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Abstract

A differential modal is an algebra with two binary operations such
that one of the reducts is a differential groupoid and the other is a semi-
lattice, and with the groupoid operation distributing over the semilat-
tice operation. The aim of this paper is to show that the varieties of
entropic and distributive differential modals coincide, and to describe
the lattice of varieties of entropic differential modals.
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1. Introduction

A mode (A,Ω) is an idempotent and entropic algebra. It means that each
singleton {a} is a subalgebra and each operation ω ∈ Ω is a homomorphism.
These two properties may be described as identities:

x . . . xω = x

x11 . . . x1nω . . . xm1 . . . xmnωη = x11 . . . xm1η . . . xn1 . . . xnmηω

true for each n-ary operation ω and each m-ary operation η in Ω.

Let AP denote the set of all non-empty, finitely generated subalgebras
of the algebra (A,Ω). For subalgebras A1, . . . , An ∈ AP and for n-ary oper-
ation ω ∈ Ω we define the complex ω-product of the subalgebras A1, . . . , An

as follows

A1 . . . Anω := {a1 . . . anω | ai ∈ Ai, i = 1, . . . n}.
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If (A,Ω) is a mode, then the complex product of subalgebras of A is also a
subalgebra of A.

An identity t = s is said to be linear if the multiplicities of each argument
of t and s are at most 1.

Lemma 1.1 [6]. If (A,Ω) is a mode, then (AP,Ω) is again a mode satis-

fying each linear identity satisfied by (A,Ω).

A modal is an algebra (A,+,Ω) for which the reduct (A,Ω) is a mode,
(A,+) is a semilattice and the operations ω ∈ Ω distribute over +. It means
that for n-ary operation ω and j = 1, . . . , n the following laws are true:

x1 . . . xj−1(xj + x′

j)xj+1 . . . xnω = x1 . . . xj . . . xnω + x1 . . . x′

j . . . xnω.

Lemma 1.2 [6]. Let (A,Ω) be a mode. Then for A1, A2 ∈ AP define

A1 + A2 := 〈A1 ∪ A2〉. Then for any mode (A,Ω) the algebra (AP,+,Ω)
forms a modal.

Lemma 1.3 [6]. Let (A,+,Ω) be a modal. Then for each n-ary operation

ω ∈ Ω and a1, . . . , an ∈ A

a1 . . . anω ≤ a1 + . . . + an.

Let V denote a variety of modes defined by linear identities and let MV

denote the variety of modals whose mode reducts lie in the variety V .

Lemma 1.4 [6]. The modal (XV P,+,Ω) of finitely generated nonempty

subalgebras of the free V -algebra XV on X is the free MV -algebra XMV

on X.

A mode is a semilattice mode if some binary term interprets as a semilattice
operation.

Theorem 1.5 [1]. If K is a variety of semilattice modes, and {x, y}K is

the free K-algebra on {x, y}, then K = V ({x, y}K).

With a variety K of semilattice modes we can associate the semiring R(K),
defined as follows:

(1) the universe R of R(K) is the subuniverse of {x, y}K of all terms t such
that t ≥ y,
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(2) for s, t ∈ R we define the addition to be the semilattice addition, while
the multiplication is defined by

s ◦ t := xy t y s.

Then R(K) is the semiring (R, ◦,+, x + y, y) with y as zero and x + y as
identity.

Theorem 1.6 [1]. If K is a variety of semilattice modes, then the lattice of

equational theories extending the theory of K is isomorphic to the congruence

lattice ConR(K) of R(K).

A differential groupoid is a groupoid (G, ·) satisfying the following identities:

(1.1) x · x = x,

(1.2) xy · zt = xz · yt,

(1.3) x2y := x · xy = x.

Note also two other identities satisfied in all differential groupoids

(1.4) x · yz = xy,

and

(1.5) xy · z = xz · y.

To denote the variety of differential groupoids we will use the symbol Dm.
Note that differential groupoids are modes.

Lemma 1.7 [3]. In the free differential groupoid {x0, . . . , xn−1}Dm on

{x0, . . . , xn−1} each element may be expressed in the standard form

xyα1

1
. . . yαn

n := (. . . ((. . . (. . . ((x y1)y1) . . .)y1
︸ ︷︷ ︸

α1

) . . .) yn) . . .)yn
︸ ︷︷ ︸

αn

,

where x, yi ∈ {x0, . . . , xn−1} and yi 6= x ∀i ∈ {1, . . . , n}.



32 K. Ślusarska

Note that for α = 0, we have xyα = x.

Let G be the free differential groupoid {x0, . . . , xn−1}Dm and y ∈ G.

Let

R(y) : G → G; x 7→ x · y

and

R : G → End(G); x 7→ R(x).

The set xR(G) is the orbit of x in G. By results of [3] and [7], it is easy to
see that G consists of n disjoint orbits

x0R(G), . . . , xn−1R(G),

and an orbit xiR(G) consists of elements with xi as the left-most variable.
Each orbit is a subgroupoid and a left-zero band. Free differential groupoids
may be represented by labelled directed graphs, see [2]. For example the
free algebra {x, y}Dm on two generators is illustrated in the Figure 1.

q

q

q

q

q

q

q

q

?

?

?

?

?

?

y

y

y

x

x

x

x

xy

xy2

xy3

y

yx

yx2

yx3

...
...

...
...

Figure 1

An arrow denotes multiplication by the generator of the other orbit.
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2. Free differential modals

A differential modal is a modal whose mode reduct is a differential groupoid.
Let DM denote the variety of differential modals.

By Lemma 1.4, the free differential modal XDM on X = {x0, . . . , xn−1}
is the modal of all finitely generated, non-empty submodes of the free dif-
ferential mode XDm. By results of [6, Section 3.5], the one-to-one core-
spondence between elements of XDmP and terms representing elements of
XDM is given by

A = 〈a1, . . . , ak〉 := 〈{a1, . . . , ak}〉 7→ tA = a1 + . . . + ak,

where {a1, . . . , ak} is the (uniquely determined) minimal set of generators
of A. This corespondence and Lemma 1.7 imply the following result.

Lemma 2.1. In the free differential modal {x0, . . . , xn−1}DM on the set

{x0, . . . , xn−1} each element may be expressed in the form

t = y1z
α11

11
. . . z

α1k1

1k1
+ . . . + ylz

αl1

l1 . . . z
αlkl

lkl
,

where yi, zij ∈ {x0, . . . , xn−1} and yi 6= zij for j = 1, . . . ki.

Let us describe in details the free differential modal {x, y}DM on two
generators. We have two kinds of non-empty, finitely generated subalgebras
of G = {x, y}Dm :

(1) the finite subsets of one orbit (xR(G) or yR(G)),

(2) the subalgebras with elements of both orbits, generated by two elements
xyk and yxr for some k, r :

〈xyk, yxr〉 = {xyk, xyk+1, xyk+2, . . .} ∪ {yxr, yxr+1, yxr+2, . . .}.

Let A,B ∈ {x, y}DmP and A = Ax ∪ Ay, B = Bx ∪ By where Ax, Bx ⊆
xR(G) and Ay, By ⊆ yR(G). Then the modal multiplication can be
described as follows:
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A · B = (Ax ∪ Ay) · (Bx ∪ By)

= Ax · Bx ∪ Ax · By ∪ Ay · Bx ∪ Ay · By

assuming additionally that

Ax · ∅ = Ay · ∅ = ∅ · Bx = ∅ · By = ∅.

Note that for A = {xyi1 , . . . , xyik}, we have tA = xyi1 + · · · + xyik , and
similarly for a finite subgroupoid of yR(G). For A = {xyi, xyi+1, . . . } ∪
{yxj , yxj+1, . . . }, we have tA = xyi + yxj .

3. Distributive differential modals

A distributive differential modal is a differential modal such that also addi-
tion distributes over multiplication i.e., the modal that satisfies the identity:

(3.1) x + yz = (x + y)(x + z).

The variety of distributive differential modals will be denoted by dDM .

Lemma 3.1. Each distributive differential modal satisfies the identities

(3.2) xyk = xy

for each k ≥ 2,

(3.3) x + xy = xy.

(3.4) x + y = xy + yx,

and

(3.5) x + yx = x + y.

Proof. Substituting xy for x, x for y and y for z in (3.1) we obtain

xy = xy + xy = (xy + x)(xy + y) = x + xy + xy2.
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Hence

x + xy = x + xy + xy2 = xy,

which implies

xy2 = xy

and hence (3.2) holds. Now, from the identity

x + xy = xy

we obtain

x + yx = x + y + yx = x + y

and analogously

xy + y = x + xy + y = x + y.

Hence

xy + yx = x + xy + y + yx = x + y.

Theorem 3.2. The free distributive differential modal {x, y}dDM is iso-

morphic to the algebra F := ({x, xy, y, yx, x + y}, ·,+), where the groupoid

operation · is defined in Figure 2, while the semilattice operation + is defined

in Figure 3.
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Proof. By Section 2, each element of {x, y}DM is equal to

xyi1 + . . . + xyik

or to

xyi + yxj.

By Lemma 3.1, the modal {x, y}dDM satisfies the identities (3.2) for all
positive integers k. Hence in {x, y}dDM , every term of the form xy i1 +
. . . + xyik is equal to x or xy, and any term xyi + yxj is equal to one of the
following:

x + y, x + yx, xy + y, xy + yx.

However, by Lemma 3.1, x + yx = y + xy = x + y and xy + yx = x + y.
Therefore the set F can be considered as the set of elements of {x, y}dDM .
The operations + and · are defined as in the figures. Now it suffices to
observe that the algebra F is distributive. We must show, that for any
elements a, b, c of F

(3.6) a + bc = (a + b)(a + c).

If a, b or c is equal to x + y, then (3.6) holds. If a and b are from different
orbits, then both sides of (3.6) are x+y. Now assume, that both a and b are
from the same orbit generated by x. (A similar proof will go for the orbit
generated by y.) We have four possibilities:
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(1) a = b = x,

(2) a = x and b = xy,

(3) a = xy and b = x,

(4) a = b = xy.

If c is from the same orbit we will have the equality a + b = a + b, so it
suffices to consider only the case such that c is from the orbit generated by
y. But then in each case both sides of (3.6) are equal to xy, so our algebra
is distributive.

Our next aim is to describe the free distributive differential modal
{x0, . . . , xn−1}dDM on n generators.

By Lemma 2.1, in the variety DM of differential modals every term
with variables in {x0, . . . , xn−1} can be written as

(3.7) xi1y
α11

11
. . . y

α1k1

1k1
+ . . . + xily

αl1

l1 . . . y
αlkl

lkl
,

where xij , yij ∈ {x0, . . . , xn−1} and yij 6= yim for j 6= m and xij 6= yjm for
m = 1, . . . , kj . If a term t has the form as in (3.7), then we define the set tf

by

tf :=
l⋃

j=1

{xij},

the union of first variables of all summands. We will show that in the variety
dDM each such term t equals to some term in a very special form.

Lemma 3.3. If t and s are terms of the form (3.7) with variables in

{x0, . . . , xn−1}, then the variety dDM satisfies the identity t = s if and

only if tf = sf and arg t = arg s.

Proof. (⇐) Note that by Lemma3.1, if t is of the form (3.7) then the
variety dDM satisfies the identity

t = xi1y11 . . . y1k1
+ . . . xilyl1 . . . ylkl

.
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A similar identity holds for s. We will first show that the equalities tf =
sf = {x} and arg t = arg s, imply that t = s holds in dDM . The proof is
by induction on k = |arg t| ≤ n. For k = 2 our claim follows by Theorem 3.2.

Assume that it holds for k and we will prove it for k + 1. Let |arg t| =
k + 1. Let z be any variable in arg t \ tf . Consider the following cases:

Case 1. Let

t = t1 + t2z, s = s1 + s2z

where t1, t2, s1, s2 are terms which do not contain the variable z. Then by
distributivity

t = t1 + t2z = (t1 + t2)(t1 + z)

= (t1 + t2)t1 + (t1 + t2)z = (t1 + t2) + (t1 + t2)z.

Similarly

s = (s1 + s2) + (s1 + s2)z.

Let us note that

(t1 + t2)f = (s1 + s2)f = {x}, arg (t1 + t2) = arg (s1 + s2)

and

|arg (t1 + t2)| = k.

By induction hypothesis

t1 + t2 = s1 + s2

and thus

s = t.

Case 2. Let

t = t1 + t2z, s = s2z,

where t1, t2, s2 are terms which do not contain the variable z. By Lemma 3.1

s = s2z = s2 + s2z

and we go back to the previous case.
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Case 3. Let

t = t2z, s = s2z

and t2, s2 do not contain z. Then arg t2 = arg s2 and |arg t2| = k. By the
assumption s2 = t2 and hence t = s.

Now let

tf = sf = {xi1 , . . . , xil}.

The proof is again by induction on the number k of variables of t.

First assume that k = l ≤ n so that

tf = sf = arg t = arg s.

Then by Lemma 3.1, there exist t1, . . . , tl, s1, . . . , sl such that

t = t1 + . . . + tl, s = s1 + . . . + sl,

where for all j = 1, . . . , l

(tj)f = (sj)f = {xij}

and

arg tj = arg sj = {xi1 , . . . , xil}.

By the previous part of the proof tj = sj for all j = 1, . . . , l and this implies
that t = s.

Now assume that our claim is true for k > l and |arg(t)| = k + 1. Let z

be any variable in arg(t) \ tf . We consider similar cases as in the previous
part of the proof.

Case 1. Let

t = t1 + t2z, s = s1 + s2z

where t1, t2, s1, s2 are terms which do not contain the variable z. Then by
distributivity

t = t1 + t2z = (t1 + t2)(t1 + z)

= (t1 + t2)t1 + (t1 + t2)z
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and similarly

s = (s1 + s2)s1 + (s1 + s2)z.

Let us note that

[(t1 + t2)t1]f = [t1 + t2]f = [s1 + s2]f = [(s1 + s2)s1]f

and

arg [(t1 + t2)t1] = arg [(s1 + s2)s1],

thus t = s.

Remaining two cases are proved analogously.

(⇒) Assume that the variety dDM satisfies an identity t = s where t and
s are terms of the form (3.7). We will show that tf = sf and arg t = arg s.

Suppose on the contrary that tf 6= sf and let z be a variable such that z ∈ tf

but z 6∈ sf . Then substituting y for z and x for any other variable in the
identity t = s, we obtain

x = x + yxl or x = yxl.

However, by Lemma 3.1

x = x + yxl = x + yx = x + y

whence x = y. Similarly,

x = yxl = yx

whence

y = y · yx = y · x = x.

It follows that the identity t = s implies x = y and this gives a contradiction.
Thus tf = sf .

Now suppose that arg t 6= arg s. Let z be a variable such that z ∈ arg t

but z 6∈ arg s. Substituting y for z and x for any other variable in t = s, we
obtain

x = xyi1 + . . . + xyil = x + xy = xy.

But the variety dDM does not satisfy the left-zero identity x = xy. It
follows that arg t = arg s. This finishes the proof.
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Theorem 3.4. In the free distributive differential modal {x0, . . . , xn−1}
dDM each element can be written in the standard form

xi1xj1 . . . xjk
+ . . . + xilxj1 . . . xjk

where j1 < j2 < . . . < jk and i1 < i2 < . . . < il and xir 6∈ {xj1 , . . . , xjk
}.

If in such a term t, arg t = tf = {xi1 , . . . , xil}, then

t = xi1 + . . . + xil .

Proof. The proof of Theorem 3.4 is a direct consequence of Lemma 3.3.
If t is a term of the form (3.7) and tf = {xi1 , . . . , xil} and arg t = tf ∪
{xj1 , . . . , xjk

}, then by Lemma 3.3, the variety dDM satisfies the identity

t = xi1xj1 . . . xjk
+ . . . + xilxj1 . . . xjk

.

If tf = arg t, it satisfies the identity

t = xi1 + . . . + xil .

Theorem 3.4 allows to provide a representation for free differential modals.

Let X = {x0, . . . , xn−1} be a set of variables and let FX be the set of
pairs of disjoint subsets of X

FX := {(A,B) | ∅ 6= A ⊆ X, B ⊆ X \ A}.

We define the operations + and · on FX by

(A,B) + (C,D) := (A ∪ C, (B ∪ D) \ (A ∪ C)),

(A,B) · (C,D) := (A, (B ∪ C) \ A).

It is easy to check that the set FX is closed under both operations + and ·.
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Lemma 3.5. The algebra (FX ,+, ·) is a distributive differential modal.

Proof. Let (A,B), (C,D), (E,F ), (G,H) be any elements of the set FX .
First we show that the reduct (FX ,+) is a semilattice. Note that the opera-
tion + is idempotent and commutative, so it suffices to check its associativity.
We have

(A,B) + [(C,D) + (E,F )]

= (A ∪ C ∪ E, {B ∪ [(D ∪ F ) \ (C ∪ E)]} \ (A ∪ C ∪ E))

= ((A ∪ C ∪ E, (B ∪ D ∪ F ) \ (A ∪ C ∪ E))

= (A ∪ C ∪ E, {[(B ∪ D) \ (A ∪ C)] ∪ F} \ (A ∪ C ∪ E))

= [(A,B) + (C,D)] + (E,F ).

Now we show that the second reduct (FX , ·) is a differential groupoid. As
the following equalities hold,

[(A,B) · (C,D)] · [(E,F ) · (G,H)]

= (A, {[(B ∪ C) \ A] ∪ E} \ A) = (A, (B ∪ C ∪ E) \ A)

= (A, {[(B ∪ E) \ A] ∪ C} \ A)

= [(A,B) · (E,F )] · [(C,D) · (G,H)],

our algebra satisfies the identity (1.2). Moreover we have

(A,B) · [(A,B) · (C,D)] = (A,B) · (A, (B ∪ C) \ A)

= (A, (B ∪ A) \ A) = (A,B).

This means that our algebra satisfies also (1.3). Since the operation · is
idempotent, (FX , ·) is a differential groupoid.
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Our next aim is to show that · distributes over +. Note that

(A,B) · [(C,D) + (E,F )] = (A, (B ∪ C ∪ E) \ A)

= (A, {[(B ∪ C) \ A] ∪ [(B ∪ E) \ A]} \ A)

= (A,B) · (C,D) + (A,B) · (E,F ).

Thus (FX ,+, ·) is a differential modal.

Now it suffices to check that this modal is distributive. Since

(A,B) + (C,D) · (E,F )

= (A ∪ C, [B ∪ ((D ∪ E) \ C)] \ (A ∪ C)) = (A ∪ C, (B ∪ D ∪ E) \ (A ∪ C))

= (A ∪ C, {[(B ∪ D) \ (A ∪ C)] ∪ (A ∪ E)} \ (A ∪ C))

= [(A,B) + (C,D)] · [(A,B) + (E,F )],

our claim is proved.

Theorem 3.6. The algebra (FX ,+, ·) is isomorphic to the free distributive

differential modal XdDM on the set X.

Proof. Let f : X −→ FX be the mapping such that xf = ({x}, ∅).
Thus there exists uniquely determined homomorphism f̄ : XdDM → FX

extending f such that the following diagram commutes.

X - (FX ,+, ·)
f

(XdDM,+, ·)

6

∃!f̄

Q
Q

Q
Q

Q
Q

Q
QQs

ι

Figure 4
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We will identify elements of XdDM with terms in standard form. Let t be
a term in the standard form xi1xj1 . . . xjk

+ . . . + xilxj1 . . . xjk
. Then

tf̄ =({xi1}, ∅)({xj1}, ∅) . . . ({xjk
}, ∅)+ . . . +({xil}, ∅)({xj1}, ∅) . . . ({xjk

}, ∅)

= ({xi1}, {xj1 , . . . , xjk
})+ . . . + ({xil}, {xj1 , . . . , xjk

})

= ({xi1 , . . . , xil}, {xj1 , . . . , xjk
}).

Clearly f̄ is injective.

Now let (A,B) ∈ FX . There exists a standard term t such that tf = A

and arg t = A ∪ B. Note that (A,B) = tf̄ . Hence f̄ is ”onto” and thus it is
an isomorphism.

Now let us consider entropic differential modals, i.e., modals which satisfy
the entropic law:

(3.8) (x + y)(z + w) = xz + yw.

Theorem 3.7. The varieties eDM of entropic differential modals and

dDM of distributive differential modals coincide.

Proof. Since in the variety of differential modals the entropic identity
(1.2) implies distributivity (3.1) of + over ·, it follows that the variety eDM

is included in the variety dDM .

Let t = (x+ y)(z +w) and s = xz + yw. Note that tf = sf = {x, y} and
arg t = arg s = {x, y, z, w}. By Lemma3.3, t = s holds in dDM . Hence the
variety dDM satisfies the entropic law (3.8). This finishes the proof.

Let LzDM denote the variety of differential modals satisfying the left-zero
identity

xy = x,

and let T denote its trivial subvariety.

Theorem 3.8. The lattice of subvarieties of dDM forms the chain
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t

t

t

T .

LzDM

dDM

Figure 5

Proof. By Theorem1.5, the variety dDM = eDM is generated by the
single algebra {x, y}eDM . By Theorem 1.6 the lattice of subvarieties of
this variety is dually isomorphic to the congruence lattice of the semiring
({y, yx, x + y}, ◦,+) with multiplication defined by the table

◦ y yx x + y

y y y y

yx y y yx

x + y y yx x + y

and addition given by the (join) semilattice of Figure 6.

s

s

s

y.

yx

x + y

Figure 6
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This semiring has precisely three congruences: the universal congruence
∇ = R

2, the equality relation ∆, and the congruence θ with precisely two
congruence classes

[y]θ = {y, yx} and [x + y]θ = {x + y}.

Hence its congruence lattice forms the chain in Figure 7.

t

t

t

∆

θ

∇

Figure 7

This finishes the proof.
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