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Abstract

Double Boolean algebras are algebras (D,u,t,/ ,. ,⊥,>) of type
(2, 2, 1, 1, 0, 0). They have been introduced to capture the equational
theory of the algebra of protoconcepts. A filter (resp. an ideal) of a
double Boolean algebra D is an upper set F (resp. down set I) closed
under u (resp. t). A filter F is called primary if F 6= ∅ and for all
x ∈ D we have x ∈ F or x/ ∈ F . In this note we prove that if F is a
filter and I an ideal such that F ∩ I = ∅ then there is a primary filter
G containing F such that G∩ I = ∅ (i.e. the Prime Ideal Theorem for
double Boolean algebras).
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1. Introduction and motivation

1.1. Motivation
Formal Concept Analysis emerged in the early eighties from an attempt
to restructure lattice theory by Rudolf Wille. To extend Formal Concept
Analysis to a quite large field called Contextual Logic, a negation has to
be formalized. Many propositions have been made and investigated [6].
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To keep a correspondence between negation and set complementation the
notion of concept as formalized in [5] has been generalized successively to
the notions of semiconcept, protoconcept and preconcept. To capture their
equational theory double Boolean algebras have been introduced by Rudolf
Wille and coworkers. Each double Boolean algebra D contains two Boolean
algebras: Du and Dt. To construct a suitable context K(D) such that D
could be embedded into its algebra of protoconcepts, they used as objects
filters F of D whose intersections with Du are prime filters and as attributes
ideals I of D whose intersections with Dt are prime ideals, and proved that
D can be quasi-embedded into the algebra of protoconcepts of that context.
For Boolean algebras, it is well known that prime filters can be defined as
filters F satisfying

(‡) x ∈ F or x∗ ∈ F for all x,

where ∗ denotes the complementation. With a similar definition we got the
”prime ideal theorem” for weakly dicomplemented lattices (introduced to
capture the equational theory of concept algebras, see [4]). In the search of
a common definition for such filters the author was asking himself whether
the prime ideal theorem can be proved for double Boolean algebras using (‡)
as definition. The answer is yes, and will be presented in this note. Before
that we present the algebra of protoconcepts.

1.2 Formal concepts and negation

The starting point of Formal Concept Analysis is a formal context. A Formal

context is a triple (G,M, I) with I ⊆ G × M . G is called the set of objects

and M the set of attributes. The derivation operation is defined on subsets
A ⊆ G and B ⊆ M by:

A′ := {m ∈ M | ∀g ∈ A gIm}

and

B′ := {g ∈ G | ∀m ∈ B gIm}.

The maps A 7→ A′ and B 7→ B′ define a Galois connection between the
powerset of G and that of M . A Formal concept is then a pair (A,B) with
A′ = B and B′ = A. A is called the extent and B the intent of the concept
(A,B). B(G,M, I) denotes the set of all concepts of the context (G,M, I).
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The concept hierarchy is captured by the order relation

(A,B) ≤ (C,D) : ⇐⇒ A ⊆ C ( ⇐⇒ D ⊆ B).

B(G,M, I) denotes the poset (B(G,M, I),≤). The basic theorem on
concept lattices (Theorem 3 [3]) states that

B(G,M, I) is a complete lattice (called the concept lattice of
the context (G,M, I)) and conversely, each complete lattice is
isomorphic to a concept lattice of a suitable context.

The meet and the join operations of a concept lattice will encode the
conjunction and the disjunction of concepts respectively while the top and
bottom element will encode the tautology and the contradiction. What
about negation?

One approach (see [6]) is to use a weak negation 4 and a weak opposition
5 defined by:

(A,B)4 := ((G r A)′′, (G r A)′)

and
(A,B)5 := ((M r B)′, (M r B)′′).

A concept lattice equipped with these two operations is called a concept
algebra. The following equations∗ hold in all concept algebras:

(1) x44 ≤ x,

(2) x ≤ y =⇒ x4 ≥ y4,

(3) (x ∧ y) ∨ (x ∧ y4) = x,

(1’) x55 ≥ x,

(2’) x ≤ y =⇒ x5 ≥ y5,

(3’) (x ∨ y) ∧ (x ∨ y5) = x.

Weakly dicomplemented lattices are algebras (L,∧,∨,4 ,5 , 0, 1) such that
(L,∧,∨, 0, 1) is a bounded lattice and the identities (1)–(3’) hold. Finite
distributive weakly dicomplemented lattices are copies of concept algebras
(Theorem 4.1.7 and Corollary 4.1.8 [4]). Then the class of finite distribu-
tive concept algebras forms a pseudovariety. Until now no complete set of
equations is known to generate the equational theory of concept algebras.

∗Note that (2) is equivalent to (x ∧ y)4 ∧ x
4 = x

4 and (2’) is equivalent
(x ∨ y)5 ∨ x

5 = x
5.
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Even for finite concept algebras, it is not known whether they form a
pseudovariety. Note that in this approach, the correspondence between
negation and set complementation cannot be preserved. In order to keep
such a correspondence, the notion of ”concept” has been successively
generalized to that of semiconcept, protoconcept and preconcept.

2. Algebras of protoconcepts

Let (G,M, I) be a formal context. A preconcept is a pair (A,B) with A ⊆ G
and B ⊆ M such that A ⊆ B ′ (equivalent to B ⊆ A′). A protoconcept is a
pair (A,B) with A ⊆ G, B ⊆ M and A′′ = B′ (equivalent to B ′ = A′′). The
set of all protoconcepts of the context K := (G,M, I) is denoted by P(K).
Logical operations are defined on protoconcepts as follows:

meet : (A1, B1) u (A2, B2) := (A1 ∩ A2, (A1 ∩ A2)
′)

join : (A1, B1) t (A2, B2) := ((B1 ∩ B2)
′, B1 ∩ B2)

negation : (A,B)/ := (G r A, (G r A)′)

opposition : (A,B). := ((M r B)′,M r B)

nothing : ⊥ := (∅,M)

all : > := (G, ∅)

With these operations is defined the algebra P(K) := (P(K),u,t,/ ,. ,⊥,>)
called the algebra of protoconcepts of K. We set

P(K)u := {(A,A′) | A ⊆ G}

and
P(K)t := {(B′, B) | B ⊆ M}.

P(K)u and P(K)u are special subalgebras of the protoconcept algebra
called respectively u-semiconcept algebra and t-semiconcept algebra. Their
intersection gives the concept lattice of K. Their union denoted by H(K)
is also a subalgebra of P(K), called the semiconcept algebra. Further
operations are defined on protoconcepts as follows:

x ⊕ y := (x/ u y/)/, x � y := (x. t y.)., 1 := ⊥/ and 0 := >..
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The algebra P(K)u := (P(K)u,u,⊕,/ ,⊥, 1) is a Boolean algebra isomorphic
to the powerset algebra of G and the algebra P(K)t := (P(K)t,�,t,. , 0,>)
a Boolean algebra anti-isomorphic to the powerset algebra of M .

Rudolf Wille proved (see for example [6]) that the following equations
hold in the algebra of protoconcepts:

(1) x u y = y u x,

(2) x u (y u z) = (x u y) u z,

(3) x u (x t y) = x u x,

(4) x u (x ⊕ y) = x u x,

(5) (x u x) u y = x u y

(6) x u (y ⊕ z) = (x u y) ⊕ (x u z)

(7) (x u y)// = x u y

(8) (x u x)/ = x/

(9) x u x/ = ⊥

(10) ⊥/ = > u>

(11) >/ = ⊥

(1’) x t y = y t x

(2’) x t (y t z) = (x t y) t z

(3’) x t (x u y) = x t x

(4’) x t (x � y) = x t x

(5’) (x t x) t y = x t y

(6’) xt (y�z) = (xty)� (xtz)

(7’) (x t y).. = x t y

(8’) (x t x). = x.

(9’) x t x. = >

(10’) >. = ⊥ t⊥

(11’) ⊥. = >

(12) (x u x) t (x u x) = (x t x) u (x t x).

Protoconcepts can be ordered by the relation ≤ defined by:

(A,B) ≤ (C,D) : ⇐⇒ A ⊆ C and B ⊇ D.

Remark 2.1. Let (A,B) and (C,D) be protoconcepts of (G,M, I) such
that (A,B) ≤ (C,D). We have:
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(i) (A,B)u(C,D) = (A,B)u(A,B) and (A,B)t(C,D) = (C,D)t(C,D).

(ii) (C,D)/ = (G r C, (G r C)′) ≤ (G r A, (G r A)′) = (A,B)/ and

(iii) (C,D). = ((M r D)′,M r D) ≤ ((M r A)′,M r B) = (A,B)..

We write v to mean that the equalities in Remark 2.1 (i) hold. i.e. For
protoconcepts x and y, we have

x v y ⇐⇒ x u y = x u x and x t y = y t y.

The relation v is a quasi-order that is by Remark 2.1 (i) an extension of the
above defined order relation ≤. The equivalence relation ∼ induced by the
quasi-order v (i.e. x ∼ y : ⇐⇒ x v y and y v x) satisfies

x ∼ y ⇐⇒ x u x = y u y and x t x = y t y.

Moreover, concepts are protoconcepts x such that x u x = x and
x t x = x. This equivalence partitions the protoconcepts in such a way
that each equivalence class contains at most one concept.

Lemma 2.1. In the algebra of protoconcepts the following formulae hold:

(13) x u x ≤ (x u y) t (x u y/) and (13′) x t x ≥ (x t y) u (x t y.).

Proof. We set x := (A,B) and y := (C,D). Then we have y/ =
(G r C, (G r C)′) and x u x = (A,A′). Therefore

(x u y) t (x u y/)=(A ∩ C, (A ∩ C)′) t
(

A ∩ (G r C), (A ∩ (G r C))′
)

=
(

(

(A ∩ C)′∩(A ∩ (G r C))′
)′
,((A ∩ C)′∩(A∩(G r C)′)

)

=
(

(A ∩ C) ∪ (A ∩ (G r C))′′,((A∩C)′ ∩ (A ∩ (G r C)′)
)

=(A′′, A′) ≥ (A,A′) = x u x.

The rest of the statement is proved dually.



Prime ideal theorem for double Boolean algebras 269

It would be interesting to investigate which relationship does exist between
the operations u, t and the order relation ≤. To capture the equational
theory of protoconcept algebras Rudolf Wille introduced double Boolean
algebras.

3. Prime ideal theorem for double Boolean algebras

In this note we call an algebra (D,u,t,/ ,. ,⊥,>) of type (2, 2, 1, 1, 0, 0) that
satisfies (1) to (13) and (1’) to (13’) a double Boolean algebra†. A double
Boolean algebra is called pure if it satisfies

(14) x u x = x or x t x = x.

Note that (14) holds in the algebra of semiconcepts. The following notations
are adopted:

xu := x u x, Du := {xu | x ∈ D}

and

xt := x t x, Dt := {xt | x ∈ D}.

The algebras Du := (Du,u,⊕,/ ,⊥, 1) and Dt := (Dt,�,t,. , 0,>) are
Boolean algebras, where x ⊕ y := (x/ u y/)/, x � y := (x. t y.)., 1 := ⊥/

and 0 := >. as introduced before on protoconcepts.
Now, how can we capture the order relation on the protoconcept algebra

for double Boolean algebras? The relation v defined on D by

x v y : ⇐⇒ x u y = x u x and x t y = y t y

is a quasi-order. For x and y in D, we have

x v y ⇐⇒ xu u yu = x u x u y u y = x u x = xu and xt t yt = yt.

As u (resp. t) is the meet (resp. join) operation in the Boolean algebra Du

(resp. Dt) we get

x v y ⇐⇒ xu ≤ yu and xt ≤ yt,

where ≤ is the induced order in the corresponding Boolean algebra.

†In [6] the formulae (13) and (13’) were not considered.
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A double Boolean algebra is called regular if the relation v is an order rela-
tion. Maybe abstracting the protoconcept algebras by relational structures
(D,u,t,/ ,. ,≤,>,⊥) such that ≤ is explicit defined on Du and Dt will shed
another light on them.

Lemma 3.1. For a double Boolean algebra D and x, y, a ∈ D we have:

(i) x u y v x, y v x t y,

(ii) x v y implies x u a v y u a and x t a v y t a.

Proof. For (i) we have

x u (x t y) = x u x

x t (x t y) = (x t y) t (x t y)

}

=⇒ x v x t y

and

x t (x u y) = x t x

x u (x u y) = (x u y) u (x u y)

}

=⇒ x w x u y.

For (ii), let x v y. We have x u y = x u x and x t y = y t y.

(x u a) u (y u a) = (x u y) u a = (x u x) u a = (x u a) u (x u a)

and

(x u a) t (y u a) = (x u x u a) t (y u a)

= (x u y u a) t (y u a) = (y u a) t (y u a)

since by (i), it holds x u y u a v y u a. The remaining assertion is proved
similarly.
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We can deduce that (a u x) t (b u x) v (a t b) u x. We will call a double
Boolean algebra distributive if the equalities

(a u x) t (b u x) = (a t b) u x and (a t x) u (b t x) = (a u b) t x

hold.

Remark 3.1. If a protoconcept algebra is distributive, then xux and xtx
are all concepts for all x.

Are protoconcept algebras distributive and regular double Boolean algebras?

Definition 3.1. Let D be a double Boolean algebra. A nonempty subset
F of D is called a filter if it satisfies

x, y ∈ F =⇒ x u y ∈ F and x ∈ F, y ∈ D, x v y =⇒ y ∈ F.

Dually an ideal of D is a nonempty subset I of D satisfying

x, y ∈ I =⇒ x t y ∈ I and x ∈ I, y ∈ D, x w y =⇒ y ∈ I.

If (Fk)k∈K is a family of filter of a double Boolean algebra D then
F :=

⋂

{Fk | k ∈ K} is nonempty since all Fk contain >. Moreover

x, y ∈ F =⇒ x, y ∈ Fk ∀k∈K =⇒ x u y ∈ Fk ∀k∈K =⇒ x u y ∈ F

and

x∈ F, y∈D,x v y =⇒ y∈D, x v y, x∈Fk∀k∈K =⇒ y∈Fk∀k∈K =⇒ y∈F.

Therefore the set of all filters (resp. ideals) of D form a closure system. We
denote by Filter〈X〉 (resp. Ideal〈X〉) the filter (resp. ideal) generated by
X. For example the principal filter (resp. ideal) generated by x is:

Filter〈{a}〉 = {x ∈ D | a u a v x}

(resp. Ideal〈{a}〉 = {x ∈ D | a t a w x}).
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Lemma 3.2. Let F be a filter and I an ideal of D. For an element w ∈ D
we have:

Filter〈F ∪ {w}〉 = {x ∈ D | v u w v x for some v ∈ F}

and

Ideal〈I ∪ {w}〉 = {x ∈ D | v t w w x for some v ∈ I}.

Proof. We are going to prove that

H := {x ∈ D | v u w v x for some v ∈ F}

is the smallest filter containing F ∪{w}. Note that > ∈ F and wux v x,w.
Thus H contains F ∪ {w}. For x ∈ H and y ∈ D with x v y, there is v ∈ F
such that v u w v x, and by then v u w v y. Thus y ∈ H. Now, let x and
y in H. There are a and b in F such that a u w v x and b u w v y. By
Lemma 3.1 we get au buw = (auw)u (buw) v xu y with au b ∈ F . Thus
xu y is in H. This proves that H is a filter. If G is another filter containing
F ∪ {w}, then G contains H. Thus H = Filter〈F ∪ {w}〉.

Definition 3.2. Let D be a double Boolean algebra. A filter F is called
proper if F 6= D, and primary if it is proper and satisfies x ∈ F or x/ ∈ F
for all x ∈ D. Dually are defined primary ideals. Fpr(D) denotes the set of
primary filters and Ipr(D) the set of primary ideals of D.

Theorem 3.3 (Prime ideal theorem). Let D be a double Boolean algebra,

F a filter and I an ideal such that F ∩ I = ∅. There exists a primary filter

G and a primary ideal J with F ⊆ G, I ⊆ J and G ∩ J = ∅.

Proof. We set

FI := {H filter | H ∩ I = ∅ and F ⊆ H}.

FI contains F . The poset (FI ,⊆) satisfies the conditions of the Zorn’s
lemma. Therefore (FI ,⊆) has maximal elements. Let G be maximal in
(FI ,⊆). We claim that G is a primary filter. Otherwise there would exist
an element w ∈ D such that w /∈ G and w/ /∈ G. In this case, G would
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be a proper subset of Filter〈G ∪ {w}〉 and of Filter〈G ∪ {w/}〉. From the
maximality of G in (FI ,⊆), we would have

Filter〈G ∪ {w}〉 ∩ I 6= ∅ 6= Filter〈G ∪ {w/}〉.

Thus there would be elements a, b ∈ I and v1, v2 ∈ G such that v1 u w v a
and v2 u w/ v b. It would follow that

v1 u v2 u w v a u v2 v a and v1 u v2 u w/ v b u v1 v b.

Thus

(v1 u v2) u (v1 u v2) v (v1 u v2 u w) t (v1 u v2 u w/) v a t b by (13).

This would lead to G 3 v1 u v2 v a t b ∈ I which would be a contradiction
with G ∩ I = ∅. Thus G is a primary filter. The existence of J is proved
similarly using the family

II := {S ideal | G ∩ S = ∅ and I ⊆ S}.

Corollary 3.4. For x u x 6v y t y in D there is a primary filter G with

x ∈ G and y /∈ G.

Proof. If x u x 6v y t y then Filter〈{x}〉 ∩ Ideal〈{y}〉 = ∅. By the prime
ideal theorem, there is a primary filter F containing x and a primary ideal
I containing y such that F ∩ I = ∅.

How can we separate x t x and x u x from x?

Remark 3.5.

(i) x u ⊥ = x u (x u x/) = (x u x) u x/ = x u x/ = ⊥. Dually x t > = >.

(ii) x u > = x u (x t x.) = x u x. Dually x t ⊥ = x t x.

(iii) In the context (G,M, I) we have > u > = ⊥ t ⊥ ⇐⇒ I = G × M .
Such a context has exactly one concept. Its algebras of preconcepts,
of protoconcepts and of semi-concepts are identical and is the vertical
sum of two Boolean algebras: P(G,M, I)u ⊕ P(G,M, I)t.
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Definition 3.3. We call a double Boolean algebra trivial iff >u> = ⊥t⊥.

The three element chain {⊥, a,>} with ⊥ ≤ a ≤ >, ⊥t⊥ = a = >u> and
a u a = a = a t a is a trivial double Boolean algebra. The following result
ensures the existence of primary filters and primary ideals.

Corollary 3.6. Each nontrivial double Boolean algebra has primary filters

and primary ideals.

Proof. It is enough to prove that if >u> 6= ⊥t⊥ then >u> 6v ⊥t⊥. In
fact, >u> v ⊥t⊥ implies (>u>)u(⊥t⊥) = >u> and (>u>)t(⊥t⊥) =
⊥t⊥. Therefore >u> = >u(⊥t⊥) = (⊥t⊥)u(⊥t⊥) = (⊥u⊥)t(⊥u⊥) =
⊥ t⊥.

4. Conclusion

This work in progress should be considered as the author’s reading note
of [2] and [6] by Wille and coworkers. Of course the prime ideal theorem
(Theorem 3.3) is a new an important result. The next step would be to look
after some applications (for example a concrete representation or a duality
theorem for double Boolean algebras). This will be carried out in future
works.
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