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Abstract

Let τ be a type of algebras. A common measurement of the com-
plexity of terms of type τ is the depth of a term. For k ≥ 1, an identity
s ≈ t of type τ is said to be k-normal (with respect to this depth com-
plexity measurement) if either s = t or both s and t have depth ≥ k.
A variety is called k-normal if all its identities are k-normal. Taking
k = 1 with respect to the usual depth valuation of terms gives the well-
known property of normality of identities or varieties. For any variety
V , there is a least k-normal variety Nk(V ) containing V , the variety
determined by the set of all k-normal identities of V . The concept
of k-normalization was introduced by K. Denecke and S.L. Wismath
in [5], and an algebraic characterization of the elements of Nk(V ) in
terms of the algebras in V was given in [4]. In [1] a simplified ver-
sion of this characterization of Nk(V ) was given, in the special case of
the 2-normalization of the variety V of all lattices, using a construc-
tion called the 3-level inflation of a lattice. In this paper we show
that the analogous (k + 1)-level inflation can be used to characterize
the algebras of Nk(V ) for any variety V having a unary term which
satisfies two technical conditions. This includes any variety V which
satisfies x ≈ t(x) for some unary term t of depth at least k, and in
particular any variety, such as the variety of lattices, which satisfies an
idempotent identity.
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1. Introduction

Let τ = (ni)i∈I be any type of algebras, with an operation symbol fi of arity
ni for each i ∈ I. Let X = {x1, x2, x3, . . .} be a set of variable symbols, and
let Wτ (X) be the set of all terms of type τ formed using variables from
X. We use the well-known Galois connection Id −Mod between classes of
algebras and sets of identities. For any class K of algebras of type τ and
any set Σ of identities of type τ , we have

ModΣ = { algebras A of type τ | A satisfies all identities in Σ},

and

IdK = { identities s ≈ t of type τ | all algebras in K satisfy s ≈ t}.

For each t ∈Wτ (X), we denote by v(t) the depth of t, that is, the length of
the longest path from root to leaves in the tree diagram for t. This defines
a valuation function v on the set of all terms of type τ (see [5]). Let k ≥ 0
be any natural number. An identity s ≈ t of type τ is called k-normal
(with respect to the depth valuation) if either s and t are identical, or v(t),
v(s) ≥ k.

We denote by Nk(τ) the set of all k-normal identities of type τ . This
set is easily seen to be closed under the usual five rules of deduction for
identities, meaning that Nk(τ) is an equational theory. Since Id V is also
an equational theory for any variety V , so is IdNk V = Nk(τ) ∩ Id V , the
set of all k-normal identities satisfied by V . The variety determined by this
set, Nk(V ) = Mod IdNk V , is called the k-normalization of V . In the spe-
cial case that Nk(V ) = V , we say that V is a k-normal variety; this occurs
when every identity of V is a k-normal identity. Otherwise, V is a proper
subvariety of Nk(V ), and Nk(V ) is the least k-normal variety to contain
V . When k = 1 these concepts coincide with the usual concept of normal
identities and varieties, and the normalization of a variety; see for
instance [6].

The variety Nk(V ) is defined equationally, by means of the k-normal
identities of V . An algebraic characterization of the algebras in Nk(V )
was given by Denecke and Wismath in [4], using the concept of a k-choice
algebra. They showed that any algebra in Nk(V ) is a homomorphic image
of a k-choice algebra constructed from an algebra in V . In [1], Chajda,
Cheng and Wismath also studied the algebras of the variety N2(L), the
2-normalization of the variety L of all lattices. Using the order-theoretic
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nature of lattices, they introduced a modification of 2-choice algebras called
the 3-level inflation of an algebra, and showed that the variety N2(L) consists
exactly of all 3-level inflations of lattices. In this paper we extend this result
to any k ≥ 1 and any variety V which has a term t satisfying two technical
conditions, showing that for any such V the variety Nk(V ) equals the class
of (k+1)-level inflations of algebras in V . This result includes any variety V
which satisfies x ≈ t(x) for any term t of depth at least k, and in particular
any variety, such as the variety of lattices, which satisfies an idempotent
identity.

2. The (k + 1)-level inflation construction

Let V be any variety of type τ , with Nk(V ) its k-normalization for
some k ≥ 1. In this section we introduce a construction called the (k + 1)-
level inflation construction, which we use to produce an algebra in
Nk(V ) from any algebra in V . Our (k + 1)-level inflation construction is
a generalization of the usual inflation construction, well-known especially
in semigroup theory (see for instance [3]). Given a base algebra A, an
inflation of A is formed by adding disjoint sets of new elements to
the base set A, one set Ca (containing a) for each element a of A. The
union of these new sets then forms the base set of a new algebra containing
A, in which operations are performed by the rule that any element in the
set Ca always acts like a.

Now we describe the (k+1)-level inflation of an algebra A = (A; (fA
i )i∈I)

in V . As in the usual inflation process, we inflate the set A by adding to
each a ∈ A a set Ca containing a, such that for a 6= b ∈ A the sets Ca and
Cb are disjoint. Let A∗ =

⋃

{Ca | a ∈ A}. For each element c ∈ A∗, there
is a unique element c̄ ∈ A such that c ∈ Cc̄. For each a ∈ A, we will refer
to Ca as the class of a. These classes form a partition of A∗ which induces
an equivalence relation θ on A∗. A mapping ψ from the power set of A∗ to
A∗ satisfying ψ(Ca) ∈ Ca for all a ∈ A will be called a θ-choice function.
But in addition to this usual inflation of A, for each a ∈ A we partition the
set Ca into k + 1 subclasses or levels C j

a, for j = 0, 1, . . . , k. We impose the
restriction that |Ck

a | ≥ 1, but the other levels may be empty. Thus,
Ca =

⋃k
j=0C

j
a. We say that the elements of C j

a are attached to element
a at level j.

Our new algebra A∗ will have the inflated set A∗ as its universe, with
operations fA∗

i for each i ∈ I defined as follows:
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Definition 2.1. Let A = (A; (fA
i )i∈I) be an algebra in V , with A∗ and θ as

above. Let φ be a θ-choice function such that for any a ∈ A, φ(Ca) ∈ Ck
a .

For each i ∈ I, we define fA∗

i on A∗ by setting, for any a1, . . . , ani
∈ A∗,

fA∗

i (a1, . . . , ani
) =



















φ
(

CfA
i (a1 ,...,ani

)

)

if p ≥ k − 1

any element of
k

⋃

j=1+p

Cj

fA
i

(a1 ,...,ani
)

otherwise,

where p = maximum level of a1, . . . , ani
.

The algebra A∗ = (A∗; (fA∗

i )i∈I) = Infk+1(A, θ) will be called a (k+1)-
level inflation of A.

The key observation about our new algebra A∗ is the following fact. In
an (ordinary) inflation, each new element a is attached to and acts like an
old element a from A. In our case, each new element a is also attached to
an old element a, but this attachment also carries with it a level indicator
j, with 0 ≤ j ≤ k. Definition 2.1 means that applying an operation fA∗

i to
input elements of A∗ produces an element which is at a level at least one
higher, to a maximum of k, than the levels of the inputs. As a consequence,
any element of A∗ that is an output of a term of depth r will at least be at
level r. In particular, any element that is the output of a term of depth k
or more has to be determined by φ and so must be the special element at
level k selected by our θ-choice function φ.

We let V ∗ be the class of all algebras A∗ = Infk+1(A, θ) formed from
some algebra A ∈ V . Our goal now is to show that V ∗ ⊆ Nk(V ), that is,
that any algebra constructed as a (k + 1)-level inflation from an algebra in
V is in Nk(V ). Our proof will use the following lemma.

Lemma 2.2. Let A∗ = Infk+1(A, θ) be a (k + 1)-level inflation of an
algebra A in V . For any term t of arity m and any a1, . . . , am ∈ A∗,
tA

∗

(a1, . . . , am) is in the θ-class of tA(a1, . . . , am) ∈ A, so that

tA∗(a1, . . . , am) = tA(a1, . . . , am).
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Proof. We will give a proof by induction on the complexity of t. First, if
t = xj, for some j ≥ 1, then tA

∗

(a1, . . . , am) = aj , and hence

tA
∗

(a1, . . . , am) = aj = tA(a1, . . . , am).

Therefore, both aj and aj are in the same θ-class, Caj
.

Inductively, let t = fi(t1, . . . , tni
). Thus,

tA
∗

(a1, . . . , am) = fA∗

i (tA
∗

1 (a1, . . . , am), . . . , tA
∗

ni
(a1, . . . , am)).

By definition of fA∗

i , we have

fA∗

i (tA
∗

1 (a1, . . . , am), . . . , tA
∗

ni
(a1, . . . , am)) ∈ C

fA
i (tA

∗

1
(a1 ,...,am),...,tA∗

ni
(a1 ,...,am))

.

By induction, tA
∗

j (a1, . . . , am) = tA1 (a1, . . . , am), for all 1 ≤ j ≤ ni.

Therefore, tA
∗

(a1, . . . , am) is in CfA
i (tA

1
(a1,...,am),...,tAni

(a1 ,...,am)). Now,

fA
i (tA1 (a1, . . . , am), . . . , tAni

(a1, . . . , am)) = tA(a1, . . . , am).

Therefore, tA
∗

(a1, . . . , am) ∈ CtA(a1,...,am) and thus tA
∗

(a1, . . . , am) is in the

θ-class of tA(a1, . . . , am), which is in A.

Theorem 2.3. Any algebra A∗ constructed as a (k+1)-level inflation of an
algebra A in V is in Nk(V ). Consequently, V ∗ ⊆ Nk(V ).

Proof. Let A∗ = Infk+1(A, θ) be a (k + 1)-level of some algebra A in V .
We will show that A∗ is in Nk(V ) by showing that it satisfies any k-normal
identity s ≈ t of V . By Lemma 2.2, we know that sA∗

(a1, . . . , am) θ sA

(a1, . . . , am) and tA
∗

(a1, . . . , am) θ tA(a1, . . . , am). Since V satisfies s ≈ t
and all the elements a1, . . . , am are in A, we have sA(a1, . . . , am) =
tA(a1, . . . , am). Therefore, sA∗

(a1, . . . , am) θ tA
∗

(a1, . . . , am). That is,
sA∗

(a1, . . . , am) and tA
∗

(a1, . . . , am) are in the same θ-class; specifically,
sA∗

(a1, . . . , am) and tA
∗

(a1, . . . , am) are both in CsA(a1,...,am).
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Moreover, we know that v(s), v(t) ≥ k, so by the comment following
Definition 2.1, sA∗

(a1, . . . , am) = φ(CsA(a1 ,...,am)) = tA
∗

(a1, . . . , am). Thus

sA∗

(a1, . . . , am) = tA
∗

(a1, . . . , am). This shows that A∗ satisfies s ≈ t, as
required.

For any A ∈ V , if no new elements are added in the (k + 1)-level
inflation of A to A∗, then A∗ is just A again. This means that we
have V ⊆ V ∗ ⊆ Nk(V ). If sufficiently many new elements are added
in a (k + 1)-level inflation of A, then it is possible to break the non-
k-normal identities of V but keep all the k-normal identities of V ,
and so have A∗ ∈ Nk(V ) − Nk−1(V ), for k ≥ 2 or A∗ ∈ Nk(V ) − V ,
for k = 1.

Example 2.4. Let A = ({a, b, c}; fA) be the three element left zero band
with the Cayley table given in Figure 1. Figure 1 shows a 4-level infla-
tion of A, using k = 3, where new elements have been added as follows.

Let Ca = {u, q, r, a}, with C0
a = {u}, C1

a = {q}, C2
a = {r}, and C3

a = {a}.

Let Cb = {b, d, g, h}, with C0
b = {b}, C1

b = ∅, C2
b = {d}, and C3

b = {g, h}.

Let Cc = {w, c, z}, with C0
c = {w}, C1

c = {c}, C2
c = ∅, and C3

c = {z}.

Let A∗ = (Ca

⋃

Cb

⋃

Cc; f
A∗

) be the 4-level inflation of A with operation
fA∗

as shown in the second table of Figure 1. For products involving ele-
ments at level 3 we use the choice function φ defined to have φ(Ca) = a,
φ(Cb) = g, and φ(Cc) = z.

We illustrate the remaining products with some examples. The max-
imum of the levels of b and q is 1, and so for fA∗

(b, q) we can select
any element of C2

fA(b̄,q̄)

⋃

C3
fA(b̄,q̄)

(= C2
b

⋃

C3
b ). In this example we chose

fA∗

(b, q) = h. Since the maximum of the levels of u and d is 2, we have
fA∗

(u, d) = φ(CfA(ū,d̄)) = φ(Ca) = a.

Note also that in this example, we have fA∗

(fA∗

(u, u), w) = a, but
fA∗

(u, fA∗

(u,w)) = r. This shows that A∗ does not satisfy associativity,
which is a 2-normal identity of the variety V of left zero bands and hence of
N2(V ). So A∗ is in N3(V ) but not in N2(V ).
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fA a b c

a a a a
b b b b
c c c c

fA∗

u b w q c r d a g h z

u q r q r a a a a a a a
b d h d h d g g g g g g
w c c z z z z z z z z z

q r a a r r a a a a a a
c z z z z z z z z z z z

r a a a a a a a a a a a
d g g g g g g g g g g g

a a a a a a a a a a a a
g g g g g g g g g g g g
h g g g g g g g g g g g
z z z z z z z z z z z z

&%
'$

a
b

c

A

>

Ca

�� ��u q r a

C0
a C1

a C2
a C3

a

Cb

�� ��b d g h

C0
b C1

b C2
b C3

b

Cc

�� ��w c z

C0
c C1

c C2
c C3

c

A∗

Figure 1

3. From Nk(V ) to (k + 1)-level inflations

In this section, we consider the question of whether any algebra in Nk(V )
can be viewed as a (k+1)-level inflation of some algebra in V . Starting with
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any algebra A in Nk(V ), our first step is to produce a subalgebra B of A

which is in V . Then we describe a method for attaching each element of A

to an element of B, and for defining a (k + 1)-level inflation of the base set
B back to the set A in such a way as to obtain A again. It turns out that
this process does not always produce the original algebra A; but we show
that it works for certain large classes of varieties.

We begin by showing how to produce from any A in Nk(V ) a subalgebra
which is in V . To do this, we use the concept of the level of an element in an
algebra. This concept was used in [7] for normality and in [2] for k-normality,
and is the analogue for elements of an algebra of the depth of a term. In
general, let D be any algebra of type τ and let d ∈ D. The element d is
always the output of some term operations tD on D, in particular, of variable
terms. If the maximum depth of any term t for which d is obtainable as an
output of tD is j, for 0 ≤ j ≤ k−1, then we assign d a level of j. Otherwise,
we assign d a level of k. From this definition of levels of elements in an
algebra it is clear that applying any operation of the algebra to elements of
particular levels results in an output element whose level is at least one more
than the maximum of the levels of the input elements, to a maximum level
of k. Note that this definition of levels is consistent with how we defined
operations on the sets C j

a in our (k + 1)-level inflation, in Definition 2.1.

Now we use this definition to determine the level of each element of our
algebra A from Nk(V ). We are particularly interested in the set

LA

k := {a ∈ A | a has level k in A}.

Since there are terms of type τ of arbitrarily high depth, the set LA
k is clearly

a non-empty subset of A. Moreover, any application of operations of A to
elements from LA

k results in an element of A at level k, so LA
k is a subalgebra

of A. We shall refer to LA

k as the skeleton algebra of the original algebra A.
Now we will show that this skeleton algebra is in V .

Lemma 3.1. Let k ≥ 1. Let V be any variety and let A be any algebra in
Nk(V ). Then the skeleton algebra LA

k of A is in V .

Proof. We will show that LA
k is in V by showing that it satisfies any identity

s ≈ t of V . Suppose that s and t have arity p, and let b1, . . . , bp ∈ LA
k . These

are level k elements of A, so we can write each bj = uA
j (a1j

, . . . , amj
) for

some elements a1j
, . . . , amj

∈ A and some term uj of depth ≥ k.
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We shall denote by a+ the total list of inputs a11
, . . . , am1

, . . . , a1p , . . . , amp .
Let r be the number of items in this list (counting any multiplicities). By
adding fictitious variables as needed, we can find terms wj of arity r such
that wA

j (a+) = bj for each 1 ≤ j ≤ p. That is, we set w1(x1, . . . , xr) =
u1(x1, . . . , xm1

), then w2(x1, . . . , xr) = u2(xm1+1, . . . , xm1+m2
), and so on.

Thus we have wA
j (a+) = uA

j (a1j
, . . . , amj

) = bj for each 1 ≤ j ≤ p, and each
wj is a term of depth at least k.

Now since s ≈ t holds in V , its k-normal consequence s(w1, . . . , wp)
≈ t(w1, . . . , wp) holds in Nk(V ) and hence in A. Therefore we have

sLA

k (b1, . . . , bp) = sA(b1, . . . , bp) = sA(wA
1 (a+), . . . , wA

p (a+))

= s(w1, . . . , wp)
A(a+) = t(w1, . . . , wp)

A(a+) = tA(wA
1 (a+), . . . , wA

p (a+))

= tA(b1, . . . , bp) = tL
A

k (b1, . . . , bp).

This shows that LA
k satisfies s ≈ t and so is in V .

Having produced from A ∈ Nk(V ) a skeleton algebra LA
k in V , we now

want to form a (k + 1)-level inflation of this skeleton which gives us back
the original algebra A. Inflating the base set LA

k back up to the original
set A requires that we attach each element a of A to some level k element
a of LA

k . To do this, we use the following technique. Let t be a (fixed)
unary term of type τ of depth at least k. We shall attach each element
a ∈ A to the element a = t(a), which is a level k element of A. Since level
k elements should be attached to themselves, we have our first condition
on the term t:

(C1) For any algebra A ∈ Nk(V ) and any element a ∈ A of level k,
we need tA(a) = a.

For each base element b ∈ LA

k , we set Cb = {a ∈ A | ā = b}. For the
(k+1)-level inflation, we use the base set (LA

k )∗ =
⋃

{Cb | b ∈ LA

k }. It is clear
that this set is equal to the universe A of A. We also partition each Cb into
the k + 1 subclasses Cj

b = {b1 ∈ Cb | b1 has level j in A}, for all 0 ≤ j ≤ k.
Note that Ck

b is the singleton set {b}, so for any b ∈ LA
k we set φ(Cb) = b.

Finally, we need to define the operations of the (k + 1)-level inflation on
this new base set, using φ. For each i ∈ I and for any a1, . . . , ani

∈ (LA

k )∗,
we set
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f
(LA

k
)∗

i (a1, . . . , ani
)=











f
LA

k

i (a1, . . . , ani
) = φ

(

C
f

LA
k

i (a1,...,ani
)

)

if p ≥ k − 1

fA
i (a1, . . . , ani

) otherwise,

where p is the maximum level of a1, . . . , ani
.

To ensure that these operations do define a (k+1)-level inflation of LA

k ,
we note that Definition 2.1 requires that for p < k − 1,

f
(LA

k
)∗

i (a1, . . . , ani
) ∈

k
⋃

j=1+p

Cj

f
LA

k
i (a1,...,ani

)

.

We will start by checking whether our element fA
i (a1, . . . , ani

) is in the class
C

f
LA

k
i (a1 ,...,ani

)
. We have

fA
i (a1, . . . , ani

) ∈ C
f

LA
k

i (a1 ,...,ani
)

iff fA
i (a1, . . . , ani

) = f
LA

k

i (a1, . . . , ani
)

iff fA
i (a1, . . . , ani

) = fA
i (a1, . . . , ani

)

iff t(fA
i (a1, . . . , an1

)) = fA
i (t(a1), . . . , t(ani

)).

This gives us our second restriction on the term t:

(C2) For all i ∈ I, the variety Nk(V ) must satisfy the identity

t(fi(x1, . . . , xni
)) ≈ fi(t(x1), . . . , t(xni

)).

So for any A in Nk(V ), if term t satisfies condition (C2), then our element
fA

i (a1, . . . , ani
) is in the right class C

f
LA

k
i (a1 ,...,ani

)
. If a1, . . . , ani

have

maximum level p in A, then fA
i (a1, . . . , ani

) has level at least p + 1, and
our construction ensures that our element is also at the correct level.
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Hence for p < k − 1,

fA
i (a1, . . . , ani

) ∈
k

⋃

j=1+p

Cj

fA
i (a1,...,ani

)
.

This shows that our construction of (LA

k )∗ satisfies the conditions of the
(k + 1)-level inflation construction given in Section 2. and so (LA

k )∗ is a
(k + 1)-level inflation of LA

k .

Now we are ready to prove that as long as there is exists a term t of V
satisfying the two restrictions (C1) and (C2), any algebra A in Nk(V ) is a
(k + 1)-level inflation of its skeleton LA

k .

Theorem 3.2. Let V be a variety of type τ for which there exists a term t
of depth at least k satisfying conditions (C1) and (C2). Then any algebra A

in Nk(V ) is a (k + 1)-level inflation of its skeleton algebra LA

k in V .

Proof. Let A be an element of Nk(V ), and let t be a term satisfying
(C1) and (C2). Let LA

k be the skeleton algebra of A and let (LA
k )∗ =

Infk+1(L
A

k , θ) = ((LA

k )∗; (f
(LA

k
)∗

i )i∈I) be the (k+1)-level inflation described
above, where each element a is attached to a = tA(a). It is clear from our
construction that the base set (LA

k )∗ =
⋃

{Cb | b ∈ L
A

k } of (LA

k )∗ is equal to
the base set A of A, and we want to show that for all i ∈ I, the operations
fi{

A

k )∗ and fA coincide. Let i ∈ I and a1, . . . , ani
∈ LA

k . If the maximum

of the levels of a1, . . . , ani
is < k − 1, then by definition f

(LA

k
)∗

i (a1, . . . , ani
)

= fA
i (a1, . . . , ani

). If the maximum of the levels of a1, . . . , ani
is ≥ k − 1,

then f
(LA

k
)∗

i (a1, . . . , ani
) = f

LA

k

i (a1, . . . , ani
). In this case, fA

i (a1, . . . , ani
) is

in C
f

LA
k

i (a1 ,...,ani
)

and has level k.

But Ck

f
LA

k
i (a1 ,...,ani

)

is a singleton set, containing only f
LA

k

i (a1, . . . , ani
).

Hence, fA
i (a1, . . . , ani

) = f
LA

k

i (a1, . . . , ani
) and we have fA

i (a1, . . . , ani
) =

f
(LA

k
)∗

i (a1, . . . , ani
). Therefore, A = (LA

k )∗.

Corollary 3.3. Let V be a variety of type τ for which there exists a term
t of depth at least k satisfying conditions (C1) and (C2). Then the class
Nk(V ) is precisely the class V ∗.
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Corollary 3.4. Let t be any unary term of type τ having depth at least k.
Let V1 = Mod {x ≈ t(x)} be the variety of type τ determined by the identity
x ≈ t(x). Then any subvariety V of V1 satisfies conditions (C1) and (C2)
for t, and has Nk(V ) = V ∗.

Proof. Condition (C2) is clearly met, since t(fi(x1, . . . , xni
)) ≈ fi(t(x1),

. . . , t(xni
)) is a k-normal identity which is a consequence of x ≈ t(x). So we

show that (C1) holds, that is, that t(a) = a for any level k element a of any
algebra A in Nk(V ). If a ∈ A is at level k, we can write a = sA(a1, . . . , am),
for some term s of depth ≥ k and some a1, . . . , am ∈ A. Then s ≈ t(s) is
a k-normal consequence of x ≈ t(x) and also holds in A. So we have a =
sA(a1, . . . , am) = tA(sA(a1, . . . , am)) = tA(a).

Example 3.5. For this example we use type (2) and varieties of semigroups.
As is customary for such varieties, we will write terms and identities with
the binary operation symbol omitted, writing x1x2 for the product f(x1, x2).

In any variety V of semigroups, the identity s1 ≈ s2 holds in Id V for
any two terms s1 and s2 of depth ≥ k having exactly k + 1 occurrences
of x and no other variables. Assuming associativity, we will use xk+1 to
represent any such term. We will use as our special term t the term t(x)
= f(f(. . . (f(x, x), x), . . .), x) = xk+1. We will show that although from
Corollary 3.4 it is sufficient to have V satisfy x ≈ t(x), this condition is
not necessary. Instead we can impose two weaker conditions: x1 · · · xk ≈
t(x1 · · · xk) and t(x1x2) ≈ t(x1)t(x2). That is, we let V2 be the variety of
semigroups determined by the identities x1 · · · xk+1 ≈ (x1 · · · xk+1)

k+1 and
(x1)

k+1(x2)
k+1 ≈ (x1x2)

k+1.
The identity (x1)

k+1(x2)
k+1 ≈ (x1x2)

k+1 is precisely the type (2) ana-
logue of condition (C2), so it suffices to verify that condition (C1) also holds
for any algebra A in Nk(V2). From the identity x1 · · · xk+1 ≈ (x1 · · · xk+1)

k+1

of V2 we can deduce as a k-normal consequence that for any term s of depth
≥ k, the identity s ≈ sk+1 holds in Nk(V2). The proof of (C1) then proceeds
exactly as in the proof of Corollary 3.4.

Example 3.6. Let V = Mod(xy ≈ x) be the semigroup variety of left-zero
bands. In this case, V ⊆ V1 and V ⊆ V2. Let A = ({a, a2, a3, b, b2, b3, ab, ba};
fA) be the relatively free algebra on {a, b} for the variety N2(V ) of 2-
normalized left zero bands. The Cayley table for A is given in Figure 2.
We start by determining the levels of the elements of A. It is easy to see
that a and b have level 0, while a2, b2, ab and ba have level 1, and a3 and
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b3 have level 2. We set LA
2 = ({a3, b3}; fLA

2 ). Now we inflate LA
2 to (LA

2 )∗

= ({a, a2, a3, b, b2, b3, ab, ba}; f (LA
2

)∗) by attaching the level 0 and 1 elements
of A to the level 2 elements using the term t(x) = f(f(x, x), x)) = x3 and
attaching each level 2 element to itself (see Figure 2). For example, ab
= (ab)3 = ababab = a3 and so ab is attached to a3. Elements a, a2, ab
and a3 are attached to a3 while b, b2, ba and b3 are attached to b3. Let
Ca3 = {a, a2, ab, a3}, with C0

a3 = {a}, C1
a3 = {a2, ab}, and C2

a3 = {a3} and
let Cb3 = {b, b2, ba, b3}, with C0

b3
= {b}, C1

b3
= {b2, ba}, and C2

b3
= {b3}.

Let φ(Ca3) = a3 and φ(Cb3) = b3. Since a, b have maximum level 0, we

have f (LA
2

)∗(a, b) = fA(a, b) = ab. The elements b2, ab have maximum level

1, and so f (LA
2

)∗(b2, ab) = φ(C
f

LA
2 (b2,ab)

) = fLA
2 (b2, ab) = b3(= fA(b2, ab)).

The Cayley table for f (LA
2

)∗ is the same as the Cayley table for fA.

fA/f (LA
2

)∗ a b a2 b2 ab ba a3 b3

a a2 ab a3 a3 a3 a3 a3 a3

b ba b2 b3 b3 b3 b3 b3 b3

a2 a3 a3 a3 a3 a3 a3 a3 a3

b2 b3 b3 b3 b3 b3 b3 b3 b3

ab a3 a3 a3 a3 a3 a3 a3 a3

ba b3 b3 b3 b3 b3 b3 b3 b3

a3 a3 a3 a3 a3 a3 a3 a3 a3

b3 b3 b3 b3 b3 b3 b3 b3 b3

'

&

$

%ab

b2

a3

b3
ba
b

a
a2

A

>
�� �a3 b3

LA
2

>

�� �a a2 ab a3Ca3

C0
a3 C1

a3 C2
a3

�� �b b2 ba b3Cb3

C0
b3

C1
b3

C2
b3

(LA
2 )∗

Figure 2
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There are many classes of varieties which satisfy the conditions of Theorem
3.2 or Corollary 3.4. These include any variety which satisfies an idempotent
identity, or even a consequence of idempotence such as x ≈ t(x) for a term
t of depth at least k. As a special case, we see that the construction from
[1] for 2-normalizations of lattices did not actually need the order-theoretic
property of lattices, but only the idempotence of the meet and join opera-
tions. However, there are many varieties for which there is no term t fulfilling
conditions (C1) and (C2). For instance, if V is the variety of all semigroups
and k = 3, there is no term t of depth 3 or more for which V satisfies (C2),
that t(x, y) ≈ t(x)t(y). It may still be true in this case that Nk(V ) = V ∗,
but our construction does not give a proof of this.
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