ¢, (w)ex(s) =
ce(w)ep(t)mod 2, ie., ciy(sub¥(s)) = ci(sub?(t))mod 2. Moreover, from
cg(s) = 1 iff ¢y(t) = 1 there follows cy(w)ey(s) = 1 iff ¢(w) = 1 and
ce(8) =1 iff cp(w)ey(t) = 1. Thus ¢, (sub(s)) = 1 iff ¢, (sub¥(t)) = 1.
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If r is a variable different from z, then cz(subf(s)) = cy(w)cr(s) + cx(s)
and ¢, (sub? (t)) = cx(w)er(t) + cx(t). From c,(s) = cx(t)mod 2 and ¢,(s)
¢ (t)mod 2 there follows ci(w)ey(s) + cz(s) = cx(w)ey (t) + cx(t)mod 2, ie.,
ce(sub(s)) = cx(subl (t))mod 2.

We remark that the variety SL of all semilattices is contained in Vg,
i.e.,, IdVygr C Id SL. The set Id SL consists of exactly all regular equations
of type 7 = (2), ie., if s ® t € IdVyp then cy(s) = 0 iff ¢, (t) = 0 for
every variable y. Then from c,(s) = 1 iff ¢,(¢) = 1 we obtain ¢, (sub¥(t)
co(w)ep(t) + cx(t) = 1 iff ¢, (t) = 1 and cp(w)e,y(t) = 0 or cix(t)er(t) =
and ¢, (t) = 0. This is satisfied if and only if ¢;(s) = 1 and ¢, (w)c, - (s) =
or cz(w)er(s) =1 and c(s) = 0 iff cx(w)ep(s) + cx(s) =1 = cx(sub(s)).
Therefore the condition (xx) is satisfied after application of the substitution
rule.

Assume now that s
cg(t)ymod 2 and ¢y (u) =
Moreover we have ¢, (s) =
gives

cx(8) +cp(u) =1 (cp(s) =1 Acp(u) =0) V(ce(s) =0 A c(u) =1)

< (ep(t) =1 A cp(w) =0) V(eg(t) =0 A cp(w) =1)

o~

t,u & w € IdVyp satisfy (xx). Then c,(s) =
(U mod 2, i.e., cz(f(s,u)) = ci(f(t,w))mod 2.
Liff e,(t) =1 and cz(u) =1 iff ¢z(w) = 1. This

Cy

& cp(t) + cp(w) = 1.

This means, c;(f(s,u)) = 1 iff ¢, (f(t,w)) = 1 and the condition (xx*) is
satisfied after application of the replacement rule. [ |

By I(s) we denote the length of the term s. Then we have

Proposition 2.11. For s =t € IdVygr the following condition is satisfied:
If s~t & IdSEM, i.e., if s =t is not derivable only from the associative
law, then

Gk (1) U(s),l(t) > 5,
I(s) =5, then s is of the form a) x%y*z or xy?z? or xyzyz,
Ifl(t) =5, then t is of the form a),
(iv) Ifl(s) =6 then s is of the form b) wry?z? or wryzyr
or x%y’zw or xy’z’w or xyzyrw or ryzwyr,

(v) Ifi(t) = 6, then t is of the form b)
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Proof. We will give a proof by induction on the length of a proof. If s =~
t € {(zy)z ~ x(y2), (22y)%2 =~ 22?2, 2(y2?%)? ~ 29?22, vyrzaoyr =~ vyzyz},
then s ~ t satisfies (x**). For r € W(X) the identity r ~ r satisfies (x * x).
If s = t,t =w e IdVypg satisfy (% * %), then t = s and s ~ w satisfy (x * x)
too. Let s =~ t € IdVygr be an identity which satisfies ( * %) and assume
that 7 € X and w € W(X) and that sub¥(s) ~ sub®(t) ¢ IdSEM. Then
s~ t¢g IdSEM, ie., l(s),l(t) > 5 and thus [(sub?(s)),l(sub¥(t)) > 5.
Assume that [(sub?(s)) = 5. This is only possible if I(s) = 5 and w € X.
From [(s) = 5 it follows that s is of the form a). Consequently, sub¥(s) is
of the form a). For [(sub?(t)) = 5 we conclude in the same way. Let now
[(sub¥(s)) = 6. This is only possible, if

(o) I(s) =5 and [(w) =2 and ¢,(s) =1 or
(B) I(s) =6 and w € X.

We consider the case (). From I(s) = 5 there follows that s is of the form
a). Since [(w) = 2, there are u,v € X such that w = wv. Thus subl(s) is of
the form x2y?uv or uvy?z? or xyuvyz. In the case (3) from I(s) = 6 there
follows that s is of the form b). Consequently, sub®(s) is of the form b).
In a similar way one shows that sub(t) is of the form b) if I(sub¥(t)) = 6.
Now we check the replacement rule. Let s ~ t,u ~ w € IdVgr be identities
satisfying (* = *). If f(s,u) = f(t,w) ¢ IdSEM, then s =~ t ¢ IdSEM or
u~w¢ IdSEM. We consider the following cases:

Case 1. If s = t,u = w ¢ IdSEM, then [(t),l(s),l(u),l(w) > 5 and
thus I(f(s,u)),l(f(t,w)) > 10.

Case2. If s=t ¢ IdSEM,u~ w € IdSEM, then we have I(s),l(t) > 5
and thus I(f(s,u)),l(f(t,w)) > 6. IfI(f(s,u)) =6, thenl(s) =5andu € X,
i.e., s is of the form a). This yields that f(s,u) is of the form x2y?zw or
ry?2?w or wyzyrw

Case 3. lf s=t e IdSEM,u~w ¢ IdSEM, then similar we have that
f(s,u) = f(t,v) satisfies (* * *). |

Now we can prove:

Theorem 2.12. The free algebra Fy, ,({x,y}) consists of exactly 128
elements which can be represented by the following terms:
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(1) xyzyz, (17) zy’zy?,  (33) wyad, (49) x2y223,
(2) xyizyz, (18) =zyxy, (34) wyat, (50) x2y3a3,
(3) ay’xy, (19) 2?yxy,  (35) =xya®,  (51) =y,
4) ay’xy, (20) 2Pyxy,  (36) 2*yx,  (52) =Py,
(5) ay'xy, (21) ayzy®,  (37) 2’yx,  (53) 27y,
(6) ayzy, (22) ayzy®,  (38) 2’yx,  (54) a'y,
(7) ayzty, (23) 2?yxy?,  (39) 2*y’x,  (55) 2y,

(8) z2y2xy, (24) xyla’y, (40) xyla?, (56) xy?,

9) 2?yPzy,  (25) wya, (41) ay’a®,  (57) ay’,
(10) x3yzy, (26) z2yx, (42) zyia?, (58) wyt,
(11) z3y3zy, (27) 23yx, (43) zyda3, (59) wyd,
(12) xyx?y?, (28) aziyx, (44) wy’x, (60) 2y,
(13) wyx?y®,  (29) 2Oy, (45) wyix, (61) x2y3,
(14) wyx3y?,  (30) z?ya?, (46) wyix, (62) 2y,

(15) ayazdy3, (31) 2%yxd,  (47) 2%y%2?,  (63) a3y,

(16) z2yz’y, (32) xyz?, (48) 2322, (64) x3y3

and all terms arising from the terms (1)—(64) by exchanging x and y.

Proof. We show that any two different terms of this list cannot form an
identity in Vzg. Using Proposition 2.9 we partition at first the set of the
terms of our list into classes with the property that two terms in different
classes cannot form an identity since the condition from Proposition 2.9 is
not satisfied. This gives exactly the following classes:
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{(30), (35), (47), (48), (49), (50) }
U{(8), (9), (10), (11), (16), (19), (20), (52), (53), (54), (55)}

(
U{(23), (60), (61), (62), (63), (64)}
U{(26), (27), (28),(29), (36), (37), (38)
U{(31),(32),(33), (34), (40), (41), (42)

U{(3); (4), (5), (6), (7), (18), (24), (51)}
u{(12), (13), (14), (15), (17), (21), (22), (56), (57), (58), (59)}

U{(1),(2),(25), (44), (45), (46)}

and the dual classes.

Our aim is to divide these classes in singleton classes. We may restrict
ourselves to the classes which contain the terms (1)-(64). For the other
classes we can use dual arguments.

Using Proposition 2.10 we get the following finer partitions:

The class {(30), (35), (47), (48),(49), (50)} is divided into {(47)} U

7),
{(48)} U{(49)} U {(50)} U {(30)} U {(35)}
The class  {(8),(9),(10),(11), (16), (19), (20), (
divided into {(8)} U {(53),(55)} U {(9),(19)} U {
{(11), (16), (20) }.

52),(53), (54), (55)} is
(10)} U {(52),(54)} U

The class  {(23), (60), (61), (62), (63),(64)} splits into {(23),(64)} U
{(60), (62)} U {(61)} U {(63)}.

The class {(26), (27), (28), (29), (36), (37), (38), (39)} can be divided into
{(26), (28)} U {(27), (29)} U {(38)} U{(39)} U{(36)} U {(37)}.

The class {(31),(32),(33),(34), (40), (41), (42), (43)} splits into
{B1),(33)} U{(42)} U{(32), (34)} U {(43)} U {(40)} U {(41)}.

The class {(3),(4),(5),(6), (7), (18),(24), (51)} splits into {(3),(5)} U
{(4), (18)} U{(6), (1)} U {(24)} U {(51)}.

The class {(12), (13), (14), (15), (17), (21), (22), (56), (57), (58), (59)} can
be divided into {(12)} U {(57), (59)} U {(13)} U {(56), (58)} U {(14), (21)} U

{(15), (17), (22)}.
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The class {(1), (2), (25), (44), (45), (46)} splits into {(1)}U{(2)}U{(25)}U
{(45)} U {(44), (46)}.

Now the following non-singleton classes are left

{(53), (55)}1,{(9), (19)},{(52), (54) },{(11),(16),(20)},{(23), (64) },{(60), (62)},
{(26), (28)}, {(27),(29)}, {(31), (33)}, {(32), (34)}, {(3), (®)},{(4), (18)},
{(6),(M}.{(57), (59)},{(56),(58)}, {(14), (21)}, {(15), (17), (22)},{(44), (46) }.
To separate {(53), (55)}, {(52), (54)},{(60), (62)},{(26), (28) {(31), (33)},
{(4), (18)},{(57), (59)}, {(56), (58)}, {(44), (46)} we use (x **) (i).
For {(9), (19)}, {(11), (16), (20)}, {(23), (64)}, {(27), (29)}, {(32), (34)},
{3),5)},{(6), (7}, {(14), (21)},{(15), (17), (22)} we use (x* x) (ii) or (iv).

This finishes the proof. [ |

3. THE GREATEST REGULAR-SOLID VARIETY OF SEMIGROUPS

To prove that Vyr C HpegModAss we have to apply all regular hyper-
substitutions to the associative identity and to check whether the resulting
equations are satisfied in Vgg. The following relation on the set Reg of all
regular hypersubstitutions simplifies this procedure.

Definition 3.1. For any two hypersubstitutions o1, 09 of type 7 and for a
variety V of type 7 we define

o1 ~VYy 09 < Jl(f) ~ O‘Q(f) eldV.

Then Plonka proved in [6] the following proposition:

Proposition 3.2. If s = t € 1dV for a variety V of type T, if 01,09 are
hypersubstitutions of type T with o1 ~v oo and if 61s] = 61[t] € IdV, then
also G9[s] = do[t] € IdV .

Therefore we can partition the set Hyp of all hypersubstitutions of type
7 = (2) or its submonoid Reg of all regular hypersubstitutions into equiv-
alence classes with respect to ~y;,,, and have to check the associative law
only for one representative from each class. If o(;) denotes the hypersubsti-
tution which maps the operation symbol f to one of the terms (i) where i
is one of the numbers 128 denoting the elements of Fy,, . ({z,y}), then it is
enough to consider the hypersubstitutions o ;) representing the elements of
Reg/ ~vyr=1{lo@] | i=1,...,128}. First of all we prove some more useful
identities in VyRg.
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Lemma 3.3. For 1 <k € IN there holds

(i) (z*y)*z ~ aky*z € 1dVyp,

(ii) z(zy®)* ~ zaFy* € 1dVyR.

Proof. If k =1, then all is clear. If k > 3 is odd, then

(zFy)F 2 ~ 2Fy(2?y)* 12 by Lemma 2.1 (ii)
~ xFyF 2 if we apply (z2y)%z ~ 2%y%2z (k — 1)— times.
If k is even, then there is a natural number p with 2p = k and (z*y)Fz ~

((2P)%y)Fz ~ (2P)%y*z if we apply (2%y)%2z ~ 2%y%z (k — 1) times.
(ii) can be proved similarly. ]

Lemma 3.4. For 1 < k € IN there holds

() r(zy)fzay ~ ra*yFzey € IdVyg,

(ii) xyz(zy)Fr ~ zyzaby*r € IdVyg.

Proof. We may assume that k > 2. Then we have:

r(ay)*zay & ray(ayt)FH zyG-DEY

Ty using ryrzryr X ryzyc
~ ray® (xyF)F=1 zyk=DE=D+(k=1) 2 by Lemma 2.1 (ii)

Loy* 422922y by Lemma 2.1 (vi), (vii)

~ r(ayF)F
~ r(xy®)FLoyk 2oy (using zyzzeyr ~ ryzyc)

~ ra¥ykzxy (by Lemma 3.3).

The second identity can be proved similarly. [ |
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Lemma 3.5. For 1 <k e IN and 2 < a € IN there holds

(i) (z%)Fz ~ 2 y*2 € IdVyR.

(ii) z(zxy®)* ~ zaky® € IdVyg.

Proof. We may assume that k > 2. If k is odd, then

(ma?/)kz R x“y($2y)k_1z by Lemma 2.1 (ii)

~ 2%" 2 by (k — 1)- fold application of (z2y)%z ~ x2y%z

~ 2%yF 2 by Lemma 2.2 (xvi) and by the fact a = ka mod 2.

If k£ is even, then
(z%)Fz ~ (z¥y)*z by Lemma 2.1 (ii)
~ z¥yFz by Lemma 3.3

~ 2%yF 2 by Lemma 2.2 (xvi) and by the fact that k = ka mod 2.

The proof of (ii) is similar. ]

For our checking it is enough to select one hypersubstitution from each
~vyr-class.  The selected hypersubstitutions are called normal form
hypersubstitutions. Now we apply all normal form hypersubstitutions to
the associative identity.

Lemma 3.6. For every hypersubstitution ok, with l = 1,k =1,...,5 or
with k = 1,1l =1,...,5 or withl = 2,k = 2,3,4 or withl = 3,k = 2,3
we get

Gyh[T(y2)] = Gury[(2y)2] € 1dViR.

Proof. For [ =1 or k = 1 everything is clear by Lemma 3.3. If [,k > 2, we
have 6,1, [2(y2)] = a*(y*2)! = aFyFlel = (%)l = 60,0[(2y)2] € IdViR

by Lemma 3.3. [ |

Now we consider all hypersubstitutions such that the image is one of the
terms (25)—(50).
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Lemma 3.7. For 1 < k,l,m <6 there holds

G phyigm [T(y2)] = G ykyym[(2y)2] € 1dVHR.

Proof. We have
&xkylxm[(xy)z] = (xkylxm)kzl(xkylwm)m
~ ok (ylam)k 2 (aFy!yma™ by Lemma 3.3

~ xkylkxmk lekmylm

2™ by Lemma 3.4
~ Pyt lymaem by Lemma 2.1 (i).
If m > 2, then
ahytklytmam ~ ok (yk2h)ly!m 2™ by Lemma 3.3
~ xF(yF2ly™)le™ by Lemma 3.5
= O yhyigm [T(y2)].
If k£ > 2, then we get dually z¥Fy*2ly!ma™ ~ G hyizm [T(y2)] € ViR
If Kk =m =1, then we have
zyt2yte ~ xyl2Myle by Lemma 2.2 (ix) and the fact that [ = Il mod 2
~ ryz!'yz by Lemma 2.1 (ii)
~ x(yz'y)'z if we apply Lemma 2.1 (i) (I — 1)-times

= Amkyl:vm [x(yz)]
|

Now we consider all hypersubstitutions which map the operation symbol f
to one of the terms of the forms (3)—(24).

Lemma 3.8. For 1 < k,l,m,n <6 there holds

(5’xkyll,myn [w(yz)] ~ &xkylmmyn[(xy)z] € IdVynp.
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Proof. We have

a'a;‘l“ylac””“y” [x(yz)] = aF (ykzlymzn)lwm (ykzlymzn)n

~ xkykl(zlymzn)lxm(ykzlymz")" by Lemma 3.4

Q

ahyFl At (ym ) ™ (y* 2ly™)" 2" by Lemma 3.3

&

kg Flolyml gl gmykn (lymn 2 by Lemma 3.3 and 3.4

k, kl 1, ml nl,.m,kn_ln, mn_n

iy 2ty™ M My 2y ™ 2™ by and Lemma 3.4

Q

ahqFllyml gnly gmykntlingmn n wsing pyzzeyr ~ ryzyx

Q

Q

xkyklkaZlymlznlkayxmykn—l—lZlnymnzn by Lemma 2.1 (1)

&

xkyklwkmyknzlymlanwkmyknJrlxmyknJrlzlnymn n

xkyklwkmyknzlymlkaykn+lwmykn+mn+lzn by Lemma 2.1 (1)

&

Q

xkyklkaykn-i-mn zly

mlka 2mn ,.m.,,2mn ,n

Y=g My=mn 2" by Lemma 2.1 (ii)

Q

xkyklkaykn-i-mn zly

klwkmyknernzlylmkaer 2mn ,n 2.2

zFy y?mr e using x(y2?)? ~ zy’z

%

xkyklwkmyknern L, lm .km+m, mn, .2, mn_n

%

klka kn 1, Im . km+m+2, mn

Y2ty My y™" 2" by Lemma 2.1 (i)

Q

$ky

klka kn 1, Im . km+m, mn n

y 2ty Y™ 2" by Lemma 2.1 (v)

Q

$ky

kn+1_1,Im .km,, ,.m, mn _n

klykmy, 2'yMa My e™y™" 2" by Lemma 2.1 (i)

xky

Q

xkyklwkmyknJrlkazlwkmylmwkmyxmymnzn by Lemma 2.1 (1)

&

kl .km

Q

2ty yhntLplghmybmypmymn n by Lemma 2.1 (i)

Q

whyFlgkmykn Lgkmatmygmgmn n by Lemma 2.1 (i).

2" by Lemma 2.1 (i)

mlkaykn—f—mn—&-lxmykn-i—l-l—mnzn by Lemma 2.1 (1)

z'y'mx Y™ty 2" using (12y)%z ~ 2%y
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In a similar way we can show &k, 1,myn[(2y)2] ~ ahgyRlghmg n Lgkma lm gm
y™"2" € IdVy R, consequently, Gy ymyn [2(Y2)] R Gk yrpmyn [(7y)2] € [dViR.
|

Lemma 3.9.

() Gayaye[(y2)] = Gayaya[(xy)z] € V.

(ii) é-mnyym[x(yz)] ~ &xy2mya:[($y)z] € Vur.
Proof. (i) Using the identity zyzzaryr ~ zyzyr we get Gryzye((2y)z)] =
TYTYTZTYTYTZTYTYT R TYZLZYT RN TYZYZYTYZYZYT R Opyaye|(yz)] €

VHR.
(ii) We have

Oy aye (TY) 2]~ rylryx oyl ryrzaeyloyx
~ ayryryrz’rylryrzeyryryr (using ryrzryr ~ ryzyc)

ryxyryrz?y?ryzeyryryx by Lemma 2.1 (i)

&

Q

ryxyryz2ytryzyryryr (using ryrzryr ~ ryzyr)

Q

ryxyryz>yrzyryryr by Lemma 2.1 (i)

Q

vy yxzyx (using ryrzeyr ~ xyzyx)

&

ryz2yzyrzyzyr by Lemma 2.1 (i)

Q

vy2yzyzez’yzyx by Lemma 2.1 (i)

Q

ry22yzyzyryz*yzyx by Lemma 2.1 (i)

%

vy22yzy22y? zyryz*yzyx by Lemma 2.1 (i)

&

vy22yz2y?22yzyryz?yzyxr by Lemma 2.1 (viii)

Q

a-:vy2:vym [x(yz)] € Vur.
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Using all these results we obtain:
Theorem 3.10. Vg is the greatest solid variety of semigroups.

Proof. By 3.6-3.9 for every hypersubstitution o ;) which maps the binary
operation symbol f to one of the terms (j) for j = 1,...,64 the equa-
tions 6(; [x(yz)] = 6¢;)l(zy)z] are satisﬁed in Vgr. If s =t € {(zy)z

z(yz), (22y)%z ~ 22y%z, 2(y?2)? =~ 2y?2? vyzzays ~ zyzyz}, then 6,,[s] ~
Gyz[t] belongs also to this set. Therefore, this is also true for every identity
s =~ t € IdVygr. For the other hypersubstitutions we use dual arguments
and this finishes the proof. [ |

4. THE GREATEST SOLID VARIETY OF SEMIGROUPS

As a corollary of Theorem 3.10 we determine an equational basis for
the greatest solid variety HMod{z(yz) =~ (xy)z} of semigroups, i.e., for
the variety which satisfies the associative law as a hyperidentity. Clearly,
the variety HMod{x(yz) ~ (xy)z} satisfies the identities z(yz) ~ (zy)z,
(22y)%2 =~ 22?2, 2(y2%)? ~ 2y?2?, vyzeyr ~ ryzyr. Applying the hyper—
substitution 0,2 to the associative law one obtains the identity a; ~ z* and
we may consider the variety Vs = Mod{z(yz) =~ (xy)z, 2 ~ 2, (2%y)?z

2222, 2(y2?)? ~ wy?2?, xyrzeyr ~ xyzyx}. The hypermodel class of the
associative law HMod{z(yz) ~ (zy)z} is included in Vgg. To show the
converse inclusion we have to prove that the associative law is a hyperiden-
tity in the variety Vig. As a first step we determine all elements of the

two-generated free algebra with respect to Vig.

Theorem 4.1. The free algebra Fy,, ,({z,y}) consists exactly of the terms

(
(1), (2), (3), (6), (8), (10), (12), (13), (18), (19), (20), (21), (24), (25), (26),
(27), (30), (31), (32), (35), (36), (37), (38), (39), (40), (41), (42), (43), (44),
(45), (4 )(218)(49)( 0), (51), (52), (53), (56), (57), (60), (61), (63), (64),

(65)x, (66)x2, (67)2% and all terms arising from the given ones by permuting
x and y.

Proof. Since Vg is a subvariety of Vg, the universe of Fy,, (({z,y}) is a
homomorphic image of Fy,, . ({z,y}). Using the additional identity 2 ~ z*
we obtain the given list of terms. Since the Propositions 2.9, 2.10 are also
valid for the variety Vg, no two of the given terms can form an identity in
Vis. |
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Corollary 4.2. The variety Vg is the greatest solid variety of semigroups.

Proof. We know already that the application of each of the hypersubstitu-
tions different from oy, 0,2,0,3,0y,0,2,0,3 to the associative law gives an
identity which is satisfied in Virg. Application of o, gives x ~ x, application
of 0,2 gives 22 ~ x* which belongs to the generating system of IdVys, and
application of o,3 gives 23 ~ 29, which can be derived from 2? ~ z*. This
finishes the proof. [ |

The equational basis of Vg was given first by Poldk in [7]. One has to apply
all hypersubstitutions o, where t is a binary term over the variety Vg to the
associative law and has to prove that all resulting identities can be derived
from the identities z(y2) ~ (zy)z, 22 ~ 2%, ryrzoyr ~ ryzyz, x2y’z ~
(vy?)%z, zy?2% ~ x(y2z?)?. Therefore the main problem is to determine
the elements of Fy,,(({x,y}). This can also be done by using a computer
programme as St. Niwczyk did. The problem is that sometimes one has
to make terms at first longer to be able to apply zyrzeyr ~ zryzyx. This
seems to be a difficult programming problem. The list of terms produced
by a computer consisted of more than 700 terms. The third author reduced

this list to the list given in Theorem 4.1.

5. FINITE AXIOMATIZABILITY

In [9] the author gave an example for a variety of type 7 = (2,1) which is
not finitely based by identities but is finitely based by hyperidentities. Let
D = {z(y2) ~ (zy)z, 2yzw ~ rzyw, yx’y ~ vy’z,yG(v)2?y ~ vyG(r)yr}
a set of equations of type 7 = (2,1) where G is a unary operation symbol.
If we replace G(z) by z¥,k € IN, then we get an infinite set E of identities
which has no finite basis ([5]). But E has the set D as a finite basis of
hyperidentities.

The derivation concept for hyperidentities contains one more rule of
consequences, the so-called hypersubstitution rule which means that one
can substitute for operation symbols terms of the same arity. For varieties
of semigroups this additional rule has no influence on the problem of finite
axiomatizability by equations. Indeed, we have the following consequence
of Corollary 4.2
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Theorem 5.1. If a wvariety of semigroups is finitely axiomatizable by
hyperidentities then it is also finitely axiomatizable by identities.

Proof. Let V be a variety of semigroups which is finitely axiomatizable
by hyperidentities, i.e., there is a finite set ¥ of equations such that
V = HModY. Since V is the hypermodel class of a set ¥ of equations,
V is a solid variety, i.e., every identity in V is a hyperidentity (see [2]).
If we define an operator x : P(W,(X)?) — P(W,(X)?), where P denotes
the formation of the power set, then one can prove that HMod¥: = Modx[X]
([2]). Let ~y be the equivalence relation on Hyp defined in 3.1. Let
Hyp/ ~vy be the quotient set defined by this equivalence relation. Now
from each equivalence class we select one hypersubstitution and form the
set x~[X] of all equations &[s] ~ &[t], where s ~ t € ¥ and where o are the
selected hypersubstitutions. In [1] was proved that Modx[X] = Modx ~[%]
and therefore HModY = Modx.[X]. Since ¥ contains the associative
identity, a set of all representatives of Hyp(r)/ ~y is a subset of the
finite set listed in Theorem 4.1 and then y.[X] is finite since ¥ is finite
and V. = HMod> = Modx~[X] is axiomatizable by the finite set x.[X]
of identities. ]
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