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1. Introduction

Let τ be a fixed type, with fundamental operation symbols fi, i ∈ I, and let
Wτ (X) be the set of all terms of type τ . If A = (A; (f A

i )i∈I) is an algebra
of type τ , then we can get a new algebra of type τ with the universe A if
we replace the fundamental operations by term operations of A of the same
arity. This informal definition shows that we are interested in a map which
associates to every operation symbol fi of a given type τ a term σ(fi) of
type τ , of the same arity as fi. Any such map is called a hypersubstitution
(of type τ) and the algebra σ(A) = (A; (σ(fi)

A)i∈I) is called derived algebra.
Here σ(fi)

A are the ni-ary term operations induced by the terms σ(fi). If
the algebra A belongs to a given variety V of algebras of type τ , then one
can ask if the derived algebra σ(A) belongs also to the variety V .

Let Hyp(τ) be the set of all hypersubstitutions of type τ . Any hypersub-
stition can be uniquely extended to a map σ̂ on Wτ (X) defined inductively
as follows:

(i) If t = xi for some i ≥ 1, then σ̂[t] = xi.

(ii) If t = f(t1, . . . , tn) for some n-ary operation symbol f and some terms
t1, . . . , tn, then σ̂[t] = σ(f)(σ̂[t1], . . . , σ̂[tn]).

Here the right hand side is the composition of the term σ(f) with the terms
σ̂[t1], . . . , σ̂[tn].

We can define a binary operation ◦h on the set Hyp(τ) of all
hypersubstitutions of type τ , by letting σ1 ◦h σ2 be the hypersubstitution
which maps each fundamental operation symbol f to the term σ̂1[σ2(f)].
The set Hyp(τ) of all hypersubstitutions of type τ is closed under this
associative composition operation, and so forms a semigroup. In fact Hyp(τ)
is a monoid, since the identity hypersubstitution σid (mapping every fi to
fi(x1, . . . , xni

)) acts as an identity element. A variety V is called solid if
every derived algebra σ(A) belongs to V and M -solid if this holds for every
hypersubstitution from a submonoid M of Hyp(τ).

Now suppose that M is any submonoid of Hyp(τ). An identity u ≈ v
of a variety V is called an M -hyperidentity, and a hyperidentity for M =
Hyp(τ), of V if for every hypersubstitution σ ∈ M the equation σ̂[u] ≈ σ̂[v]
holds in V . M -solid (solid) varieties V are characterized by the property
that every identity of V is an M -hyperidentity (hyperidentity) of V .
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Alternatively M -solid varieties V can be characterized by the property that
there is a set Σ of equations such that an algebra belongs to V if and only if
it satisfies all equations from Σ as M -hyperidentities. In this case we write
V = HMMod Σ or simply V = HMod Σ for M = Hyp(τ) and speak of an
M -hyper model class (or hyper model class for M = Hyp(τ)).

In this paper we are interested in varieties of type τ = (2); that is,
in varieties with one binary operation symbol f . Type (2), and especially
varieties of semigroups, seem simple enough to be accessible but rich
enough to be interesting, and much has been done in the investigation of
hyperidentities and M -solidity for these varieties. (See for example [2]).

Let SEM be the variety of all semigroups. We are looking for such sub-
varieties of SEM which contain with any semigroup A = (A; f A) also all
derived semigroups σ(A) = (A; σ(f)A), i.e., such that σ(f)A is associative.
In the variety SEM this is in general not the case as the following example
shows. We consider the hypersubstitution σf(x,f(y,y)) which maps the binary
operation symbol f to the binary term f(x, f(y, y)). Then the correspond-
ing term operation is not associative since σ(f)A(σ(f)A(a, b), c) = ab2c2 and
σ(f)A(a, σ(f)A(b, c)) = a(bc2)2 are in general not equal. So we are looking
for the greatest subvariety of SEM which contains all those derived alge-
bras. It makes sense to concentrate on hypersubstitutions which map f to
binary terms containing both variables x and y. (We notice that terms which
contain only one variable can also be regarded as binary). In this case the
induced term operations σ(f)A are essentially binary. Hypersubstitutions
of this kind are called regular and the corresponding M -hyperidentities are
called regular hyperidentities. The set Reg of all regular hypersubstitutions
of type τ = (2) forms a submonoid of the monoid Hyp of all hypersubstitu-
tions of type τ = (2). M -solid varieties of semigroups for M = Reg are called
regular solid and we want to give an equational description of the greatest
regular solid variety of semigroups. It turns out that this is the variety
VHR = Mod{x(yz) ≈ (xy)z, xyxzxyx ≈ xyzyx, x2y2z ≈ x2yx2yz, xy2z2 ≈
xyz2yz2}, i.e., the variety generated by these identities.

Our results can be used for a very short proof of the fact, proved first in
[7], that the variety VHS defined by the identities x(yz) ≈ (xy)z, xyxzxyx ≈
xyzyx, x2 ≈ x4, x2y2z ≈ x2yx2yz, xy2z2 ≈ xyz2yz2 is the greatest solid
variety of semigroups.

For more background on hypersubstitutions and M -solid varieties we
refer to [2] and to [4], respectively.
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2. The two-generated free algebra over VHR

The Reg-hyper model class of the associative law is the greatest regular
solid variety of semigroups. By definition this class HRegModAss is the
class of all semigroups which satisfy the associative identity (Ass) as regular
hyperidentity. The class HRegModAss is a variety (see e.g. [2]) and therefore
there is some interest to find a generating system for the set of all
identities satisfied in HRegModAss and to know whether or not HRegModAss
is finitely axiomatizable by identities. If we apply the following regular
hypersubstitutions to the associative identity, we obtain the identities listed
in the following table.

hypersubstitution identity

σf(x,y) x(yz) ≈ (xy)z

σf(f(x,y),x) xyzyx ≈ xyxzxyx

σf(f(x,x),y) x2y2z ≈ x2yx2yz

σf(x,f(y,y)) xyz2yz2 ≈ xy2z2

All these identities have to be satisfied in HRegModAss. Therefore we have
HRegModAss ⊆ VHR := Mod{x(yz) ≈ (xy)z, xyxzxyx ≈ xyzyx, x2y2z ≈
x2yx2yz, xy2z2 ≈ xyz2yz2}. Our aim is to prove the converse inclusion.
The basic idea is to calculate all normal forms of binary terms with respect
to the variety VHR and to apply the corresponding hypersubstitutions to
the associative law. If all resulting identities are satisfied in the variety
VHR, this variety satisfies the associative law as a regular hyperidentity
and VHR ⊆ HRegModAss. First of all we determine some more identities
satisfied in VHR.

Lemma 2.1. The following equations are identities in the variety VHR:

(i) xykzylx ≈ xykxazxaylx, 1 ≤ k, l, a ∈ IN,

(ii) xyzyx ≈ xyazyax for a ≥ 2,

(iii) x5 ≈ x7,

(iv) xy3zyx ≈ xyzyx,
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(v) xyzy3x ≈ xyzyx,

(vi) x2yx4 ≈ x2yx2,

(vii) x4yx2 ≈ x2yx2,

(viii) xy2zyx ≈ xyzy2x.

Proof.

(i) Without restriction of the generality we may assume that k ≤ l.
Then we have xykzylx ≈ (xy)kxa+l−kzxa(yx)l ≈ xykxazxaylx using
the identity xyxzxyx ≈ xyzyx.

(ii) Using again xyxzxyx ≈ xyzyx we obtain xyzyx ≈ xyxzxyx ≈
xyxya−1zya−1xyx ≈ xyazyax.

(iii) This follows from (x2y)2z ≈ x2y2z if we identify all three variables.

(iv) Here we have

xy3zyx ≈ xy8zy6x by (ii)

≈ xy6zy6x by x5 ≈ x7

≈ xyzyx by (ii).

(v) Follows similar as (iv).

(vi) x2yx4 ≈ xxyx3x ≈ xxyxx by (v).

(vii) This can be derived in a similar way.

(viii) By (ii) and (iv) we have xy2zyx ≈ xy3zy2x ≈ xyzy2x.

Lemma 2.2. For a, b, c, d ≥ 1, a, b, c, d ∈ IN the following equations are
identities in the variety VHR:

(i) xyaxbycx ≈ xya+c+2x if b is even,

(ii) xyaxbycx ≈ xyxyx if b is odd and a + c is even,

(iii) xyaxbycx ≈ xy2xyx if b and a + c are odd,

(iv) xa+byxa ≈ xayxa+b, if a ≥ 2,
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(v) xaybxcyd ≈ xa+cyb+d if a, b, c, d ≥ 2,

(vi) xyax ≈ xya−2x ∈ IdVHR if a ≥ 5,

(vii) xyaxby ≈ xyaxb−2y if a, b ≥ 3,

(viii) xyaxby ≈ xya−2xby if a, b ≥ 3,

(ix) x2yaz ≈ x2ya−2z if a ≥ 4,

(x) xyaz2 ≈ xya−2z2 if a ≥ 4,

(xi) xy3xay ≈ xyxa+2y,

(xii) xyax3y ≈ xya+2xy,

(xiii) xaybxyx ≈ xa+1yb+1x if a ≥ 2,

(xiv) xyxybxa ≈ xyb+1xa+1 if a ≥ 2,

(xv) yxaybxcydx ≈ yxa+cyb+dx,

(xvi) xaybx ≈ xa−2ybx if a ≥ 4, b ≥ 2,

(xvii) xybxa ≈ xybxa−2 if a ≥ 4, b ≥ 2.

Proof.

(i) Assume that a ≤ c. Then by Lemma 2.1 (i) we have

xyaxbycx ≈ xyax2xbx2ycx

≈ xyax2y2xby2x2ycx by xyxzxyx ≈ xyzyx

≈ xyax2y2x2y2x2ycx by Lemma 2.1 (vi) since b is even

≈ xyax2y2xy2xycx by Lemma 2.1 (ii)

≈ xyax2y2x2ycx by (x2y)2z ≈ x2y2z

≈ xya+c+2x by Lemma 2.1 (i).

(ii) We have
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xyaxbycx ≈ xya+a+1xbyc+a+1x by Lemma 2.1 (ii)

≈ xyxbyx by Lemma 2.1 (v), (iv)

≈ xyxyx by xyxzxyx ≈ xyzyx.

(iii) In this case we have

xyaxbycx ≈ xya+axbyc+ax by Lemma 2.1 (ii)

≈ xy2xbyx by Lemma 2.1 (v)

≈ xy2xyx by Lemma 2.1 (i).

(iv) We have

xa+byxa ≈ xa+byxb+b+a by Lemma 2.1 (vi)

≈ xayxa+b by Lemma 2.1 (ii).

(v) There holds

xaybxcyd ≈ xa+c−2y2x2yd+b−2 by (iv)

≈ xa+cy2x2yd+b−2 by Lemma 2.1 (iv)

≈ xa+cyx2yx2yd+b−2

≈ xa+cyx2yd+b−1

≈ xa+cyd+b using (x2y)2z ≈ x2y2z

and x(yz2)2 ≈ xy2z2, respectively.

(vi) Using xyxzxyx ≈ xyzyx we get

xyax ≈ xyxyya−4yxyx

≈ xyxya−4xyx

≈ xya−2x.
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(vii) By Lemma 2.1 (i) we have

xyaxby ≈ xyaxyxyxb−2y

≈ xya+2xb−2y

≈ xyaxb−2y by (vi).

(viii) can be proved similar to (vii).

(ix) Using (x2y)2z ≈ x2y2z we have

x2yaz ≈ x2yx2yx2yx2ya−3z

≈ x2yx2x2x2ya−3z using xyxzxyx ≈ xyzyx

≈ x2yx2ya−3z by Lemma 2.1 (vi)

≈ x2ya−2z using (x2y)2z ≈ x2y2z.

(x) can be proved similar to (ix).

(xi) Using Lemma 2.1 (i) we obtain

xy3xay ≈ xyxyxyxay

≈ xyxa+2y.

(xii) can be proved similar to (xi).

(xiii) By Lemma 2.1 (ii) we have

xaybxyx ≈ xayb+1xy2x

≈ xay2xyb+1x by (iv)

≈ xa+1yb+1x using x(yz2)2 ≈ xy2z2.
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(xiv) can be proved in a similar way.

(xv) There holds

yxaybxcydx ≈ yxa+2yb+2xc+2yd+2x by Lemma 2.1 (ii)

≈ yxa+c+2y2x2yd+b+2x by (iv)

≈ yxa+cy2x2yd+bx by Lemma 2.1 (iv)

≈ yxa+c+2yd+b+2x by (v)

≈ yxa+cyd+bx by (ix).

(xvi) We have

xaybx ≈ xayb+2x by (x)

≈ xayxybxyx using xyxzxyx ≈ xyzyx

≈ xayxybx3yx by Lemma 2.1 (iv)

≈ xa−2yxybx5yx by (iv)

≈ xa−2yxybxyx by Lemma 2.1 (iv)

≈ xa−2yb+2x using xyxzxyx ≈ xyzyx

≈ xa−2ybx by (ix).

(xvii) can be proved similar to (xvi).

We use these identities to determine the elements of the 2-generated free
algebra with respect to VHR. First of all we want to reduce the length of
the terms.

Definition 2.3. Let t be a term built up by the variables x and y. If
there are natural numbers n, k1, . . . , kn ≥ 1 such that t ≈ xk1

1 . . . xkn

n where
xj ∈ {x, y} for 1 ≤ j ≤ n and xj 6= xj+1, then n is called the periodic length
of t and is denoted by lp(t).
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Theorem 2.4. For every t ∈ W ({x, y}) there is a term r ∈ W ({x, y}) with
t ≈ r and with lp(r) ≤ 5.

Proof. Assume that there is a binary term t ∈ W ({x, y}) such that for all
r ∈ W ({x, y}) with t ≈ r we have lp(r) ≥ 6. Let r′ be a binary term with
t ≈ r′ ∈ VHR where r′ has minimal periodic length. Then lp(r′) ≥ 6. By
Lemma 2.2 (xv) there is a binary term s with s ≈ r ′ ∈ VHR and lp(s) =
lp(r′) − 2. Since s ≈ t this contradicts the minimality of r ′.

Theorem 2.4 together with Lemma 2.1 (iii) show that there are finitely many
binary terms over the variety VHR, i.e., the two-generated free algebra over
VHR is finite. Remark that the variety VHR is locally finite. This can be
shown using results from [3] and the identity xyxzxyx ≈ xyzyx which is
satisfied in VHR. The word xyxzxyx is said to be a Zimin word.

Theorem 2.4 gives us a set of hypersubstitutions which we have to apply
to the associative law if we want to check if the associative law is satisfied as
a regular hyperidentity. But we can reduce the number of hypersubstitutions
which are needed, more. From now on we assume that the first variable of
the considered term t is x, i.e., leftmost(t) = x. In the corresponding way
one defines rightmost(t).

Theorem 2.5. Let t ∈ W ({x, y}) such that lp(t) = 5 and leftmost(t) = x.
Then t ≈ xysxyx ∈ IdVHR for some s ∈ {1, 2} or there is a term r ∈
W ({x, y}) with t ≈ r and lp(r) ≤ 4.

Proof. By Lemma 2.1 (iii) there are natural numbers a, b, c, d, e ≤ 6
with t ≈ xaybxcydxe. Here the right hand side has to start with x since
for every identity s ≈ t which belongs to the generating system of the set of
all identities in VHR we have leftmost(s) = leftmost(t) and rightmost(s) =
rightmost(t). If c is even, then by Lemma 2.2 (i) we have t ≈ xayb+d+2xc

and if c is odd, then by Lemma 2.2 (ii) we get t ≈ xayxyxe if b + d is
even and t ≈ xay2xyxe if b + d is odd. Now for a ≥ 2 we apply Lemma
2.2(xiii) and obtain t ≈ xa+1y2xe in the first case and t ≈ xa+1y3xe in
the second one. So, it is left to consider the cases t ≈ xy2xyxe and
t ≈ xyxyxe. If e ≥ 2, then by Lemma 2.1 (viii) and Lemma 2.2 (xiv) we have
t ≈ xy3xe+1 or t ≈ xy2xe+1 otherwise; i.e., if e = 1, we have t ≈ xy2xyx
or t ≈ xyxyx.
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Theorem 2.6. Let t ∈ W ({x, y}) with lp(t) = 4 and leftmost(t) = x. Then

t ≈ xykxy ∈ IdVHR for some k ∈ {2, 4} or

t ≈ xyxky ∈ IdVHR for some k ∈ {2, 4} or

t ≈ xy3xy ∈ IdVHR or

t ≈ xkylxy ∈ IdVHR or for some k, l ∈ {2, 3}

t ≈ xyxkyl ∈ IdVHR for some k, l ∈ {2, 3} or

t ≈ x2yx2y ∈ IdVHR or

t ≈ xy2xy2 ∈ IdVHR or

t ≈ xkyxy ∈ IdVHR for some k ∈ {2, 3} or

t ≈ xyxyk ∈ IdVHR for some k ∈ {2, 3} or

t ≈ xy2x2y ∈ IdVHR or

t ≈ x2yxy2 ∈ IdVHR or

there is an r ∈ W ({x, y}) with t ≈ r and lp(r) ≤ 3.

Proof. There are a, b, c, d ∈ IN with t ≈ xaybxcyd. By Lemma 2.1 (iii) we
may assume that a, b, c, d ≤ 6. Suppose that b, c ≥ 2. By Lemma 2.2 (ix),
(x) we may assume that b, c ≤ 3.

If b = 3 or c = 3 we get t ≈ xayxc+2yd and t ≈ xayb+2xyd, respectively,
by Lemma 2.2 (xi), (xii). If b = c = 2, a = 1 and d ≥ 2, then

t ≈ xy4x2yd by Lemma 2.1 (vi)

≈ xy3x2yd+1 by Lemma 2.2 (iv)

≈ xyx4yd+1 by Lemma 2.2 (xi)

≈ xyx2yd+1 by Lemma 2.2 (x)

≈ xyx2yp for some p ≤ 3 by Lemma 2.2 (xvii).
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If b = c = 2, d = 1 and a ≥ 2, then in a similar way we show the existence
of a number p ≤ 3 such that t ≈ xpy2xy.

If b = c = 2 and a = d = 1, then we get t ≈ xy2x2y.

Now we consider the case b = 1. Then t ≈ xayxcyd ∈ IdVHR.

If a, c, d ≥ 2, then

t ≈ xayxc+2yd by Lemma 2.1 (vi)

≈ xay3xcyd by Lemma 2.2 (xi)

≈ xa+cyd+3 by Lemma 2.2 (v).

If c = 1, then t ≈ xayxyd. Because of Lemma 2.2 (ix),(x) we may
assume that a, d ≤ 5. Suppose that a ≥ 3 and d ≥ 2. Then we have

xayxyd ≈ xa−1(xy)2yd−1

≈ xa−1(xy)x2(xy)yd−1 (using x2y2y ≈ x2yx2z)

≈ xa−1yx2yyd−1 (using xyxzxyx ≈ xyzyx)

≈ xa−1yd+1 (using x2y2z ≈ x2yx2yz).

If a ≥ 2 and d ≥ 3, then dually we get t ≈ xa+1yd−1.

For a = 4, 5 there holds

xayxy ≈ xa−3x2(xy)2

≈ xa−3x(xy)2x(xy)2 (using x(yz2)2 ≈ xy2z2)

≈ xa−1y2xyxy (using xyxzxyx ≈ xyzyx)

≈ xa−1y2xy3xy (using Lemma 2.1 (v))

≈ xay3xy (using x(yz2)2 ≈ xy2z2)

≈ xa−2y3xy (using Lemma 2.2 (xvi)).

For d = 4, 5 we dually have xyxyd ≈ xyx3yd−2. If c ≥ 2 and a = d = 1,
then t ≈ xyxcy.
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By Lemma 2.2 (vi) we may assume that c ≤ 4. If c = 3, then we have
xy3xy ≈ xyx3y by Lemma 2.2 (xi).

If c, d ≥ 2 and a = 1, then t ≈ xyxcyd. Here by Lemma 2.2 (xvi) and
Lemma 2.2 (x) we may assume that d ≤ 3 and c ≤ 3.

If c, a ≥ 2 and d = 1, then t ≈ xayxcy ≈ x2yxc+a−2y by Lemma 2.2 (iv).
Using Lemma 2.1 (vi) we get for some p ∈ {2, 3} the identity t ≈ x2yxpy. If
p = 3, then x2yx3y ≈ x2y3xy by Lemma 2.2 (xi).

In the case c = 1 in a similar way we get t ≈ xykxy for some k ∈ {2, 4} or
t ≈ xyxkyl for some k, l ∈ {2, 3} or t ≈ xy2xy2 or t ≈ x2yxy2 or t ≈ xkyxy ∈
VHR or t ≈ xyxyk for some k ∈ {1, 2, 3} or there is an r ∈ W ({x, y}) with
lp(r) ≤ 3 and t ≈ r.

Theorem 2.7. Let t ∈ W ({x, y}) with lp(t) = 3 and leftmost(t) = x. Then

t ≈ xkyx ∈ IdVHR for some k ∈ {1, . . . , 5} or

t ≈ xyxk ∈ IdVHR for some k ∈ {1, . . . , 5} or

t ≈ xkylx ∈ IdVHR for some k, l ∈ {2, 3} or

t ≈ xylxk ∈ IdVHR for some k, l ∈ {2, 3} or

t ≈ xykx ∈ IdVHR for some k ∈ {2, 3, 4} or

t ≈ x2ylxk ∈ IdVHR for some l ∈ {1, 2, 3}, k ∈ {2, 3}.

Proof. There are natural numbers a, b, c with t ≈ xaybxc. By Lemma 2.1
(iii) we may assume that 1 ≤ a, b, c ≤ 6.

If a, c ≥ 2, then

t ≈ x2ybxc+a−2 by Lemma 2.2 (iv)

≈ x2ybxp for some p ∈ {2, 3} by Lemma 2.1 (vi)

≈ x2yqxp for some q ∈ {1, 2, 3} by Lemma 2.2 (ix).

If a = 1 and b, c ≥ 2, then t ≈ xybxp for some p ∈ {2, 3} by Lemma 2.2
(xvii) and then t ≈ xyqxp for some q ∈ {2, 3} by Lemma 2.2 (x).
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If a = b = 1, then t ≈ xyxc.

If c = 6, then t ≈ xyx4 by Lemma 2.2 (x).

If a = c = 1, then t ≈ xybx.

If b = 5, 6, then t ≈ xyb−2x by Lemma 2.2 (vi).

If c = 1 and a, b ≥ 2, then t ≈ xpyqx for some p, q ∈ {2, 3} by Lemma

2.2 (ix) and (xvi), respectively.

If a ≥ 2 and b = c = 1, then t ≈ xayx.

If a = 6, then t ≈ x4yx by Lemma 2.2 (ix).

Theorem 2.8. Let t ∈ W ({x, y}) with lp(t) = 2 and leftmost(t) = x. Then

t ≈ xyk ∈ IdVHR for some k ∈ {1, . . . , 5} or

t ≈ xky ∈ IdVHR for some k ∈ {1, . . . , 5} or

t ≈ xkyl ∈ IdVHR for some k, l ∈ {2, 3} or

t ≈ x2y4 ∈ IdVHR.

Proof. There are natural numbers a, b with t ≈ xayb. We may assume that
1 ≤ a, b ≤ 6. If a, b ≥ 2, then t ≈ xpyq for some p, q ∈ {2, 3, 4} by Lemma
2.2 (ix), (x). If a = 1, then t ≈ xyb. If b = 6 then we get t ≈ xy4 by Lemma
2.2 (x). If b = 1, then dually we get t ≈ xky. Moreover, we have

x2y4 ≈ x2y6 (using Lemma 2.2 (ix))

≈ x2y2x2y4 (using x2y2z ≈ x2yx2yz)

≈ x4y2x2y2 (using Lemma 2.1 (vi), (vii))

≈ x6y2 (using x(yz2)2 ≈ xy2z2)

≈ x4y2 (using Lemma 2.2 (x)).
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Theorems 2.4–2.8 allow us to determine a set of binary terms. To prove
that no proper subset of this set represents all binary terms in VHR we need
some technical lemmas.

Proposition 2.9. Every equation s ≈ t ∈ IdVHR satisfies the following
condition (∗):

(∗) (i) The first letter in s agrees with the first letter in t and the second
letter in s agrees with the second letter in t.

(ii) The last letter in s agrees with the last letter in t and the second
last letter in s agrees with the second last letter in t.

Proof. Every equation from the set consisting of the four equations which
generate IdVHR has this property. If we can show that all equations satisfy-
ing (∗) form an equational theory, then IdVHR satisfies condition (∗). But
this becomes clear if we check the five derivation rules for identities.

If we denote by cx(s) the number of occurrences of the variable x in the
term s, then IdVHR satisfies the following condition (∗∗):

Proposition 2.10. Every equation s ≈ t ∈ IdVHR and every x ∈ X satisfies
the following condition (∗∗):

(∗∗) (i) cx(s) ≡ cx(t)mod 2,

(ii) cx(s) = 1 iff cx(t) = 1.

Proof. We will give a proof by induction on the length of a proof. If
s ≈ t belongs to the generating system of IdVHR, i.e., if s ≈ t ∈ {(xy)z ≈
x(yz), (x2y)2z ≈ x2y2z, x(yz2)2 ≈ xy2z2, xyxzxyx ≈ xyzyx}, then obvi-
ously s ≈ t satisfies (i) and (ii). For every term r the identity r ≈ r satisfies
(∗∗). If s ≈ t, t ≈ w ∈ IdVHR satisfy (∗∗), then t ≈ s and s ≈ w sat-
isfy (∗∗) too. By subw

r (s) we denote the term which arises from s if we
substitute for r ∈ X the term w ∈ W (X). Let s ≈ t ∈ IdVHR satisfying
(∗∗), r ∈ X and w ∈ W (X). If r = x, then cx(subw

r (s)) = cx(w)cx(s) and
cx(subw

r (t)) = cx(w)cx(t). From cx(s) ≡ cx(t)mod 2 it follows cx(w)cx(s) ≡
cx(w)cx(t)mod 2, i.e., cx(subw

r (s)) ≡ cx(subw
r (t))mod 2. Moreover, from

cx(s) = 1 iff cx(t) = 1 there follows cx(w)cx(s) = 1 iff cx(w) = 1 and
cx(s) = 1 iff cx(w)cx(t) = 1. Thus cx(subw

r (s)) = 1 iff cx(subw
r (t)) = 1.
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If r is a variable different from x, then cx(subw
r (s)) = cx(w)cr(s) + cx(s)

and cx(subw
r (t)) = cx(w)cr(t) + cx(t). From cx(s) ≡ cx(t)mod 2 and cr(s) ≡

cr(t)mod 2 there follows cx(w)cr(s) + cx(s) ≡ cx(w)cr(t) + cx(t)mod 2, i.e.,
cx(subw

r (s)) ≡ cx(subw
r (t))mod 2.

We remark that the variety SL of all semilattices is contained in VHR,
i.e., IdVHR ⊆ Id SL. The set Id SL consists of exactly all regular equations
of type τ = (2), i.e., if s ≈ t ∈ IdVHR then cy(s) = 0 iff cy(t) = 0 for
every variable y. Then from cx(s) = 1 iff cx(t) = 1 we obtain cx(subw

r (t)) =
cx(w)cr(t) + cx(t) = 1 iff cx(t) = 1 and cx(w)cr(t) = 0 or cx(t)cr(t) = 1
and cx(t) = 0. This is satisfied if and only if cx(s) = 1 and cx(w)cr(s) = 0
or cx(w)cr(s) = 1 and cx(s) = 0 iff cx(w)cr(s) + cx(s) = 1 = cx(subw

r (s)).
Therefore the condition (∗∗) is satisfied after application of the substitution
rule.

Assume now that s ≈ t, u ≈ w ∈ IdVHR satisfy (∗∗). Then cx(s) ≡
cx(t)mod 2 and cx(u) ≡ cx(v)mod 2, i.e., cx(f(s, u)) ≡ cx(f(t, w))mod 2.
Moreover we have cx(s) = 1 iff cx(t) = 1 and cx(u) = 1 iff cx(w) = 1. This
gives

cx(s) + cx(u) = 1 ⇔ (cx(s) = 1 ∧ cx(u) = 0) ∨(cx(s) = 0 ∧ cx(u) = 1)

⇔ (cx(t) = 1 ∧ cx(w) = 0) ∨(cx(t) = 0 ∧ cx(w) = 1)

⇔ cx(t) + cx(w) = 1.

This means, cx(f(s, u)) = 1 iff cx(f(t, w)) = 1 and the condition (∗∗) is
satisfied after application of the replacement rule.

By l(s) we denote the length of the term s. Then we have

Proposition 2.11. For s ≈ t ∈ IdVHR the following condition is satisfied:
If s ≈ t 6∈ IdSEM , i.e., if s ≈ t is not derivable only from the associative
law, then

(∗∗∗) (i) l(s), l(t) ≥ 5,

(ii) If l(s) = 5, then s is of the form a) x2y2z or xy2z2 or xyzyx,

(iii) If l(t) = 5, then t is of the form a),

(iv) If l(s) = 6 then s is of the form b) wxy2z2 or wxyzyx
or x2y2zw or xy2z2w or xyzyxw or xyzwyx,

(v) If l(t) = 6, then t is of the form b)



The greatest regular-solid variety of semigroups 107

Proof. We will give a proof by induction on the length of a proof. If s ≈
t ∈ {(xy)z ≈ x(yz), (x2y)2z ≈ x2y2z, x(yz2)2 ≈ xy2z2, xyxzxyx ≈ xyzyx},
then s ≈ t satisfies (∗ ∗ ∗). For r ∈ W (X) the identity r ≈ r satisfies (∗ ∗ ∗).
If s ≈ t, t ≈ w ∈ IdVHR satisfy (∗ ∗ ∗), then t ≈ s and s ≈ w satisfy (∗ ∗ ∗)
too. Let s ≈ t ∈ IdVHR be an identity which satisfies (∗ ∗ ∗) and assume
that r ∈ X and w ∈ W (X) and that subw

r (s) ≈ subw
r (t) 6∈ IdSEM. Then

s ≈ t 6∈ IdSEM , i.e., l(s), l(t) ≥ 5 and thus l(subw
r (s)), l(subw

r (t)) ≥ 5.
Assume that l(subw

r (s)) = 5. This is only possible if l(s) = 5 and w ∈ X.
From l(s) = 5 it follows that s is of the form a). Consequently, subw

r (s) is
of the form a). For l(subw

r (t)) = 5 we conclude in the same way. Let now
l(subw

r (s)) = 6. This is only possible, if

(α) l(s) = 5 and l(w) = 2 and cr(s) = 1 or

(β) l(s) = 6 and w ∈ X.

We consider the case (α). From l(s) = 5 there follows that s is of the form
a). Since l(w) = 2, there are u, v ∈ X such that w = uv. Thus subw

r (s) is of
the form x2y2uv or uvy2z2 or xyuvyx. In the case (β) from l(s) = 6 there
follows that s is of the form b). Consequently, subw

r (s) is of the form b).
In a similar way one shows that subw

r (t) is of the form b) if l(subw
r (t)) = 6.

Now we check the replacement rule. Let s ≈ t, u ≈ w ∈ IdVHR be identities
satisfying (∗ ∗ ∗). If f(s, u) ≈ f(t, w) 6∈ IdSEM , then s ≈ t 6∈ IdSEM or
u ≈ w 6∈ IdSEM . We consider the following cases:

Case 1. If s ≈ t, u ≈ w 6∈ IdSEM , then l(t), l(s), l(u), l(w) ≥ 5 and
thus l(f(s, u)), l(f(t, w)) ≥ 10.

Case 2. If s ≈ t 6∈ IdSEM,u ≈ w ∈ IdSEM , then we have l(s), l(t) ≥ 5
and thus l(f(s, u)), l(f(t, w)) ≥ 6. If l(f(s, u)) = 6, then l(s) = 5 and u ∈ X,
i.e., s is of the form a). This yields that f(s, u) is of the form x2y2zw or
xy2z2w or xyzyxw

Case 3. If s ≈ t ∈ IdSEM,u ≈ w 6∈ IdSEM , then similar we have that
f(s, u) ≈ f(t, v) satisfies (∗ ∗ ∗).

Now we can prove:

Theorem 2.12. The free algebra FVHR
({x, y}) consists of exactly 128

elements which can be represented by the following terms:
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(1) xyxyx,

(2) xy2xyx,

(3) xy2xy,

(4) xy3xy,

(5) xy4xy,

(6) xyx2y,

(7) xyx4y,

(8) x2y2xy,

(9) x2y3xy,

(10) x3y2xy,

(11) x3y3xy,

(12) xyx2y2,

(13) xyx2y3,

(14) xyx3y2,

(15) xyx3y3,

(16) x2yx2y,

(17) xy2xy2,

(18) xyxy,

(19) x2yxy,

(20) x3yxy,

(21) xyxy2,

(22) xyxy3,

(23) x2yxy2,

(24) xy2x2y,

(25) xyx,

(26) x2yx,

(27) x3yx,

(28) x4yx,

(29) x5yx,

(30) x2yx2,

(31) x2yx3,

(32) xyx2,

(33) xyx3,

(34) xyx4,

(35) xyx5,

(36) x2y2x,

(37) x3y2x,

(38) x3y3x,

(39) x2y3x,

(40) xy2x2,

(41) xy2x3,

(42) xy3x2,

(43) xy3x3,

(44) xy2x,

(45) xy3x,

(46) xy4x,

(47) x2y2x2,

(48) x2y3x2,

(49) x2y2x3,

(50) x2y3x3,

(51) xy,

(52) x2y,

(53) x3y,

(54) x4y,

(55) x5y,

(56) xy2,

(57) xy3,

(58) xy4,

(59) xy5,

(60) x2y2,

(61) x2y3,

(62) x2y4,

(63) x3y2,

(64) x3y3

and all terms arising from the terms (1)–(64) by exchanging x and y.

Proof. We show that any two different terms of this list cannot form an
identity in VHR. Using Proposition 2.9 we partition at first the set of the
terms of our list into classes with the property that two terms in different
classes cannot form an identity since the condition from Proposition 2.9 is
not satisfied. This gives exactly the following classes:



The greatest regular-solid variety of semigroups 109

{(30), (35), (47), (48), (49), (50)}

∪{(8), (9), (10), (11), (16), (19), (20), (52), (53), (54), (55)}

∪{(23), (60), (61), (62), (63), (64)}

∪{(26), (27), (28), (29), (36), (37), (38), (39)}

∪{(31), (32), (33), (34), (40), (41), (42), (43)}

∪{(3), (4), (5), (6), (7), (18), (24), (51)}

∪{(12), (13), (14), (15), (17), (21), (22), (56), (57), (58), (59)}

∪{(1), (2), (25), (44), (45), (46)}

and the dual classes.

Our aim is to divide these classes in singleton classes. We may restrict
ourselves to the classes which contain the terms (1)–(64). For the other
classes we can use dual arguments.

Using Proposition 2.10 we get the following finer partitions:

The class {(30), (35), (47), (48), (49), (50)} is divided into {(47)} ∪
{(48)} ∪ {(49)} ∪ {(50)} ∪ {(30)} ∪ {(35)}.

The class {(8), (9), (10), (11), (16), (19), (20), (52), (53), (54), (55)} is
divided into {(8)} ∪ {(53), (55)} ∪ {(9), (19)} ∪ {(10)} ∪ {(52), (54)} ∪
{(11), (16), (20)}.

The class {(23), (60), (61), (62), (63), (64)} splits into {(23), (64)} ∪
{(60), (62)} ∪ {(61)} ∪ {(63)}.

The class {(26), (27), (28), (29), (36), (37), (38), (39)} can be divided into
{(26), (28)} ∪ {(27), (29)} ∪ {(38)} ∪ {(39)} ∪ {(36)} ∪ {(37)}.

The class {(31), (32), (33), (34), (40), (41), (42), (43)} splits into
{(31), (33)} ∪ {(42)} ∪ {(32), (34)} ∪ {(43)} ∪ {(40)} ∪ {(41)}.

The class {(3), (4), (5), (6), (7), (18), (24), (51)} splits into {(3), (5)} ∪
{(4), (18)} ∪ {(6), (7)} ∪ {(24)} ∪ {(51)}.

The class {(12), (13), (14), (15), (17), (21), (22), (56), (57), (58), (59)} can
be divided into {(12)} ∪ {(57), (59)} ∪ {(13)} ∪ {(56), (58)} ∪ {(14), (21)} ∪
{(15), (17), (22)}.
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The class {(1), (2), (25), (44), (45), (46)} splits into {(1)}∪{(2)}∪{(25)}∪
{(45)} ∪ {(44), (46)}.

Now the following non-singleton classes are left

{(53), (55)},{(9), (19)},{(52), (54)},{(11),(16),(20)},{(23), (64)},{(60), (62)},

{(26), (28)}, {(27), (29)}, {(31), (33)}, {(32), (34)}, {(3), (5)}, {(4), (18)},

{(6), (7)},{(57), (59)}, {(56),(58)}, {(14), (21)}, {(15), (17), (22)},{(44), (46)}.

To separate {(53), (55)}, {(52), (54)},{(60), (62)},{(26), (28)}{(31), (33)},
{(4), (18)}, {(57), (59)}, {(56), (58)}, {(44), (46)} we use (∗ ∗ ∗) (i).

For {(9), (19)}, {(11), (16), (20)}, {(23), (64)}, {(27), (29)}, {(32), (34)},
{(3), (5)}, {(6), (7)}, {(14), (21)}, {(15), (17), (22)} we use (∗ ∗ ∗) (ii) or (iv).

This finishes the proof.

3. The greatest regular-solid variety of semigroups

To prove that VHR ⊆ HRegModAss we have to apply all regular hyper-
substitutions to the associative identity and to check whether the resulting
equations are satisfied in VHR. The following relation on the set Reg of all
regular hypersubstitutions simplifies this procedure.

Definition 3.1. For any two hypersubstitutions σ1, σ2 of type τ and for a
variety V of type τ we define

σ1 ∼V σ2 ⇐⇒ σ1(f) ≈ σ2(f) ∈ Id V.

Then P lonka proved in [6] the following proposition:

Proposition 3.2. If s ≈ t ∈ IdV for a variety V of type τ , if σ1, σ2 are
hypersubstitutions of type τ with σ1 ∼V σ2 and if σ̂1[s] ≈ σ̂1[t] ∈ IdV , then
also σ̂2[s] ≈ σ̂2[t] ∈ IdV .

Therefore we can partition the set Hyp of all hypersubstitutions of type
τ = (2) or its submonoid Reg of all regular hypersubstitutions into equiv-
alence classes with respect to ∼VHR

and have to check the associative law
only for one representative from each class. If σ(i) denotes the hypersubsti-
tution which maps the operation symbol f to one of the terms (i) where i
is one of the numbers 128 denoting the elements of FVHR

({x, y}), then it is
enough to consider the hypersubstitutions σ(i) representing the elements of
Reg/ ∼VHR

= {[σ(i)] | i = 1, . . . , 128}. First of all we prove some more useful
identities in VHR.
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Lemma 3.3. For 1 ≤ k ∈ IN there holds

(i) (xky)kz ≈ xkykz ∈ IdVHR,

(ii) z(xyk)k ≈ zxkyk ∈ IdVHR.

Proof. If k = 1, then all is clear. If k ≥ 3 is odd, then

(xky)kz ≈ xky(x2y)k−1z by Lemma 2.1 (ii)

≈ xkykz if we apply (x2y)2z ≈ x2y2z (k − 1)− times.

If k is even, then there is a natural number p with 2p = k and (xky)kz ≈
((xp)2y)kz ≈ (xp)2ykz if we apply (x2y)2z ≈ x2y2z (k − 1) times.

(ii) can be proved similarly.

Lemma 3.4. For 1 ≤ k ∈ IN there holds

(i) r(xy)kzxy ≈ rxkykzxy ∈ IdVHR,

(ii) xyz(xy)kr ≈ xyzxkykr ∈ IdVHR.

Proof. We may assume that k ≥ 2. Then we have:

r(xy)kzxy ≈ rxy(xyk)(k−1)zy(k−1)(k−1)xy using xyxzxyx ≈ xyzyx

≈ rxyk(xyk)(k−1)zy(k−1)(k−1)+(k−1)xy by Lemma 2.1 (ii)

≈ r(xyk)k−1xyk+2zy2xy by Lemma 2.1 (vi), (vii)

≈ r(xyk)k−1xykzxy (using xyxzxyx ≈ xyzyx)

≈ rxkykzxy (by Lemma 3.3).

The second identity can be proved similarly.
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Lemma 3.5. For 1 ≤ k ∈ IN and 2 ≤ a ∈ IN there holds

(i) (xay)kz ≈ xakykz ∈ IdVHR.

(ii) z(xya)k ≈ zxkyak ∈ IdVHR.

Proof. We may assume that k ≥ 2. If k is odd, then

(xay)kz ≈ xay(x2y)k−1z by Lemma 2.1 (ii)

≈ xaykz by (k − 1)- fold application of (x2y)2z ≈ x2y2z

≈ xakykz by Lemma 2.2 (xvi) and by the fact a ≡ ka mod 2.

If k is even, then

(xay)kz ≈ (xky)kz by Lemma 2.1 (ii)

≈ xkykz by Lemma 3.3

≈ xakykz by Lemma 2.2 (xvi) and by the fact that k ≡ ka mod 2.

The proof of (ii) is similar.

For our checking it is enough to select one hypersubstitution from each
∼VHR

-class. The selected hypersubstitutions are called normal form
hypersubstitutions. Now we apply all normal form hypersubstitutions to
the associative identity.

Lemma 3.6. For every hypersubstitution σxkyl with l = 1, k = 1, . . . , 5 or
with k = 1, l = 1, . . . , 5 or with l = 2, k = 2, 3, 4 or with l = 3, k = 2, 3
we get

σ̂xlyk [x(yz)] ≈ σ̂xkyl [(xy)z] ∈ IdVHR.

Proof. For l = 1 or k = 1 everything is clear by Lemma 3.3. If l, k ≥ 2, we
have σ̂xkyl [x(yz)] ≈ xk(ykzl)l ≈ xkyklzl ≈ (xkyl)kzl ≈ σ̂xkyl [(xy)z] ∈ IdVHR

by Lemma 3.3.

Now we consider all hypersubstitutions such that the image is one of the
terms (25)–(50).
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Lemma 3.7. For 1 ≤ k, l,m ≤ 6 there holds

σ̂xkylxm [x(yz)] ≈ σ̂xkylxm [(xy)z] ∈ IdVHR.

Proof. We have

σ̂xkylxm [(xy)z] = (xkylxm)kzl(xkylxm)m

≈ xk(ylxm)kzl(xkyl)mxm by Lemma 3.3

≈ xkylkxmkzlxkmylmxm by Lemma 3.4

≈ xkylkzlylmxm by Lemma 2.1 (i).

If m ≥ 2, then

xkylkzlylmxm ≈ xk(ykzl)lylmxm by Lemma 3.3

≈ xk(ykzlym)lxm by Lemma 3.5

= σ̂xkylxm [x(yz)].

If k ≥ 2, then we get dually xkylkzlylmxm ≈ σ̂xkylxm [x(yz)] ∈ VHR.

If k = m = 1, then we have

xylzlylx ≈ xylzllylx by Lemma 2.2 (ix) and the fact that l ≡ ll mod 2

≈ xyzllyx by Lemma 2.1 (ii)

≈ x(yzly)lx if we apply Lemma 2.1 (i) (l − 1)-times

= σ̂xkylxm [x(yz)].

Now we consider all hypersubstitutions which map the operation symbol f
to one of the terms of the forms (3)–(24).

Lemma 3.8. For 1 ≤ k, l,m, n ≤ 6 there holds

σ̂xkylxmyn [x(yz)] ≈ σ̂xkylxmyn [(xy)z] ∈ IdVHR.
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Proof. We have

σ̂xkylxmyn [x(yz)] = xk(ykzlymzn)lxm(ykzlymzn)n

≈ xkykl(zlymzn)lxm(ykzlymzn)n by Lemma 3.4

≈ xkyklzl(ymzn)lxm(ykzlym)nzn by Lemma 3.3

≈ xkyklzlymlznlxmykn(zlym)nzn by Lemma 3.3 and 3.4

≈ xkyklzlymlznlxmyknzlnymnzn by and Lemma 3.4

≈ xkyklzlymlznlyxmykn+1zlnymnzn using xyxzxyx ≈ xyzyx

≈ xkyklxkmzlymlznlxkmyxmykn+1zlnymnzn by Lemma 2.1 (i)

≈ xkyklxkmyknzlymlznlxkmykn+1xmykn+1zlnymnzn by Lemma 2.1 (i)

≈ xkyklxkmyknzlymlxkmykn+1xmykn+mn+1zn by Lemma 2.1 (i)

≈ xkyklxkmykn+mnzlymlxkmykn+mn+1xmykn+1+mnzn by Lemma 2.1 (i)

≈ xkyklxkmykn+mnzlymlxkmy2mnxmy2mnzn by Lemma 2.1 (ii)

≈ xkyklxkmykn+mnzlylmxkm+my2mnzn using x(yz2)2 ≈ xy2z2

≈ xkyklxkmykn+mnzlylmxkm+mymnx2ymnzn using (x2y)2z ≈ x2y2z

≈ xkyklxkmyknzlylmxkm+m+2ymnzn by Lemma 2.1 (i)

≈ xkyklxkmyknzlylmxkm+mymnzn by Lemma 2.1 (v)

≈ xkyklxkmykn+1zlylmxkmyxmymnzn by Lemma 2.1 (i)

≈ xkyklxkmykn+1xkmzlxkmylmxkmyxmymnzn by Lemma 2.1 (i)

≈ xkyklxkmykn+1zlxkmylmyxmymnzn by Lemma 2.1 (i)

≈ xkyklxkmyknzlxkmylmxmymnzn by Lemma 2.1 (i).
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In a similar way we can show σ̂xkylxmyn [(xy)z] ≈ xkyklxkmyknzlxkmylmxm

ymnzn ∈ IdVHR, consequently, σ̂xkylxmyn [x(yz)]≈ σ̂xkylxmyn [(xy)z] ∈ IdVHR.

Lemma 3.9.

(i) σ̂xyxyx[x(yz)] ≈ σ̂xyxyx[(xy)z] ∈ VHR.

(ii) σ̂xy2xyx[x(yz)] ≈ σ̂xy2xyx[(xy)z] ∈ VHR.

Proof. (i) Using the identity xyxzxyx ≈ xyzyx we get σ̂xyxyx[(xy)z)] ≈
xyxyxzxyxyxzxyxyx ≈ xyzxzyx ≈ xyzyzyxyzyzyx ≈ σ̂xyxyx[x(yz)] ∈
VHR.

(ii) We have

σ̂xy2xyx[(xy)z]≈ xy2xyxz2xy2xyxzxy2xyx

≈ xyxyxyxz2xy2xyxzxyxyxyx (using xyxzxyx ≈ xyzyx)

≈ xyxyxyxz2y2xyzxyxyxyx by Lemma 2.1 (i)

≈ xyxyxyz2y2xyzyxyxyx (using xyxzxyx ≈ xyzyx)

≈ xyxyxyz2yxzyxyxyx by Lemma 2.1 (i)

≈ xyz2yxzyx (using xyxzxyx ≈ xyzyx)

≈ xyz2yzyxzyzyx by Lemma 2.1 (i)

≈ xyz2yzyzxz2yzyx by Lemma 2.1 (i)

≈ xyz2yzyzyxyz2yzyx by Lemma 2.1 (i)

≈ xyz2yzyz2y2zyxyz2yzyx by Lemma 2.1 (i)

≈ xyz2yzy2z2yzyxyz2yzyx by Lemma 2.1 (viii)

≈ σ̂xy2xyx[x(yz)] ∈ VHR.
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Using all these results we obtain:

Theorem 3.10. VHR is the greatest solid variety of semigroups.

Proof. By 3.6–3.9 for every hypersubstitution σ(j) which maps the binary
operation symbol f to one of the terms (j) for j = 1, . . . , 64 the equa-
tions σ̂(j)[x(yz)] ≈ σ̂(j)[(xy)z] are satisfied in VHR. If s ≈ t ∈ {(xy)z ≈
x(yz), (x2y)2z ≈ x2y2z, x(y2z)2 ≈ xy2z2, xyxzxyx ≈ xyzyx}, then σ̂yx[s] ≈
σ̂yx[t] belongs also to this set. Therefore, this is also true for every identity
s ≈ t ∈ IdVHR. For the other hypersubstitutions we use dual arguments
and this finishes the proof.

4. The greatest solid variety of semigroups

As a corollary of Theorem 3.10 we determine an equational basis for
the greatest solid variety HMod{x(yz) ≈ (xy)z} of semigroups, i.e., for
the variety which satisfies the associative law as a hyperidentity. Clearly,
the variety HMod{x(yz) ≈ (xy)z} satisfies the identities x(yz) ≈ (xy)z,
(x2y)2z ≈ x2y2z, x(yz2)2 ≈ xy2z2, xyzxyx ≈ xyzyx. Applying the hyper-
substitution σx2 to the associative law one obtains the identity x2 ≈ x4 and
we may consider the variety VHS = Mod{x(yz) ≈ (xy)z, x2 ≈ x4, (x2y)2z ≈
x2y2z, x(yz2)2 ≈ xy2z2, xyxzxyx ≈ xyzyx}. The hypermodel class of the
associative law HMod{x(yz) ≈ (xy)z} is included in VHS . To show the
converse inclusion we have to prove that the associative law is a hyperiden-
tity in the variety VHS . As a first step we determine all elements of the
two-generated free algebra with respect to VHS .

Theorem 4.1. The free algebra FVHS
({x, y}) consists exactly of the terms

(1), (2), (3), (6), (8), (10), (12), (13), (18), (19), (20), (21), (24), (25), (26),
(27), (30), (31), (32), (35), (36), (37), (38), (39), (40), (41), (42), (43), (44),
(45), (47), (48), (49), (50), (51), (52), (53), (56), (57), (60), (61), (63), (64),
(65)x, (66)x2 , (67)x3 and all terms arising from the given ones by permuting
x and y.

Proof. Since VHS is a subvariety of VHR, the universe of FVHS
({x, y}) is a

homomorphic image of FVHR
({x, y}). Using the additional identity x2 ≈ x4

we obtain the given list of terms. Since the Propositions 2.9, 2.10 are also
valid for the variety VHS , no two of the given terms can form an identity in
VHS .
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Corollary 4.2. The variety VHS is the greatest solid variety of semigroups.

Proof. We know already that the application of each of the hypersubstitu-
tions different from σx, σx2 , σx3 , σy, σy2 , σy3 to the associative law gives an
identity which is satisfied in VHS . Application of σx gives x ≈ x, application
of σx2 gives x2 ≈ x4 which belongs to the generating system of IdVHS , and
application of σx3 gives x3 ≈ x9, which can be derived from x2 ≈ x4. This
finishes the proof.

The equational basis of VHS was given first by Polák in [7]. One has to apply
all hypersubstitutions σt, where t is a binary term over the variety VHS to the
associative law and has to prove that all resulting identities can be derived
from the identities x(yz) ≈ (xy)z, x2 ≈ x4, xyxzxyx ≈ xyzyx, x2y2z ≈
(xy2)2z, xy2z2 ≈ x(yz2)2. Therefore the main problem is to determine
the elements of FVHS

({x, y}). This can also be done by using a computer
programme as St. Niwczyk did. The problem is that sometimes one has
to make terms at first longer to be able to apply xyxzxyx ≈ xyzyx. This
seems to be a difficult programming problem. The list of terms produced
by a computer consisted of more than 700 terms. The third author reduced
this list to the list given in Theorem 4.1.

5. Finite axiomatizability

In [9] the author gave an example for a variety of type τ = (2, 1) which is
not finitely based by identities but is finitely based by hyperidentities. Let
D := {x(yz) ≈ (xy)z, xyzw ≈ xzyw, yx2y ≈ xy2x, yG(x)x2y ≈ xyG(x)yx}
a set of equations of type τ = (2, 1) where G is a unary operation symbol.
If we replace G(x) by xk, k ∈ IN, then we get an infinite set E of identities
which has no finite basis ([5]). But E has the set D as a finite basis of
hyperidentities.

The derivation concept for hyperidentities contains one more rule of
consequences, the so-called hypersubstitution rule which means that one
can substitute for operation symbols terms of the same arity. For varieties
of semigroups this additional rule has no influence on the problem of finite
axiomatizability by equations. Indeed, we have the following consequence
of Corollary 4.2
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Theorem 5.1. If a variety of semigroups is finitely axiomatizable by
hyperidentities then it is also finitely axiomatizable by identities.

Proof. Let V be a variety of semigroups which is finitely axiomatizable
by hyperidentities, i.e., there is a finite set Σ of equations such that
V = HModΣ. Since V is the hypermodel class of a set Σ of equations,
V is a solid variety, i.e., every identity in V is a hyperidentity (see [2]).
If we define an operator χ : P(Wτ (X)2) → P(Wτ (X)2), where P denotes
the formation of the power set, then one can prove that HModΣ = Modχ[Σ]
([2]). Let ∼V be the equivalence relation on Hyp defined in 3.1. Let
Hyp/ ∼V be the quotient set defined by this equivalence relation. Now
from each equivalence class we select one hypersubstitution and form the
set χ∼[Σ] of all equations σ̂[s] ≈ σ̂[t], where s ≈ t ∈ Σ and where σ are the
selected hypersubstitutions. In [1] was proved that Modχ[Σ] = Modχ∼[Σ]
and therefore HModΣ = Modχ∼[Σ]. Since Σ contains the associative
identity, a set of all representatives of Hyp(τ)/ ∼V is a subset of the
finite set listed in Theorem 4.1 and then χ∼[Σ] is finite since Σ is finite
and V = HModΣ = Modχ∼[Σ] is axiomatizable by the finite set χ∼[Σ]
of identities.
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