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Abstract

A fundamental result in universal algebra is the theorem of
Rosenberg describing the maximal subclones in the clone of all
operations over a finite set. In group theory, the maximal subgroups
of the symmetric groups are classified by the O’Nan—Scott Theorem.
We shall explore the similarities and differences between these
two analogous major results. In addition, we show that a primitive
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groups, because if the number of simple factors of the socle is greater
than two, then the group is contained in the alternating group.
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1. INTRODUCTION

Let X be a finite set, | X| > 2. In universal algebra one of the fundamental
objects is Clo(X), the clone of all operations over X. In group theory one
studies the symmetric group Sym(X), the group of all permutations of X. In
this paper we are going to compare two fundamental results, one from 1965
due to Ivo Rosenberg [11]| describing the maximal subclones in Clo(X), the
other from 1979 due to Leonard L. Scott [15] and Michael O’Nan classifying
the maximal subgroups in Sym(X).

These two results have quite different character. Rosenberg’s Theorem
gives a full description. All clones on his list are maximal and
pairwise distinct, apart from some trivial cases (reversing the partial
order; taking a power of the permutation of prime order), see [12].
Hence it is straightforward to enumerate all maximal clones on a given
set X.

In contrast, the O’Nan—Scott Theorem is only a classification. Not
all groups on their list are maximal. It has to be investigated individually
whether a group listed is indeed maximal. That job has been accomplished
by Liebeck, Praeger, and Saxl [5]. The present paper provides a small
contribution to this by showing that a primitive group of diagonal type is
not maximal in the symmetric group if its socle is a direct product
of three or more simple factors, see Theorem 3. (Although such groups
can be maximal in the alternating group as it follows from [5].)
Furthermore, in order to know all maximal permutation groups of
a given degree n one needs a list of all almost simple groups that contain
a maximal subgroup of index n. Thus, the O’Nan—Scott Theorem yields
no straightforward method to enumerate the maximal permutation
groups of a given degree.

In Section 2 we present Rosenberg’s Theorem. In Section 3 we formulate
the O’Nan—-Scott Theorem and prove our observation about the parity
of permutations in primitive groups of diagonal type. Finally, in Section 4,
for each maximal clone M we determine the permutations contained
in M and tabulate those which contain a given maximal permutation
group. We find that for four of the six types of maximal permutation
groups any group in these classes can be obtained as the permutation part of
a maximal clone.
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2. ROSENBERG’S THEOREM ON MAXIMAL CLONES

In order to formulate Rosenberg’s Theorem we require a number of
definitions.

Let p C X" be an h-ary relation. We say that an n-ary operation
f: X" — X preserves p, if

(mn,...,:z:lh),...,(xnl,...,:vnh) ep

implies
(f(.’En, - ,:L‘nl), C.. ,f(l‘lh, - ,CL‘nh)) € p.

The set of all operations preserving p is closed under substitutions and
contains all projections, so it is a clone, which will be denoted by Pol(p)
(see |9, pp. 47-48]).

It is well known what is meant by a partial order relation, by the
smallest and largest element with respect to a partial order, by a
nontrivial equivalence relation, and by the graph (as a binary relation) of
a function. Three further types of relations need to be defined.

If X is an elementary abelian group (i.e., the direct sum of cyclic groups
of the same prime order; in other words, the additive group of a vector space
over a field of prime number of elements), then the affine relation over X is
defined as

{(z,y,u,v) € X! |z +y=u+v},

and it is easily seen to be preserved exactly by the quasi-linear operations of

the form
n

> eilwi) +c (e € End(X),c € X).
=1

A relation p C X" is called central if it is totally symmetric, totally reflexive,
and has nonempty center

Z={x e X |Vag,...,zp: (x,29,...,21) € p}.

By total symmetry of the relation we mean that for every permutation
g € Sym(h), if (z1,...,25) € p, then (2401, ...,T4n)) € p- Moreover, total
reflexivity means that (z1,...,x) € p, whenever any two of the arguments
x1,...,x, are equal. Note that we must have h + |Z| < | X|.
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Finally, let ¢ : X — {1,...,h}"™ be a surjective, but not necessarily
injective coordinatization of the set X with m > 1 coordinates,
each in the range {1,...,h} with o > 3, and let =, : {1,...,h}" —
{1,...,h} be the i-th projection (i = 1,...,m). Then the correspon-
ding h-regular relation p is defined by (x1,...,x,) € p iff for every
i=1,...,m not all elements x1,...,x;, have distinct i-th coordinates:

{mi(d(z1)), .., mi(d(zp))}H < h.

Now we can formulate Rosenberg’s fundamental theorem.

Theorem 1. Quer a finite set X (|X| > 2) all mazimal clones have the form
Pol(p) for some relation p of one of the following six types:

(a) a partial order with smallest and largest element;

(b) the graph of a fized-point-free permutation of prime order;

(c) the affine relation determined by an elementary abelian group;

(d) a nontrivial equivalence relation;

(e) a central relation;

(f) an h-regular relation determined by a mapping ¢ : X — {1,... h}™.

In its original formulation Rosenberg’s Theorem was given as a primality cri-
terion, stating that a collection of functions is complete in the sense that it
generates the clone of all functions, if and only if there is no relation of any of
the six types above that is preserved by every function in the given collection.
The result was announced in 1965 [11] and the proof appeared in a 91-page
paper in 1970 [13]. Unfortunately, due to political reasons, this issue of
Rozpravy was not sent to many libraries and it is still missing from their
collections. In the book of Péschel and Kaluznin [9] it is proved that the
clones determined by relations of types (a)-(f) are indeed maximal, but
the proof that there are no other maximal clones is not given there.
A proof of this part, shorter than the original one, can be found in a paper
of Quackenbush [10]. For the number of maximal clones over a given finite
set see [14].
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3. THE O’'NAN-SCOTT THEOREM ON MAXIMAL
PERMUTATION GROUPS

Here again we need some definitions. If X and Y are disjoint nonempty
sets then let Sym(X) x Sym(Y) < Sym(X UY) be the intransitive per-
mutation group consisting of the permutations mapping both X and Y to
itself. Furthermore, we define two actions of the wreath product of the two
symmetric groups. Let Sym(X) ! Sym(Y) < Sym(X x Y') consist of the
permutations of the form (z,y) — (gy(x), h(y)), where h € Sym(Y') and for
each y € Y, g, € Sym(X) are arbitrary permutations. The power action
(also called the product action) of the wreath product is the permutation
group Sym(X) T Sym(Y) < Sym(XY) consisting of permutations of the
form f+— f’, where f : Y — X and f'(y) = g,(f(h"(y))). If | X| =n we
may write Sym(n) for Sym(X).

If X is equipped with the structure of a d-dimensional vector space over
the p-element field (p a prime), then the affine group AGL(d,p) consists
of the permutations of the form x — «a(z) + ¢, where a@ € Aut(X) is an
invertible linear transformation and ¢ € X.

Let S be a a nonabelian simple group, £ > 2, and let D = {(s,...,s)
| s € S} < S* be the diagonal subgroup. Consider the action of S*
on the left cosets of D. Let GG be the normalizer of this permutation
group in the symmetric group of degree |S|*~!. Then G is a primitive
permutation group with G/S* = Out(S) x Sym(k), where Out(S) is the
outer automorphism group of S defined as the quotient group of the full
automorphism group by the group of inner automorphisms. We say that
this G is of diagonal type.

Finally, we say that G is an almost simple group, if G has a unique
minimal normal subgroup S, and S is a nonabelian simple group.
Then S < G < Aut(S). If G acts on the cosets of a maximal subgroup
of index n not containing S, then we obtain a primitive permutation
representation of degree n of G.

We give the following formulation of the O’Nan—Scott Theorem as it
can be found in |4, p. 268|, or in [3, Theorem 4.8]. Note that the original
version in [15] contained some inaccuracies that were corrected in a paper of
Aschbacher and Scott |1, Appendix], see also [6].
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Theorem 2. All mazimal subgroups of Sym(n) (n > 5) belong to one of the
following six classes:

(a) Sym(ni1) x Sym(nz), n = ny + no (intransitive);

(b) Sym(m)Sym(k), n = mk (imprimitive);

(c) Sym(m) T Sym(k), n = m* (product [power| action);
(d) AGL(d,p), n =p? (affine);

(e) a group of diagonal type;

(f) a primitive almost simple group.

Note that if 2 < n < 4, i.e., if Sym(n) is solvable, then we have to replace
the almost simple groups of case (f) by the alternating group Alt(n) (which
belongs to case (f) if n > 5).

The subgroups given in Theorem 2 are not necessarily maximal. A
complete list of exceptions was given by Liebeck, Praeger, and Saxl [5].
They show that in most of the cases these groups are maximal either in the
symmetric group Sym(n) or in the alternating group Alt(n). Of course, the
alternating group is one of the maximal subgroups in the symmetric group.
However, it has no analogue among the maximal clones. Therefore, we re-
strict ourselves to classifying the maximal subgroups only in the symmetric
group, thus eliminating the proper subgroups of the alternating groups from
the list. Exercise 4.10 in [3] asks for investigating which of the groups listed
in the theorem (Theorem 4.8 in [3]) contain odd permutations. In most cases
it is a routine task. However, for primitive groups of diagonal type it leads
to the following observation that seems to be new. Note that this does not
affect the O’Nan—Scott Theorem on the classification of primitive permuta-
tion groups, where—of course—groups of diagonal type with £ > 3 do occur
as well.

Theorem 3. Let G be a primitive group of diagonal type with socle S*,
where S is a nonabelian simple group. If k > 3, then G is contained in the
alternating group.

Proof. By definition, G acts on the cosets of the diagonal subgroup
D={(s,...,s) | s€ S}
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in S¥ and G/ S* is isomorphic to a subgroup of Out(S) x Sym(k). The degree
of the permutation group G is |S* : D| = |S|F1.

Any permutation action of S* is obviously contained in the alternating
group, since S is a nonabelian simple group.

Next, we have to prove that for every automorphism o« of S, the
permutation of the cosets

(x1,...,2k)D — (a(z1),...,a(zk))D

is an even permutation. Every coset has a unique representative of the form
(x1,...,2K_1,1), so our task is to show that

(xl, e ,wkfl) — (04(1'1), R ,Oé(afkfl))

is an even permutation of S*~!. More generally, we show this for every
permutation « of the set S. Clearly, it is enough to verify this statement
for a set of generators of Sym(S), for example, for the transpositions. So let
« be a transposition on the set S. Then the corresponding permutation of
Sk=1 has order 2, so it is the product of disjoint 2-cycles. The number of
2-cycles can be calculated by subtracting the number of fixed points from
the number of all elements and then dividing this number of moved points
by 2. We obtain that the number of 2-cycles in the permutation of S*~!
corresponding to a transposition « on S is

5 (111 = (181 - 2/)..

This number is even, since |S| is even and £k — 1 > 2.

Finally, we have to prove that any permutation of the components gives
rise to an even permutation of the cosets of D. Clearly, it is enough to
show it for a transposition of the components, and by symmetry, we can
restrict ourselves to interchanging the first two components. So we treat the
permutation

(xl,xg,... ,$k)D — (a;g,xl,... ,$k)D,

and the parity of this permutation can be calculated using the same method
as above. We obtain that it is the product of

5 (181~ 1s1+2)

2-cycles. This number is even, as the order of every nonabelian finite simple
group is divisible by 4, and k — 2 > 1.
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Since we have shown that a generating set of a group containing G
congists of even permutations only, we get that G is contained in the
alternating group. [

Hence in any maximal subgroup of the symmetric group among the primitive
groups of diagonal type we must have that the minimal normal subgroup is
a direct product of two isomorphic simple groups. Such groups were called
groups of bireqular type by F. Buekenhout [2|. In this case the group can
be described as the following group of permutations of the elements of the
simple group S:

{z — a(z)’s | a € Aut(S),e € {+1,—1},s € S} < Sym(S).

This group may contain odd permutations, for example, it does for PSL(2, q)
for all odd prime powers ¢, and also for Alt(7), My;, etc. However, it is
contained in Alt(S) for many simple groups S, for example, if S = Alt(n)
for n > 8, S = Mjo, etc. It would be interesting to have a complete list
of those simple groups for which this “extended holomorph” contains odd
permutations.

In the other five cases, referring to Liebeck, Praeger, and Saxl [5], we
get the following.

(a) Sym(ni) x Sym(ng) (n1,n2 > 1) is maximal in Sym(n; + ng), except
when 11 = no — in this case it is contained in Sym(n/2) Sym/(2).

(b) Sym(m)Sym(k) (m,k > 2) is always maximal in Sym(mk).

(c) Sym(m) 1 Sym(k) (m > 5, k > 2) is maximal either in Sym(m*) or
in Alt(mF¥). The latter occurs if either k = 2 and 4 | m or k > 3 and
2 | m. If m < 4, then the power action is contained in an affine group,
namely,

Sym(2) T Sym(k) < AGL(k, 2),
Sym(3) T Sym(k) < AGL(k,3),
Sym(4) T Sym(k) < AGL(2k,2).
(d) AGL(d,p) (d > 1, p prime, p? > 5) is maximal either in Sym(p?) or

in Alt(pd). The latter occurs if p = 2 and d > 3. For p? < 4 we have
AGL(d,p) = Sym(p).
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(f) The numerous exceptional cases for almost simple groups are listed
in [5].

4. PERMUTATIONS IN MAXIMAL CLONES

The symmetric group Sym(X) can be considered as a clone consisting of the
operations that depend on just one variable, i.e., operations of the form

f(mlr .o 7$n) = g($i),

where g € Sym(X) and 1 < i < n. We shall consider “traces” of maximal
clones in the symmetric group, that is, the intersection M N Sym(X) for the
maximal clones M. The following may happen for a maximal clone M:

(1) M contains Sym(X);
(2) M N Sym(X) is a maximal permutation group;

(3) M N Sym(X) is properly contained in a maximal permutation group.
Furthermore, we may have that

(4) a maximal permutation group is not of the form M N Sym(X) for any
maximal clone M.

Since the lattice of clones does not satisfy any nontrivial lattice identity
(in particular, it is not modular), we can expect that in most cases the
possibility (3) will occur, and there will be many maximal permutation
groups with property (4). It is indeed the case, however, the goal of the
present section is to establish that case (2), quite surprisingly, does occur
quite often as well.

In a somewhat different setting, the study of similar “traces” of maximal
clones in the monoid of all unary operations was started by Maja Ponjavié¢
and Dragan Magulovié [8, 7]. They proved that these traces form a very
complex poset containing, for example, arbitrarily long chains.

Let M be a maximal clone. Then it has the form M = Pol(p). Now

M N Sym(X) = Aut(p),

the automorphism group of the relation p. We investigate Aut(p) for each of
the six types of relations given in Rosenberg’s Theorem 1. In our discussion,
three of the six cases will be further subdivided into subcases.
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(a) The automorphism group of a bounded partial order fixes the smallest
and the largest element. If |X| = 2, then we get the trivial group,
which is maximal in Sym(X) in this case. Otherwise, for |X| > 2,
the automorphism group has at least three orbits and hence it is not
maximal.

(b1) If | X| = p is a prime, then the automorphism group of the graph of
a cycle of length p is the centralizer of the cyclic permutation and
has order p, while it is contained in the normalizer of the cyclic group
generated by the given p-cycle, and this normalizer has order (p — 1)p.
So if |X| = 2, then Aut(p) = Sym(X); if |X| = 3, then Aut(p) =
Alt(X) is maximal in Sym(X); and if | X| > 3, then Aut(p) is properly
contained in a maximal permutation group.

(b2) If |X| = pk with k& > 1, then the automorphism group of
the graph of a fixed-point-free permutation consisting of k
cycles of length p is the wreath product C), ! Sym(k) of a
cyclic group of order p with the symmetric group of degree k.

maximal permutation group Sym(2) ! Sym(k); otherwise, if p > 2,
then this automorphism group is properly contained in the maximal
permutation group Sym(p) Sym(k).

(c¢) The automorphism group of the affine relation is the affine group. As
it was mentioned in Section 3, this group is the full symmetric group
if | X| < 4; it is properly contained in the alternating group if |X| > 8
is a power of 2; and it is a maximal permutation group if | X| > 5is a
power of an odd prime number.

(d1) If the equivalence relation p has uniform class size m and there are
k classes, then Aut(p) = Sym(m) Sym(k) is a maximal permutation

group.

(d2) If the classes of the equivalence relation are not uniform, then Aut(p)
is not transitive. It is a maximal permutation group if either the
equivalence relation p has just two classes or it has only one non-
singleton class and the size of this class is not | X|/2; otherwise, it is
properly contained in an intransitive maximal permutation group.
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(e) Let Z be the center of a central relation p. Then Aut(p) C Sym(Z) x
Sym(X \ Z), with equality if and only if p is a “pure” central relation,
ie.,

p={(x1,...,xp) | Fira; € Z or Fi # jix; = x5}

In that case Aut(p) is maximal, except when |Z| = |X|/2. In this
exceptional case, as well as in any other case the automorphism group
of a central relation is not maximal.

(f1) If the h-regular relation p is determined by a one-to-one map ¢ : X —
{1,...,h}™, then Aut(p) = Sym(h) T Sym(m). If m > 2, then we get
the power action. Its maximality was discussed in Section 3. If m = 1,
then Aut(p) is the full symmetric group. In that case Pol(p) is the
so-called Stupecki clone.

(f2) If ¢ is not injective, then let p’ denote the kernel of ¢. Clearly, Aut(p)
preserves o, since p = {(z1,22):Vs,...,zp : (x1,22,...,2) € p}.
If m = 1, then we have Aut(p) = Aut(p’), so we have reduced the
maximality question to cases (d1)—(d2). Since the number of classes
of p’ is equal to h > 3, the arity of the relation p, here the equivalence
relation p’ cannot have just two classes.

Now let m > 1. If p/ has at least two classes of the same size, then
Aut(p) is properly contained in Aut(p’), hence it is not maximal.
Otherwise, Aut(p’) has h™ > 9 orbits, hence in this case Aut(p) = Aut(p’)
is not maximal either.

We have obtained that the first four types (corresponding to sums,
products, powers, and vector spaces) from the O’Nan—Scott Theorem do
arise as traces of maximal clones. The remaining two types, namely those,
where the construction involves nonabelian simple groups, do not arise in
this way, they fall into category (4).

We summarize our observations in the following theorems.

Theorem 4. Let Pol(p) be a mazimal clone over a finite set X, where p is
one of the relations described in Theorem 1. Then Pol(p) contains the full
symmetric group Sym(X) in ezxactly the following cases:

(i) |X| > 3, p is the h-reqular relation with h = | X|, where (x1,...,25) €
p iff there are equal elements x; = x; (i # j) among the coordinates of
the h-tuple;
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(i) 2 <|X| <4 and p is the (unique) affine relation on X;

(iii) |X| = 2 and p is the graph of the transposition interchanging the two
elements of X (i.e., p is the nonequality relation on the 2-element set).

Theorem 5. Let Pol(p) be a mazimal clone over a finite set X, where p is
one of the relations described in Theorem 1. Then Pol(p)NSym(X) = Aut(p)
18 a maximal permutation group in exactly the following cases:

(a) Aut(p) = Sym(X;) x Sym(X2), where X = X7 UX5 is a disjoint union
with | X1| # | Xa| or | X|=2:

(al) |X| > 3 and p is the equivalence relation with classes X1 and Xo;

(a2) p is an h-ary “pure” central relation
p={(x1,...,zp) | Fira; € Z or i # j:x; = xj},
with center Z = Xy or Z = X, where 1 < h < |X|—|Z|;

(a3) |X1|,|X2| > 2 and p is the equivalence relation with one non-
singleton class X1 or Xo;

(ad) |X1|,|X2| > 2 and p is the h-regular relation corresponding to
¢: X — {1,...,h} where the kernel of ¢ has one non-singleton
class X1 or Xy (then h = | X3|+1, or h = | X1| + 1, respectively);

(ab) |X| =2 and p is the order relation of the 2-element chain.

(b) Aut(p) = Sym(X1)Sym(Xz), where X = X1 x Xo with | X1|, | Xo| > 2:

(bl) p is the equivalence relation (x1,x2)p(x), xh) iff xo = xb;

(b2) |X2| > 3 and p is the h-regular relation (h = |X3|,m = 1) corre-
sponding to the second projection mapping ¢ : X1 X Xo — Xo;

(b3) |X1| = 2 and p is the binary relation (v1,xz2)p(x),xh) iff x1 #
zy and x9 = zl, (the graph of the fized-point-free permutation
of order two interchanging the elements with the same second
coordinate).

(c) Aut(p) = Sym(X1) T Sym(X2), where X = X%, |X1| > 5, |Xa| > 2,
moreover 4 does not divide | X1| if | Xo| = 2, and 2 does not divide | X/ |
if | Xo| >3
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(cl) p is the h-regular relation corresponding to the one-to-one map-
ping ¢ : X —» X1X2, where h = | X1].
(d) Aut(p) is the affine group AGL(d, p), where p? > 5 is odd:
(d1) p is the affine relation (corresponding to the vector space structure
determining the affine group).
(e) Aut(p) = Alt(X) :
(el) |X| =3 and p is the graph of a 3-cycle.

Counting the various possibilities we obtain the number of maximal clones
containing a given maximal permutation group.

Corollary 6. Let G be either the full symmetric group Sym(X) or a mazimal
permutation group of any of the types (a)—(d) in the O’Nan—-Scott Theorem.
Then the number N of mazimal clones Pol(p) on the set X such that G =
Pol(p) N Sym(X) is as follows:

(o) For G = Sym(X) we have

2, if |X|=2,3,4;
N =
1, if |X|>5.

(a) For G = Sym(X7) x Sym(X3), where X = X1 U X5 is a disjoint union
with | X1| # | X2| or | X| = 2, we have

|X| +1, meln(|X1|7 |X2|) =1
N pu—
(b) For G = Sym(X1)!Sym(X2), where X = X1 x Xo, and | X1|,|X2| > 2
we have
1, ’Lf|X1| > 3 and |X2| = 2,’
2, ’Lf‘Xl‘ =2 and ’XQ’ = 2,’

2, ’Lf|X1| >3 and |X2| > 3,'

3, ’Lf‘Xl‘ =2 and ’XQ’ Z 3.
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(c) For G = Sym(X;) T Sym(Xy), where X = X;X2 and |X,| > 5, | X3| >
2, moreover 4 does not divide | X1| if | X2| = 2, and 2 does not divide
| X1] if | X2| > 3, we have N = 1.

(d) For G = AGL(d, p), where p® > 5 is odd, we have N = 1.
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