Discussiones Mathematicae General Algebra and Applications 27 (2007) 245–262

Nd-SOLID VARIETIES

KLAUS DENECKE

Universität Potsdam, Fachbereich Mathematik Postfach 601553, 14415 Potsdam, Germany e-mail: kdenecke@rz.uni-potsdam.de

AND

Prisana Glubudom

Chiangmai University, Department of Mathematics Chiangmai, Thailand 50200 e-mail: puprisana@yahoo.com

To the memory of Professor Kazimierz Głazek

Abstract

A non-deterministic hypersubstitution maps any operation symbol of a tree language of type τ to a set of trees of the same type, i.e. to a tree language. Non-deterministic hypersubstitutions can be extended to mappings which map tree languages to tree languages preserving the arities. We define the application of a non-deterministic hypersubstitution to an algebra of type τ and obtain a class of derived algebras. Non-deterministic hypersubstitutions can also be applied to equations of type τ . Formally, we obtain two closure operators which turn out to form a conjugate pair of completely additive closure operators. This allows us to use the theory of conjugate pairs of additive closure operators for a characterization of *M*-solid non-deterministic varieties of algebras. As an application we consider *M*-solid non-deterministic varieties of semigroups.

Keywords: Non-deterministic hypersubstitution, conjugate pair of additive closure operators, *M*-solid non-deterministic variety.

2000 Mathematics Subject Classification: 08A35, 08A40, 08A70.

1. Introduction

Let $(f_i)_{i \in I}$ be an indexed set of operation symbols where f_i is n_i -ary, let $X := \{x_1, \ldots, x_n, \ldots\}$ be a countably infinite set of variables and for each $n \geq 1$ let $X_n := \{x_1, \ldots, x_n\}$ be a finite set of variables. We denote by $W_{\tau}(X)$ and $W_{\tau}(X_n)$, respectively the sets of all terms of a finite type $\tau =$ $(n_i)_{i \in I}$ and of all *n*-ary terms of type τ . We use the well-known Galois connection Id-Mod between sets of identities and classes of algebras of a given type. For any set Σ of identities we denote by Mod Σ the model class of all algebras of type τ which satisfy all identities of Σ ; and for any class K of algebras of the same type we denote by IdK the set of all identities satisfied by all algebras in K. Classes of the form $Mod\Sigma$ are called varieties of algebras of type τ . If \mathcal{A} satisfies the equation $s \approx t$ as an identity, we write $\mathcal{A} \models s \approx t$ and if the class K of algebras of type τ satisfies $s \approx t$, we write $K \models s \approx t$. If $\Sigma \subseteq W_{\tau}(X)^2$ is a set of equations, then $K \models \Sigma$ means that every equation from Σ is satisfied by every algebra from K. Any subset of $W_{\tau}(X)$, i.e. any element of the power set $\mathcal{P}(W_{\tau}(X))$ or of $\mathcal{P}(W_{\tau}(X_n))$ is called a tree language. Our restriction to a finite type is motivated by applications of tree languages in computer science. For tree languages one may define the following superposition operations

$$\hat{S}_m^n : \mathfrak{P}(W_\tau(X_n)) \times \mathfrak{P}(W_\tau(X_m))^n \to \mathfrak{P}(W_\tau(X_m))$$

inductively by the following steps:

Definition 1.1. Let $m, n \in \mathbb{N}^+ (:= \mathbb{N} \setminus \{0\})$ and let $B \in \mathcal{P}(W_\tau(X_n))$ and $B_1, \ldots, B_n \in \mathcal{P}(W_\tau(X_m))$ such that B, B_1, \ldots, B_n are non-empty.

- (i) If $B = \{x_j\}$ for $1 \le j \le n$, then $\hat{S}_m^n(\{x_j\}, B_1, \dots, B_n) := B_j$.
- (ii) If $B = \{f_i(t_1, ..., t_{n_i})\}$, and if we assume that $\hat{S}_m^n(\{t_j\}, B_1, ..., B_n)$ for $1 \le j \le n$; are already defined, then $\hat{S}_m^n(\{f_i(t_1, ..., t_{n_i})\}, B_1, ..., B_n) := \{f_i(r_1, ..., r_{n_i}) \mid r_j \in \hat{S}_m^n(\{t_j\}, B_1, ..., B_n) \text{ for } 1 \le j \le n_i\}.$
- (iii) If B is an arbitrary subset of $W_{\tau}(X_n)$, we define

$$\hat{S}_m^n(B, B_1, \dots, B_n) := \bigcup_{b \in B} \hat{S}_m^n(\{b\}, B_1, \dots, B_n)$$

If one of the sets B, B_1, \ldots, B_n is empty, we define $\hat{S}_m^n(B, B_1, \ldots, B_n) := \emptyset$. Then we may consider the heterogeneous algebra

$$\mathcal{P} - clone \ \tau := ((\mathcal{P}(W_{\tau}(X_n)))_{n \in \mathbb{N}^+}; (\hat{S}_m^n)_{m,n \in \mathbb{N}^+}, (\{x_i\})_{i < n, n \in \mathbb{N}^+})$$

which is called the power clone of τ ([?]). We mention that $\mathcal{P} - clone \tau$ satisfies the well-known clone axioms (C1), (C2), (C3) (see e.g. [?, ?]). If $\mathcal{P}_{fin}(W_{\tau}(X_n))$ is the set of all finite subsets of $W_{\tau}(X_n)$, then

$$\mathcal{P}_{fin} - clone \ \tau := ((\mathcal{P}_{fin}(W_{\tau}(X_n)))_{n \in \mathbb{N}^+}; (\hat{S}_m^n)_{n \in \mathbb{N}^+}, (\{x_i\})_{i < n, n \in \mathbb{N}^+})$$

is a subalgebra of \mathcal{P} - clone τ ([?]).

We mention also that there is a one-based version of $\mathcal{P} - clone \tau$, the algebra $\mathcal{P}_n - clone \tau_n := (\mathcal{P}(W_{\tau_n}(X_n)); \hat{S}^n, \{x_1\}, \dots, \{x_n\})$ where τ_n is a finite type consisting of *n*-ary operation symbols only and where $\hat{S}^n := \hat{S}_n^n$. $\mathcal{P}_n - clone \tau_n$ is an example of a unitary Menger algebra of rank *n* (see e.g [?]).

Similar structures can be obtained if one defines a superposition for sets of operations. Let $O^{(n)}(A)$ be the set of all *n*-ary operations $(n \ge 1)$ defined on the set A and let $O(A) := \bigcup_{n\ge 1} O^{(n)}(A)$ be the set of all operations defined on A. Let $e_i^{n,A}$ be an *n*-ary projection defined on A, i.e., $e_i^{n,A}(a_1,\ldots,a_n) := a_i$ for $1 \le i \le n$, and let $\mathcal{P}(O^{(n)}(A))$ be the power set of $O^{(n)}(A)$.

Definition 1.2. Let $m, n \in \mathbb{N}^+$ and $B \in \mathcal{P}(O^{(n)}(A)), B_1, \ldots, B_n \in \mathcal{P}(O^{(m)}(A))$ such that B, B_1, \ldots, B_n are non-empty.

- (i) If $B = \{e_j^{n,A}\}$ for $1 \le j \le n$, then $\hat{S}_m^{n,A}(\{e_j^{n,A}\}, B_1, \dots, B_n) := B_j$.
- (ii) If $B = \{f_i^A(t_1^A, \dots, t_{n_i}^A)\}$ with $f_i^A \in O^{(n_i)}(A), t_j^A \in O^{(n)}(A)$ and assume that $\hat{S}_m^{n,A}(\{t_j^A\}, B_1, \dots, B_n)$ for $1 \le j \le n_i$ are already defined, then $\hat{S}_m^{n,A}(\{f_i^A(t_1^A, \dots, t_{n_i}^A)\}, B_1, \dots, B_n) := \{f_i^A(r_1^A, \dots, r_{n_i}^A) \mid r_j^A \in \hat{S}_m^{n,A}(\{t_j^A\}, B_1, \dots, B_n), 1 \le j \le n_i\}.$

(iii) If $B \in \mathcal{P}(O^{(n)}(A))$ is arbitrary, then we define

$$\hat{S}_m^{n,A}(B, B_1, \dots, B_n) := \bigcup_{b \in B} \hat{S}_m^{n,A}(\{b\}, B_1, \dots, B_n).$$

If one of the sets B, B_1, \ldots, B_n is empty, then we define $\hat{S}_m^{n,A}(B, B_1, \ldots, B_n)$:= \emptyset . In this case we consider the heterogeneous algebra

$$\mathcal{P}_A - clone := ((\mathcal{P}(O^{(n)}(A)))_{n \in \mathbb{N}^+}; (\hat{S}^{n,A}_m)_{m,n \in \mathbb{N}^+}, (\{e^{n,A}_i\})_{i \le n,n \in \mathbb{N}^+}).$$

Let $\mathcal{A} = (A; (f_i^A)_{i \in I})$ be an algebra of type τ . Then we may consider the subclone $\mathcal{P}_A - clone\mathcal{A}$ of $\mathcal{P}_A - clone$ which is defined as follows.

Definition 1.3. Let $n \in \mathbb{N}^+$ and $B \in \mathcal{P}(W_{\tau}(X_n))$. Then we define the set B^A of term operations induced on the algebra $\mathcal{A} = (A; (f_i^A)_{i \in I})$ as follows:

- (i) If $B = \{x_j\}$ for $1 \le j \le n$, then $B^{\mathcal{A}} := \{e_j^{n,\mathcal{A}}\}$.
- (ii) If $B = \{f_i(t_1, \ldots, t_{n_i})\}$ then $B^{\mathcal{A}} = \{f_i^{\mathcal{A}}(t_1^{\mathcal{A}}, \ldots, t_{n_i}^{\mathcal{A}})\}$ where $f_i^{\mathcal{A}}$ is the fundamental operation of \mathcal{A} corresponding to the operation symbol f_i and where $t_j^{\mathcal{A}}$ are term operations on \mathcal{A} which are induced in the usual way by the t_j 's.
- (iii) If B is an arbitrary non-empty subset of $W_{\tau}(X_n)$, then we define $B^{\mathcal{A}} := \bigcup_{b \in B} \{b\}^{\mathcal{A}}$. If the set B is empty, then we define $B^{\mathcal{A}} := \emptyset$.

Let $\mathcal{P}(W_{\tau}(X_n))^{\mathcal{A}}$ be the collection of all sets of *n*-ary term operations induced by sets of *n*-ary terms of type τ on the algebra $\mathcal{A} = (A; (f_i^A)_{i \in I})$.

From these definitions we obtain the following

Lemma 1.4. Let $B \in \mathcal{P}(W_{\tau}(X_n))$ and let $B_1, \ldots, B_n \in \mathcal{P}(W_{\tau}(X_m))$. Then

$$[\hat{S}_m^n(B, B_1, \dots, B_n)]^{\mathcal{A}} = \hat{S}_m^{n, \mathcal{A}}(B^{\mathcal{A}}, B_1^{\mathcal{A}}, \dots, B_n^{\mathcal{A}}).$$

Proof. If one of the sets B, B_1, \ldots, B_n is empty, then one of the sets $B^{\mathcal{A}}, B_1^{\mathcal{A}}, \ldots, B_n^{\mathcal{A}}$ is also empty. Thus

$$[\hat{S}_m^n(B, B_1, \dots, B_n)]^{\mathcal{A}} = \emptyset^{\mathcal{A}} = \emptyset = \hat{S}_m^{n, \mathcal{A}}(B^{\mathcal{A}}, B_1^{\mathcal{A}}, \dots, B_n^{\mathcal{A}}).$$

Assume now that all of B, B_1, \ldots, B_n are different from the empty set. At first we show by induction on the complexity of the term t that for one-element sets $B = \{t\}$ our equation is satisfied. For $t = x_i$ with $1 \le i \le n$, we have $B^{\mathcal{A}} = \{x_i\}^{\mathcal{A}} = \{e_i^{n,\mathcal{A}}\}$ and $[\hat{S}_m^n(B, B_1, \dots, B_n)]^{\mathcal{A}} = [\hat{S}_m^n(\{x_i\}, B_1, \dots, B_n)]^{\mathcal{A}}$ $= B_i^{\mathcal{A}}$ $= \hat{S}_m^{n,\mathcal{A}}(\{e_i^{n,\mathcal{A}}\}, B_1^{\mathcal{A}}, \dots, B_n^{\mathcal{A}})$ $= \hat{S}_m^{n,\mathcal{A}}(\{x_i\}^{\mathcal{A}}, B_1^{\mathcal{A}}, \dots, B_n^{\mathcal{A}})$ $= \hat{S}_m^{n,\mathcal{A}}(B^{\mathcal{A}}, B_1^{\mathcal{A}}, \dots, B_n^{\mathcal{A}}).$

Let now $t = f_i(t_1, \ldots, t_{n_i})$ and assume that for all $1 \le k \le n_i$,

$$[\hat{S}_m^n(\{t_k\}, B_1, \dots, B_n)]^{\mathcal{A}} = \hat{S}_m^{n, \mathcal{A}}(\{t_k\}^{\mathcal{A}}, B_1^{\mathcal{A}}, \dots, B_n^{\mathcal{A}}).$$

Then

$$\begin{split} &[\hat{S}_{m}^{n}(\{f_{i}(t_{1},\ldots,t_{n_{i}})\},B_{1},\ldots,B_{n})]^{\mathcal{A}}\\ &=\{f_{i}(r_{1},\ldots,r_{n_{i}})\mid r_{k}\in\hat{S}_{m}^{n}(\{t_{k}\},B_{1},\ldots,B_{n}),1\leq k\leq n_{i}\}^{\mathcal{A}}\\ &=\{f_{i}^{\mathcal{A}}(r_{1}^{\mathcal{A}},\ldots,r_{n_{i}}^{\mathcal{A}})\mid r_{k}\in\hat{S}_{m}^{n}(\{t_{k}\},B_{1},\ldots,B_{n}),1\leq k\leq n_{i}\}\\ &=\{f_{i}^{\mathcal{A}}(r_{1}^{\mathcal{A}},\ldots,r_{n_{i}}^{\mathcal{A}})\mid r_{k}^{\mathcal{A}}\in\hat{S}_{m}^{n}(\{t_{k}\},B_{1},\ldots,B_{n})^{\mathcal{A}},1\leq k\leq n_{i}\}\\ &=\{f_{i}^{\mathcal{A}}(r_{1}^{\mathcal{A}},\ldots,r_{n_{i}}^{\mathcal{A}})\mid r_{k}^{\mathcal{A}}\in\hat{S}_{m}^{n,\mathcal{A}}(\{t_{k}\}^{\mathcal{A}},B_{1}^{\mathcal{A}},\ldots,B_{n}^{\mathcal{A}}),1\leq k\leq n_{i}\}\\ &=\hat{S}_{m}^{n,\mathcal{A}}(\{f_{i}^{\mathcal{A}}(t_{1}^{\mathcal{A}},\ldots,t_{n_{i}}^{\mathcal{A}})\},B_{1}^{\mathcal{A}},\ldots,B_{n}^{\mathcal{A}}).\end{split}$$

If B is a set of terms consisting of more than one element, then we have

$$\begin{split} [\hat{S}_m^n(B, B_1, \dots, B_n)]^{\mathcal{A}} &= \left[\hat{S}_m^n(\bigcup_{b \in B} \{b\}, B_1, \dots, B_n)\right]^{\mathcal{A}} \\ &= \left[\bigcup_{b \in B} \hat{S}_m^n(\{b\}, B_1, \dots, B_n)\right]^{\mathcal{A}} \\ &= \bigcup_{b \in B} [\hat{S}_m^n(\{b\}, B_1, \dots, B_n)]^{\mathcal{A}} \\ &= \bigcup_{b \in B} \hat{S}_m^{n,\mathcal{A}}(\{b\}^{\mathcal{A}}, B_1^{\mathcal{A}}, \dots, B_n^{\mathcal{A}}) \\ &= \hat{S}_m^{n,\mathcal{A}} \left(\bigcup_{b \in B} \{b\}^{\mathcal{A}}, B_1^{\mathcal{A}}, \dots, B_n^{\mathcal{A}}\right) \\ &= \hat{S}_m^{n,\mathcal{A}}(B^{\mathcal{A}}, B_1^{\mathcal{A}}, \dots, B_n^{\mathcal{A}}). \end{split}$$

Proposition 1.5.

$$\mathcal{P}_A - clone\mathcal{A} = ((\mathcal{P}(W_\tau(X_n))^{\mathcal{A}})_{n \in \mathbb{N}^+}; (\hat{S}_m^{n,A})_{m,n \in \mathbb{N}^+}, (\{e_i^{n,A}\})_{i \le n,n \in \mathbb{N}^+})$$

is a subalgebra of \mathcal{P}_A – clone.

Proof. Let $B^{\mathcal{A}} \in \mathcal{P}(W_{\tau}(X_n))^{\mathcal{A}}$ and let $B_1^{\mathcal{A}}, \ldots, B_n^{\mathcal{A}} \in \mathcal{P}(W_{\tau}(X_m))^{\mathcal{A}}$, then $B \in \mathcal{P}(W_{\tau}(X_n))$ and $B_1, \ldots, B_n \in \mathcal{P}(W_{\tau}(X_m))$.

From Lemma 1.4 we have that

$$\hat{S}_m^{n,A}(B^{\mathcal{A}}, B_1^{\mathcal{A}}, \dots, B_n^{\mathcal{A}}) = [\hat{S}_m^n(B, B_1, \dots, B_n)]^{\mathcal{A}} \in \mathcal{P}(W_\tau(X_m))^{\mathcal{A}}.$$

If $T^{(n)}(\mathcal{A})$ is the set of all derived *n*-ary operations of the algebra $\mathcal{A} = (A; (f_i^A)_{i \in I})$, then we can also consider the algebra $\mathcal{P}(\mathcal{T}(\mathcal{A})) := ((\mathcal{P}(T^{(n)}(\mathcal{A})))_{n \in \mathbb{N}^+}; (\hat{S}_m^{n,A})_{n,m \in \mathbb{N}^+}, (\{e_i^{n,A}\})_{i \leq n,n \in \mathbb{N}^+})$. It is not difficult to prove that $\mathcal{P}_A - clone\mathcal{A} = \mathcal{P}(\mathcal{T}(\mathcal{A}))$.

Any mapping $\sigma : \{f_i \mid i \in I\} \to \mathcal{P}(W_{\tau}(X))$ with $\sigma(f_i) \subseteq W_{\tau}(X_{n_i})$, for $i \in I$, is called a non-deterministic hypersubstitution (for short *nd*hypersubstitution) of type τ . We denote by $Hyp^{nd}(\tau)$ the set of all nondeterministic hypersubstitutions of type τ . Every *nd*-hypersubstitution can be extended in the following inductive way to a mapping $\hat{\sigma} : \mathcal{P}(W_{\tau}(X)) \to \mathcal{P}(W_{\tau}(X))$.

- (i) $\hat{\sigma}[\emptyset] := \emptyset$.
- (ii) $\hat{\sigma}[\{x_i\}] := \{x_i\}$ for every variable $x_i \in X$.
- (iii) $\hat{\sigma}[\{f_i(t_1,\ldots,t_{n_i})\}] := \hat{S}_n^{n_i}(\sigma(f_i),\hat{\sigma}[\{t_1\}],\ldots,\hat{\sigma}[\{t_{n_i}\}])$ if we inductively assume that $\hat{\sigma}[\{t_k\}], 1 \le k \le n_i$, are already defined.
- (iv) $\hat{\sigma}[B] := \bigcup \{ \hat{\sigma}[\{b\}] \mid b \in B \}$ for $B \subseteq W_{\tau}(X)$.

In the sequel instead of $\hat{\sigma}[\{t\}]$ for a term $t \in W_{\tau}(X)$ we will simply write $\hat{\sigma}[t]$.

In [?] was proved that for every *nd*-hypersubstitution σ the mapping $\hat{\sigma}$ is an endomorphism of $\mathcal{P}-clone \tau$. We recall also that the set $Hyp^{nd}(\tau)$ forms a monoid with respect to the operation \circ_{nd} defined by $\sigma_1 \circ_{nd} \sigma_2 := \hat{\sigma}_1 \circ \sigma_2$ and the identity element $\sigma_{pid} : f_i \mapsto \{f_i(x_1, \ldots, x_{n_i})\}$ for every $i \in I$.

In the next section we apply nd-hypersubstitutions to equations and to algebras.

2. The Conjugate Pair $(\chi^{\mathcal{A}}_{nd}, \chi^{E}_{nd})$

If $\mathcal{A} = (A; (f_i^{\mathcal{A}})_{i \in I})$ is an algebra of type τ and if $\sigma \in Hyp^{nd}(\tau)$ is an *nd*-hypersubstitution, then we define

$$\sigma(\mathcal{A}) := \{ (A; (l_i^{\mathcal{A}})_{i \in I}) \mid l_i \in \sigma(f_i) \}.$$

The set $\sigma(\mathcal{A})$ is called the set of derived algebras. Since for every sequence $(l_i)_{i\in I}$ of terms there is a hypersubstitution mapping f_i to l_i we can write $\sigma(\mathcal{A})$ also in the form $\sigma(\mathcal{A}) = \{\rho(\mathcal{A}) \mid \rho \in Hyp(\tau) \text{ with } \rho(f_i) \in \sigma(f_i) \text{ for } i \in I\}$. For a class K of algebras of type τ we define

$$\sigma(K) := \bigcup_{\mathcal{A} \in K} \sigma(\mathcal{A}).$$

If $M \subseteq Hyp^{nd}(\tau)$ is the universe of a submonoid of $Hyp^{nd}(\tau)$, then we define $\chi^A_{M-nd}[K] := \bigcup_{\sigma \in M} \sigma(K)$. For $M = Hyp^{nd}(\tau)$ we will simply write χ^A_{nd} . We notice that $\chi^A_{M-nd}[K]$ consists of algebras of the same type. For a set $\mathcal{K} \in \mathcal{P}(\mathcal{P}(Alg(\tau)))$ of sets of algebras of type τ and a monoid M of *nd*-hypersubstitutions we define $\chi^A_{M-nd}[\mathfrak{K}] := \{\sigma(K) \mid K \in \mathfrak{K}, \sigma \in M\}$. For $B_1, B_2 \in \mathfrak{P}(W_\tau(X))$ we define equations $B_1 \approx B_2$. If $\Sigma \in \mathfrak{P}(\mathfrak{P}(W_\tau(X)) \times \mathfrak{P}(W_\tau(X)))$ and $\sigma \in M \subseteq Hyp^{nd}(\tau)$ we define

$$\hat{\sigma}[\Sigma] := \{ \hat{\sigma}[B_1] \approx \hat{\sigma}[B_2] \mid B_1 \approx B_2 \in \Sigma \}$$

and

$$\chi^E_{M-nd}[\Sigma] := \{ \hat{\sigma}[B_1] \approx \hat{\sigma}[B_2] \mid B_1 \approx B_2 \in \Sigma, \sigma \in M \}.$$

For $M = Hyp^{nd}(\tau)$ we will use simply the notation χ^E_{nd} .

We want to prove that there is a close connection between both operators. Instead of $\chi^A_{M-nd}[\{\{A\}\}\}]$ we will write $\chi^A_{M-nd}[A]$. For $K \subseteq \chi^A_{M-nd}[A]$ and for a set $B \subseteq W_{\tau}(X)$ of terms we define the set B^K of induced term operations. For the set $\sigma(\mathcal{A})$ of derived algebras and for a set $B \in \mathcal{P}(W_{\tau}(X_n))$ of *n*-ary terms we define the set $B^{\sigma(\mathcal{A})}$ of term operations induced by the set $\sigma(\mathcal{A})$ of derived algebras as follows

Definition 2.1. Let $n \in \mathbb{N}^+$ and $B \in \mathcal{P}(W_{\tau}(X_n))$, let $\mathcal{A} = (A; (f_i^A)_{i \in I})$ be an algebra of type τ , let $\sigma \in Hyp^{nd}(\tau)$ be an *nd*-hypersubstitution and let $\sigma(\mathcal{A}) = \{(A; (l_i^A)_{i \in I}) \mid l_i \in \sigma(f_i)\}$ be the set of derived algebras. Then we define the set $B^{\sigma(\mathcal{A})}$ of term operations induced by the set $\sigma(\mathcal{A})$ of derived algebras as follows:

(i) If $B := \{x_j\}$ for $1 \le j \le n$, then $B^{\sigma(\mathcal{A})} := \{e_j^{n,\rho(\mathcal{A})} \mid \rho(\mathcal{A}) \in \sigma(\mathcal{A})\} = \{e_j^{n,\mathcal{A}}\}.$

(ii) If
$$B = \{f_i(t_1, ..., t_{n_i})\}$$
 then

$$B^{\sigma(\mathcal{A})} := \{ \hat{S}_n^{n_i,\mathcal{A}}(\{f_i^{\rho(\mathcal{A})} \mid \rho(\mathcal{A}) \in \sigma(\mathcal{A})\}, \{t_1\}^{\sigma(\mathcal{A})}, \dots, \{t_{n_i}\}^{\sigma(\mathcal{A})}) \}$$
$$= \bigcup_{\rho(\mathcal{A})\in\sigma(\mathcal{A})} \{ \hat{S}_n^{n_i,\mathcal{A}}(\{f_i^{\rho(\mathcal{A})}\}, \{t_1\}^{\sigma(\mathcal{A})}, \dots, \{t_{n_i}\}^{\sigma(\mathcal{A})}) \}$$
$$= \bigcup_{\rho(\mathcal{A})\in\sigma(\mathcal{A})} \{ f_i^{\rho(\mathcal{A})}(r_1, \dots, r_{n_i}) \mid r_k \in \{t_k\}^{\sigma(\mathcal{A})}, \text{ for } 1 \le k \le n_i \}$$

where $f_i^{\rho(\mathcal{A})}$ denotes the fundamental operation of the algebra $\rho(\mathcal{A})$ belonging to the operation symbol f_i and assume that $\{t_k\}^{\sigma(\mathcal{A})}, 1 \leq k \leq n_i$, are already defined.

(iii) If B is an arbitrary non-empty subset of $W_{\tau}(X_n)$, then we define $B^{\sigma(\mathcal{A})} := \bigcup_{b \in B} \{b\}^{\sigma(\mathcal{A})}$. If the set B is empty, then we define $B^{\sigma(\mathcal{A})} := \emptyset$.

For any term $t \in W_{\tau}(X_n)$ and a class G of algebras of type τ we define

$$t^G := \{t\}^G := \{t^\mathcal{A} \mid \mathcal{A} \in G\}.$$

Definition 2.2. Let \mathcal{A} be an algebra of type τ and let $K \subseteq \chi^A_{M-nd}[\mathcal{A}]$ and let $n \geq 1$ be an integer. Then we define

- (i) If $B = \{x_j\}$ for $1 \le j \le n$, then $B^K = \{e_j^{n,A}\} \subseteq \mathfrak{T}^{(n)}(\mathcal{A})$.
- (ii) If $B = \{f_i(t_1, \ldots, t_n)\}$ and let $B_j = t_j^K \subseteq \mathfrak{T}^{(n)}(\mathcal{A})$ for $1 \leq j \leq n_i$ are already known, then

$$B^{K} := \{ \hat{S}_{n}^{n_{i},A}(S, B_{1}, \dots, B_{n_{i}}) \mid S = \{ \rho(f_{i})^{\mathcal{A}} \mid \rho \in Hyp(\tau), \rho(\mathcal{A}) \in K \}$$
$$\subseteq \mathfrak{T}^{(n_{i})}(\mathcal{A}) \}.$$

Finally for an arbitrary nonempty set $B \in \mathcal{P}(W_{\tau}(X))$ we set $B^K := \bigcup_{b \in B} \{b\}^K$ and for the empty set B we let $B^K := \emptyset$.

Definition 2.2 contains Definition 2.1 as a special case since for every $\sigma \in Hyp^{nd}(\tau)$ we have $\sigma(\mathcal{A}) \subseteq \chi^A_{M-nd}[A]$. We have also $\{\mathcal{A}\} \subseteq \chi^A_{M-nd}[A]$ and $\{\rho(\mathcal{A})\} \subseteq \chi^A_{M-nd}[A]$ for a hypersubstitution $\rho \in Hyp(\tau)$ and it is easy to see that for a single term $s \in W_{\tau}(X_n)$ we have $\{\hat{\rho}[s]\}^{\{\mathcal{A}\}} = \hat{\rho}[s]^{\mathcal{A}} = s^{\rho(\mathcal{A})} = \{s\}^{\{\rho(\mathcal{A})\}}$.

Now we prove:

Lemma 2.3. Let $B \in \mathcal{P}(W_{\tau}(X_n))$ be an arbitrary set of n-ary terms of type τ , let $\mathcal{A} = (A; (f_i^A)_{i \in I})$ be an algebra of type τ and let σ be an nd-hypersubstitution of type τ . Then $\hat{\sigma}[B]^{\mathcal{A}} = B^{\sigma(\mathcal{A})}$.

Proof. If B is empty, then all is clear. If B is nonempty we will give a proof by induction on the complexity of the terms from the set B.

If $B = \{x_j\}$ for $1 \leq j \leq n$, then $\hat{\sigma}[B]^{\mathcal{A}} = \{x_j\}^{\mathcal{A}} = \{e_j^{n,A}\}$ by the definition of σ and by Definition 1.3. Further, by Definition 2.1 we have

$$B^{\sigma(\mathcal{A})} = \{x_j\}^{\sigma(\mathcal{A})} = \left\{e_j^{n,\rho(\mathcal{A})} \mid \rho(\mathcal{A}) \in \sigma(\mathcal{A})\right\} = \left\{e_j^{n,\mathcal{A}}\right\}$$

since all algebras $\rho(\mathcal{A})$ have the same universe. Therefore $\hat{\sigma}[B]^{\mathcal{A}} = B^{\sigma(\mathcal{A})}$ for $B = \{x_j\}$ for $1 \leq j \leq n$.

Now let $B = \{f_i(t_1, \ldots, t_{n_i})\}$ and assume that $\hat{\sigma}[\{t_k\}]^{\mathcal{A}} = \{t_k\}^{\sigma(\mathcal{A})}$ for $1 \leq k \leq n_i$. Then

$$\begin{split} \hat{\sigma}[B]^{\mathcal{A}} &= \hat{\sigma}[\{f_{i}(t_{1}, \dots, t_{n_{i}})\}]^{\mathcal{A}} \\ &= \left[\hat{S}_{n}^{n_{i}}(\sigma(f_{i}), \hat{\sigma}[\{t_{1}\}], \dots, \hat{\sigma}[\{t_{n_{i}}\}])\right]^{\mathcal{A}} \\ &= \hat{S}_{n}^{n_{i},\mathcal{A}} \left(\sigma(f_{i})^{\mathcal{A}}, \hat{\sigma}[\{t_{1}\}]^{\mathcal{A}}, \dots, \hat{\sigma}[\{t_{n_{i}}\}]^{\mathcal{A}}\right) \\ &= \hat{S}_{n}^{n_{i},\mathcal{A}} \left(\{l_{i} \mid l_{i} \in \sigma(f_{i})\}^{\mathcal{A}}, \hat{\sigma}[\{t_{1}\}]^{\mathcal{A}}, \dots, \hat{\sigma}[\{t_{n_{i}}\}]^{\mathcal{A}}\right) \\ &= \bigcup_{l_{i} \in \sigma(f_{i})} \hat{S}_{n}^{n_{i},\mathcal{A}} \left(\{l_{i}^{\mathcal{A}}\}, \hat{\sigma}[\{t_{1}\}]^{\mathcal{A}}, \dots, \hat{\sigma}[\{t_{n_{i}}\}]^{\mathcal{A}}\right) \\ &= \bigcup_{l_{i} \in \sigma(f_{i})} \hat{S}_{n}^{n_{i},\mathcal{A}} \left(\{l_{i}^{\mathcal{A}}\}, \{t_{1}\}^{\sigma(\mathcal{A})}, \dots, \{t_{n_{i}}\}^{\sigma(\mathcal{A})}\right) \\ &= \hat{S}_{n}^{n_{i},\mathcal{A}} \left(\{f_{i}^{\rho(\mathcal{A})} \mid \rho(\mathcal{A}) \in \sigma(\mathcal{A})\}, \{t_{1}\}^{\sigma(\mathcal{A})}, \dots, \{t_{n_{i}}\}^{\sigma(\mathcal{A})}\right) \\ &= \{f_{i}(t_{1}, \dots, t_{n_{i}})\}^{\sigma(\mathcal{A})} \\ &= B^{\sigma(\mathcal{A})}. \end{split}$$

If B is a set of terms consisting of more than one element, then we have

$$\hat{\sigma}[B]^{\mathcal{A}} = \left\{ \bigcup_{b \in B} \hat{\sigma}[\{b\}] \right\}^{\mathcal{A}} = \bigcup_{b \in B} \hat{\sigma}[\{b\}]^{\mathcal{A}} = \bigcup_{b \in B} \{b\}^{\sigma(\mathcal{A})} = B^{\sigma(\mathcal{A})}.$$

From Lemma 2.3 we obtain the "conjugate pair property" for the pair $(\chi^A_{M-nd}, \chi^E_{M-nd})$ of operators. We use the notation $\mathcal{A} \models s \approx t$ if the algebra \mathcal{A} of type τ satisfies the equation $s \approx t$ of type τ as an identity and $K \models s \approx t$ if the class K satisfies $s \approx t$. Moreover, we define

Definition 2.4. Let $B_1, B_2 \subseteq W_{\tau}(X)$ be sets of terms of type τ and assume that \mathcal{A} is an algebra of type τ and that $K \subseteq \chi^A_{M-nd}[A]$ for a monoid $\mathcal{M} \subseteq \mathcal{H}yp^{nd}(\tau)$ of non-deterministic hypersubstitution. Then

$$K \models B_1 \approx B_2 \text{ iff } B_1^K = B_2^K.$$

Especially we have $\sigma[\mathcal{A}] \models B_1 \approx B_2$ iff $B_1^{\sigma[\mathcal{A}]} = B_2^{\sigma[\mathcal{A}]}$ and $\{\mathcal{A}\} \models B_1 \approx B_2$ iff $B_1^{\{\mathcal{A}\}} = B_2^{\{\mathcal{A}\}}$ and this means $\mathcal{A} \models B_1 \approx B_2$ iff $B_1^{\mathcal{A}} = B_2^{\mathcal{A}}$.

From Lemma 2.3 we obtain the following conjugate property.

Theorem 2.5. Let \mathcal{A} be an algebra of type τ , and let $B_1 \approx B_2 \in \mathcal{P}(W\tau(X)) \times \mathcal{P}(W\tau(X))$ and assume that $\sigma \in Hyp^{nd}(\tau)$ be a non-deterministic hypersubstitution of type τ . Then

$$\sigma(\mathcal{A}) \models B_1 \approx B_2 \iff \mathcal{A} \models \hat{\sigma}[B_1] \approx \hat{\sigma}[B_2].$$

Proof.

$$\sigma(\mathcal{A}) \models B_1 \approx B_2 \iff B_1^{\sigma(\mathcal{A})} = B_2^{\sigma(\mathcal{A})}$$
$$\iff \hat{\sigma}[B_1]^{\mathcal{A}} = \hat{\sigma}[B_2]^{\mathcal{A}}$$
$$\iff \mathcal{A} \models \hat{\sigma}[B_1] \approx \hat{\sigma}[B_1]$$

Let now $M \subseteq Hyp^{nd}(\tau)$ be a monoid of non-deterministic hypersubstitutions. Then we form the set $\bigcup \{ \mathcal{P}(\chi^A_{M-nd}[\mathcal{A}]) \mid \mathcal{A} \in Alg(\tau) \}$ and consider $\Sigma \subseteq \mathcal{P}((\mathcal{P}(W_{\tau}(X)))^2)$ and $\mathcal{K} \subseteq \bigcup \{ \mathcal{P}(\chi^A_{M-nd}[\mathcal{A}]) \mid \mathcal{A} \in Alg(\tau) \}$. Definition 2.4 defines a relation between both sets. In the usual way we obtain a Galois connection $(\mathcal{P}Mod; \mathcal{P}Id)$ of non-deterministic models and non-deterministic identities defined by

 $\mathcal{P}Mod\Sigma := \{K \mid K \subseteq \chi^A_{M-nd}[\mathcal{A}] \text{ for some algebra } \mathcal{A} \in Alg(\tau)$

and
$$\forall B_1 \approx B_2 \in \Sigma(K \models B_1 \approx B_2)$$

$$\mathcal{P}Id\mathcal{K} := \{ B_1 \approx B_2 \mid B_1 \approx B_2 \in \mathcal{P}(W_\tau(X))^2 \text{ and } \forall K \in \mathcal{K}(K \models B_1 \approx B_2) \}$$

By definition, the operators $\chi^{\mathcal{A}}_{M-nd} : \mathcal{P}(\mathcal{P}(Alg(\tau))) \to \mathcal{P}(\mathcal{P}(Alg(\tau)))$ and $\chi^{E}_{M-nd} : \mathcal{P}((\mathcal{P}(W_{\tau}(X)))^{2}) \to \mathcal{P}((\mathcal{P}(W_{\tau}(X)))^{2})$ are completely additive. This means, for classes $\mathcal{K} \subseteq \mathcal{P}(\mathcal{P}(Alg(\tau)))$ the result of the application of $\chi^{\mathcal{A}}_{M-nd}$ to \mathcal{K} is the union of the results obtained by application of $\chi^{\mathcal{A}}_{M-nd}$ to the single classes $K \subseteq Alg(\tau) : \chi^{\mathcal{A}}_{M-nd}[\mathcal{K}] = \bigcup_{\sigma \in M}, \bigcup_{K \in \mathcal{K}} \sigma(K)$. In a corresponding way for a set $\Sigma \subseteq \mathcal{P}((\mathcal{P}(W_{\tau}(X)))^{2})$ and a submonoid $M \subseteq Hyp^{nd}(\tau)$ we have $\chi^{E}_{M-nd}[\Sigma] = \bigcup_{\sigma \in M} \bigcup_{B_{1} \approx B_{2} \in \Sigma} \hat{\sigma}[B_{1}] \approx \hat{\sigma}[B_{2}]$. Therefore, both operators are monotone, i.e.

$$\mathcal{K}_1 \subseteq \mathcal{K}_2 \Rightarrow \chi^A_{M-nd}[\mathcal{K}_1] \subseteq \chi^A_{M-nd}[\mathcal{K}_2]$$

and

$$\Sigma_1 \subseteq \Sigma_2 \Rightarrow \chi^E_{M-nd}[\Sigma_1] \subseteq \chi^E_{M-nd}[\Sigma_2].$$

Since $\sigma_{pid} \in M$ and $\sigma_{pid}(K) = \{K\}$, the operator χ^A_{M-nd} is extensive, i.e. $\mathcal{K} \subseteq \chi^A_{M-nd}[\mathcal{K}]$ for every class $\mathcal{K} \subseteq \mathcal{P}(\mathcal{P}(Alg(\tau)))$. Since $\hat{\sigma}_{pid}[\{B\}] = \{B\}$ for every $B \in \mathcal{P}(W_{\tau}(X))$, the operator χ^E_{M-nd} is also extensive. It turns out that both operators, χ^A_{M-nd} and χ^E_{M-nd} are closure operators. Altogether, we have

Theorem 2.6. The pair $(\chi^A_{M-nd}, \chi^E_{M-nd})$ is a conjugate pair of additive closure operators.

Proof. From Theorem 2.5, there follows $\chi^A_{M-nd}[K] \models B_1 \approx B_2 \iff K \models \chi^E_{M-nd}[B_1 \approx B_2]$. By the previous remarks it is left to show that the operators χ^A_{M-nd} and χ^E_{M-nd} are idempotent. Extensivity of χ^A_{M-nd} and χ^E_{M-nd} ,

implies $\chi_{M-nd}^{A}[\mathcal{K}] \subseteq \chi_{M-nd}^{A}[\chi_{M-nd}^{A}[\mathcal{K}]]$ and $\chi_{M-nd}^{E}[\Sigma] \subseteq \chi_{M-nd}^{E}[\chi_{M-nd}^{E}[\Sigma]]$ for $\mathcal{K} \in \mathcal{P}(\bigcup \{\mathcal{P}(\chi_{M-nd}^{A}[\mathcal{A}]) \mid \mathcal{A} \in Alg(\tau)\})$ and $W \in \mathcal{P}((\mathcal{P}(W_{\tau}(X)))^{2})$. We write $\mathcal{K} \models W$ iff $K \models A \approx B$ for all $K \in \mathcal{K}$ and all $B_{1} \approx B_{2} \in W$. We have to show that the opposite inclusions are satisfied. Let $\mathcal{B} \in \chi_{M-nd}^{A}[\chi_{M-nd}^{A}[\mathcal{K}]]$. Then there are *nd*-hypersubstitutions $\sigma_{1}, \sigma_{2} \in M$ and an algebra $\mathcal{A} \in \mathcal{K}$ such that

$$\begin{aligned} \mathcal{B} &\in \sigma_1[\sigma_2(\mathcal{A})] = \sigma_1[\{(A; (l_i^{\mathcal{A}})_{i \in I}) \mid l_i \in \sigma_2(f_i)\}] \\ &= \{\sigma_1(A; (l_i^{\mathcal{A}})_{i \in I}) \mid l_i \in \sigma_2(f_i)\} \\ &= \{(A; (h_i^{\mathcal{A}})_{i \in I}) \mid h_i \in \hat{\sigma}_1[l_i]\} \mid l_i \in \sigma_2(f_i)\} \\ &= \{(A; (h_i^{\mathcal{A}})_{i \in I}) \mid h_i \in \hat{\sigma}_1[l_i] \text{ and } l_i \in \sigma_2(f_i)\} \\ &= \{(A; (h_i^{\mathcal{A}})_{i \in I}) \mid h_i \in \hat{\sigma}_1[\sigma_2(f_i)]\} \\ &= \{(A; (h_i^{\mathcal{A}})_{i \in I}) \mid h_i \in (\sigma_1 \circ_{nd} \sigma_2)(f_i)\} \\ &= (\sigma_1 \circ_{nd} \sigma_2)(\mathcal{A}) \in \chi_{M-nd}^{\mathcal{A}}[\mathcal{K}]. \end{aligned}$$

This shows $\chi^{A}_{M-nd}[\chi^{A}_{M-nd}[\mathcal{K}]] = \chi^{A}_{M-nd}[\mathcal{K}]$. Now let $B_1 \approx B_2 \in \chi^{E}_{M-nd}[\chi^{E}_{M-nd}[\Sigma]]$. Then there is an equation $U \approx V$ in Σ and an *nd*-hypersubstitution $\sigma_1, \sigma_2 \in M$ such that $B_1 \approx B_2 \in \hat{\sigma}_1[\sigma_2[U]] \approx \hat{\sigma}_1[\sigma_2[V]]$, i.e. $B_1 \approx B_2 \in (\sigma_1 \circ_{nd} \sigma_2)^{\hat{}}[U] \approx (\sigma_1 \circ_{nd} \sigma_2)^{\hat{}}[V] \in \chi^{E}_{M-nd}[U \approx V] \subseteq \chi^{E}_{M-nd}[\Sigma]$.

3. *M*-Nd-Solid Varieties

A solid variety V admits every mapping $\sigma : \{f_i \mid i \in I\} \to W_{\tau}(X)$ which maps $n_i - ary$ operation symbols f_i to $n_i - ary$ terms in the sense that every derived algebra $\sigma(\mathcal{A}) = (A; (\sigma(f_i)^A)_{i \in I})$ belongs to V. Equivalently if $s \approx t$ is an identity in a solid variety V, then $\hat{\sigma}[s] \approx \hat{\sigma}[t]$ are also satisfied as identities in V for every hypersubstitution σ . We generalize the definition of a solid variety to M-solid non-deterministic varieties. **Definition 3.1.** Let $\mathcal{M} \subseteq \mathcal{H}yp^{nd}(\tau)$ be a monoid of non-deterministic hypersubstitutions of type τ . A variety V of type τ is said to be an M-solid non-deterministic variety, for short an M - nd-solid variety, if $\{\{\mathcal{A}\} \mid \mathcal{A} \in V\} \models \{\hat{\sigma}[\{s\}] \approx \hat{\sigma}[\{t\}] \mid s \approx t \in IdV, \sigma \in M\}$. In the case that $\mathcal{M} = \mathcal{H}yp^{nd}(\tau)$ we will speak of a solid non-deterministic variety, for short of an nd-solid variety.

Clearly, the class $Alg(\tau)$ of all algebras of type τ is *nd*-solid. The trivial variety (consisting only of one-element algebras of type τ) is also *nd*-solid. The class of all *nd*-solid varieties of type τ is contained in the class of all solid varieties of this type.

Example 3.2. There is no nontrivial *nd*-solid variety of semigroups.

Let V be a variety of semigroups. For a proof we consider the nd-hypersubstitutions $\sigma_1, \sigma_2 \in Hyp^{nd}(2)$ defined by $\sigma_1(f) = \{x, xy\}$ and $\sigma_2(f) = \{xy, yx\}$. If V were an nd-solid variety of semigroups, then the application of σ_1 to the associative law gives identities which are satisfied in V. Let $V^* := \{\{A\} \mid A \in V\}$, then $V^* \models \{\hat{\sigma}_1[f(x, f(y, z))]\} \approx \{\hat{\sigma}_1[f(f(x, y), z)]\}$ gives $V^* \models \{x, f(x, y), f(x, f(y, z))\} \approx \{x, f(x, y), f(x, z), f(f(x, y), z)\}$. Since every nd-solid variety is solid, this gives especially $V^* \models \{f(x, f(y, z))\} \approx$ $\{f(x, z)\}$. Applying σ_2 to this identity gives $V^* \models \{f(x, f(y, z))\} \approx$ $\{f(x, f(z, y)), f(z, f(y, x)), f(y, f(z, x))\} \approx \{f(x, z), f(z, x)\}$. We use again the fact that every nd-solid variety is solid and the previous identity and obtain $V^* \models \{f(x, z)\} \approx \{f(z, x)\}$ or $V^* \models \{f(x, y)\} \approx \{f(x, z)\}$ or $V^* \models \{f(x, z)\} \approx \{f(y, x)\}$. If we use again the fact that every nd-solid variety must be solid in each of the cases we obtain that V is trivial.

If an identity $s \approx t$ in a variety V is satisfied for all nd-hypersubstitutions we speak of an nd-hyperidentity. More generally we define

Definition 3.3. Let V be a variety of algebras of type τ , let $s \approx t$ be an identity satisfied in V and let $\mathcal{M} \subseteq \mathcal{H}yp^{nd}(\tau)$ be a monoid of nondeterministic hypersubstitutions. Then $s \approx t$ is an M - nd hyperidentity in V if $V^* \models \chi^E_{M-nd}[\{s\} \approx \{t\}]$ where $V^* = \{\{\mathcal{A}\} \mid \mathcal{A} \in V\}$. In this case we write $V \models_{M-nd-hyp} s \approx t$ and for $M = Hyp^{nd}(\tau)$ we will simply write $V \models_{nd-hyp} s \approx t$ and call $s \approx t$ an nd-hyperidentity in V.

The relation $K \models B_1 \approx B_2$ introduced in Definition 2.4 defines the Galois connection ($\mathcal{P}Mod, \mathcal{P}Id$) with the operations

$$\mathcal{P}Mod: \mathcal{P}((\mathcal{P}(W_{\tau}(X)))^{2}) \to \mathcal{P}\left(\bigcup\{\mathcal{P}(\chi_{M-nd}^{A}[\mathcal{A}]) \mid \mathcal{A} \in Alg(\tau)\}\right)$$
$$\mathcal{P}Id: \mathcal{P}\left(\bigcup\{\mathcal{P}(\chi_{M-nd}^{A}[\mathcal{A}]) \mid \mathcal{A} \in Alg(\tau)\}\right) \to \mathcal{P}((\mathcal{P}(W_{\tau}(X)))^{2}).$$

The relation $\models_{M-nd-hyp}$ defines one more Galois connection

 $(H_{M-nd} \mathcal{P} Mod, H_{M-nd} \mathcal{P} Id)$

for sets $\Sigma \subseteq \mathcal{P}((\mathcal{P}(W_{\tau}(X)))^2)$ and classes $\mathcal{K} \subseteq \bigcup \{\mathcal{P}(\chi^A_{M-nd}[\mathcal{A}]) \mid \mathcal{A} \in Alg(\tau)\}$ as follows

$$H_{M-nd} \mathcal{P}Mod: \mathcal{P}((\mathcal{P}(W_{\tau}(X)))^2) \to \mathcal{P}\left(\bigcup \{\mathcal{P}(\chi_{M-nd}^A[\mathcal{A}]) \mid \mathcal{A} \in Alg(\tau)\}\right),$$

$$H_{M-nd} \mathfrak{P}Id: \mathfrak{P}\left(\bigcup \{\mathfrak{P}(\chi_{M-nd}^{A}[\mathcal{A}]) \mid \mathcal{A} \in Alg(\tau)\}\right) \to \mathfrak{P}((\mathfrak{P}(W_{\tau}(X)))^{2}).$$

The products $\mathcal{P}Mod\mathcal{P}Id$, $\mathcal{P}Id\mathcal{P}Mod$, $H_{M-nd}\mathcal{P}IdH_{M-nd}\mathcal{P}Mod$, $H_{M-nd}\mathcal{P}Mod$, $H_{M-nd}\mathcal{P}ModH_{M-nd}\mathcal{P}Id$ are closure operators and their fixed points are complete lattices. The lattice of all M - nd-solid varieties arises if we restrict the operator $H_{M-nd}\mathcal{P}ModH_{M-nd}\mathcal{P}Id$ to classes of the form V^* where V is a variety of algebras of type τ . Moreover we have the conjugate pair $(\chi^A_{M-nd}, \chi^E_{M-nd})$ of additive closure operators. Their fixed points form two more complete lattices. Now we may apply the theory of conjugate pairs of additive closure operators (see e.g. [?]) and obtain the following propositions:

Lemma 3.4. Let $K \subseteq Alg(\tau)$ be a class of algebras and let $\Sigma \subseteq (\mathcal{P}W_{\tau}(X)^2)$ be a set of equations. Then the following properties hold:

- (i) $H_{M-nd} \mathcal{P}Id(K^*) = \mathcal{P}Id\chi^A_{M-nd}[K^*],$
- (ii) $H_{M-nd} \mathfrak{P} Id(K^*) \subseteq \mathfrak{P} Id(K^*),$
- (iii) $\chi^E_{M-nd}[H_{M-nd}\mathfrak{P}Id(K^*)] = H_{M-nd}\mathfrak{P}Id(K^*),$
- (iv) $\chi^{A}_{M-nd}[\mathcal{P}Mod(H_{M-nd}\mathcal{P}Id(K^*))] = \mathcal{P}Mod(H_{M-nd}\mathcal{P}Id(K^*)),$
- (v) $H_{M-nd} \mathcal{P}Id(H_{M-nd} \mathcal{P}Mod(\Sigma)) = \mathcal{P}Id(\mathcal{P}Mod(\chi^{E}_{M-nd}[\Sigma]));$ and dually

- (i)' $H_{M-nd} \mathcal{P} Mod(\Sigma) = \mathcal{P} Mod\chi^{E}_{M-nd}(\Sigma),$
- (ii)' $H_{M-nd} \mathcal{P} Mod(\Sigma) \subseteq \mathcal{P} Mod(\Sigma),$
- (iii)' $\chi^{A}_{M-nd}[H_{M-nd}\mathcal{P}Mod(\Sigma)] = H_{M-nd}\mathcal{P}Mod(\Sigma),$
- (iv)' $\chi^{E}_{M-nd}[\mathfrak{P}Id(H_{M-nd}\mathfrak{P}Mod(\Sigma))] = \mathfrak{P}Id(H_{M-nd}\mathfrak{P}Mod(\Sigma)),$
- (v)' $H_{M-nd} \mathcal{P} Mod[H_{M-nd} \mathcal{P} Id(K^*)] = \mathcal{P} Mod(\mathcal{P} Id(\chi^A_{M-nd}[K^*])).$

Using these propositions one obtains the following characterization of M – nd-solid varieties.

Theorem 3.5. Let V be a variety of type τ and let Σ be an equational theory of type τ (i.e. $IdMod(\Sigma) = \Sigma$). Further we assume that $\mathcal{M} \subseteq \mathcal{H}yp^{nd}(\tau)$ is a monoid of non-deterministic hypersubstitutions of type τ .

Then the following propositions are equivalent:

- (i) $H_{M-nd} \mathcal{P} ModH_{M-nd} \mathcal{P} Id(V^*) = V^*$,
- (ii) $\chi^{A}_{M-nd}[V^*] = V^*$ (i.e. V^* is M nd solid),
- (iii) $\mathcal{P}Id(V^*) = H_{M-nd}\mathcal{P}Id(V^*)$ (i.e. every identity in V^* is satisfied as a non-deterministic hyperidentity),
- (iv) $\chi^E_{M-nd}[\mathfrak{P}IdV^*] = \mathfrak{P}IdV^*.$

4. *M*-Nd-Solid Varieties of Semigroups

We consider some examples of M - nd-solid varieties of semigroups and use the following notation for varieties of semigroups;

- $B = Mod\{x(yz) \approx (xy)z, x^2 \approx x\}$ the variety of bands,
- $RB = Mod\{x(yz) \approx (xy)z \approx xz, x^2 \approx x\}$ the variety of rectangular bands
- $SL=Mod\{x(yz)\approx (xy)z, x^2\approx x, xy\approx yx\}~-$ the variety of semilattices, bands,
- $LZ = Mod\{xy \approx x\}$ the variety of left-zero bands.

260

Let $M = \{\sigma_{pid}, \sigma_1, \sigma_2\}$ with $\sigma_1(f) = \{x\}$ and $\sigma_2(f) = \{y\}$. Then M forms a monoid and the multiplication \circ_{nd} is given by the following table:

\circ_{nd}	σ_{pid}	σ_1	σ_2
σ_{pid}	σ_{pid}	σ_1	σ_2
σ_1	σ_1	σ_1	σ_2
σ_2	σ_2	σ_1	σ_2

We will prove the following proposition:

Proposition 4.1. Let $M = \{\sigma_{pid}, \sigma_1, \sigma_2\}$ as defined before. A non-trivial variety V of semigroups is M - nd-solid iff $RB \subseteq V$.

Proof. It is well-known that IdRB is the set of all outermost equations of type $\tau = (2)$, i.e. the set of all equations $s \approx t$ such that the first variables in s and in t and the last variables in s and in t agree. Therefore $RB \subseteq V$ means that all identities in V are outermost and for any $s \approx t \in Id$ we have $\hat{\sigma}_1[s] = \{$ first variable in $s\} = \{$ first variable in $t\} = \hat{\sigma}_1[t]$ and $\hat{\sigma}_2[s] = \{$ last variable in $s\} = \{$ last variable in $t\} = \hat{\sigma}_2[t]$. Clearly $s \approx t$ is closed under σ_{pid} .

Conversely, let V be a nontrivial M - nd-solid variety. Then $\sigma_1, \sigma_2 \in M$ requires $RB \subseteq V$.

Let var(B) be the set of all variables occurring in the set B of terms. Now let

$$M' = \{ \sigma \in Hyp^{nd}(\tau) \mid var(\sigma(f)) = \{x\} \}.$$

Clearly $M' \cup \{\sigma_{pid}\}$ forms a submonoid of $Hyp^{nd}(\tau)$. Then we have

Proposition 4.2. A non-trivial variety V of semigroups is M' – nd-solid iff $LZ \subseteq V \subseteq B$.

Proof. It is well-known that IdLZ is the set of all equations $s \approx t$ of type $\tau = (2)$ such that the first variable in s is equal to the first variable in t. Because of $var(\sigma(f)) = \{x\}$ the terms in $\hat{\sigma}[s]$ and the terms in $\hat{\sigma}[t]$ can be written as x^r and as x^l for some $r, l \in \mathbb{N}^+$. Since $V \subseteq B$ by the idempotent law all equations of the form $x^r \approx x^l$ are satisfied in V. This shows that V is M' - nd-solid. Conversely, let V be a nontrivial M' - nd-solid variety of semigroups. If we apply σ with $\sigma(f) = \{x, x^2\}$ to the identity $f(x, y) \approx f(x, y)$ we obtain $x \approx x^2$, i.e. $V \subseteq B$. If we apply σ' with $\sigma'(f) = \{x\}$ we get $leftmost(s) \approx leftmost(t) \in IdV$ and this means $LZ \subseteq V$. Altogether, we have $LZ \subseteq V \subseteq B$.

References

- K. Denecke and S.L. Wismath, Universal Algebra and Applications in Theoretical Computer Science, Chapman & Hall/CRC, Boca Raton, London, New York, Washington, D.C. 2002.
- [2] K. Denecke, P. Glubudom and J. Koppitz, Power Clones and Non-Deterministic Hypersubstitutions, preprint 2005.
- [3] F. Gécseg and M. Steinby, *Tree Languages*, pp. 1–68 in: Handbook of Formal Languages, Vol. 3, Chapter 1, Tree Languages, Springer-Verlag 1997.
- [4] K. Denecke and J. Koppitz, *M-solid Varieties of Algebras*, Advances in Mathematics, Vol. 10, Springer 2006.
- [5] S. Leeratanavalee, Weak hypersubstitutions, Thesis, University of Potsdam 2002.
- [6] K. Menger, The algebra of functions: past, present, future, Rend. Mat. 20 (1961), 409–430.
- [7] B.M. Schein, and V.S. Trokhimenko, Algebras of multiplace functions, Semigroup Forum 17 (1979), 1–64.
- [8] W. Taylor, Abstract Clone Theory, Algebras and Orders, Kluwer Academic Publishers, Dordrecht, Boston, London (1993), 507–530.

Received 30 May 2006 Revised 15 June 2007