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Abstract

A non-deterministic hypersubstitution maps any operation symbol
of a tree language of type 7 to a set of trees of the same type, i.e. to a
tree language. Non-deterministic hypersubstitutions can be extended
to mappings which map tree languages to tree languages preserving
the arities. We define the application of a non-deterministic hypersub-
stitution to an algebra of type 7 and obtain a class of derived algebras.
Non-deterministic hypersubstitutions can also be applied to equations
of type 7. Formally, we obtain two closure operators which turn out to
form a conjugate pair of completely additive closure operators. This
allows us to use the theory of conjugate pairs of additive closure op-
erators for a characterization of M-solid non-deterministic varieties
of algebras. As an application we consider M-solid non-deterministic
varieties of semigroups.
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1. Introduction

Let (fi)ier be an indexed set of operation symbols where f; is n;-ary, let
X :={x1,...,x,,...} be a countably infinite set of variables and for each
n > 1let X, := {1,...,2,} be a finite set of variables. We denote by
W-(X) and W-(X,,), respectively the sets of all terms of a finite type 7 =
(ni)icr and of all n-ary terms of type 7. We use the well-known Galois
connection Id-Mod between sets of identities and classes of algebras of a
given type. For any set X of identities we denote by Mod¥ the model class
of all algebras of type 7 which satisfy all identities of ¥; and for any class
K of algebras of the same type we denote by IdK the set of all identities
satisfied by all algebras in K. Classes of the form Mod> are called varieties
of algebras of type 7. If A satisfies the equation s ~ ¢ as an identity, we
write A = s &~ t and if the class K of algebras of type 7 satisfies s &~ t, we
write K |= s ~t. If ¥ C W,(X)? is a set of equations, then K = ¥ means
that every equation from Y is satisfied by every algebra from K. Any subset
of W(X), i.e. any element of the power set P(W,(X)) or of P(W,-(X,))
is called a tree language. Our restriction to a finite type is motivated by
applications of tree languages in computer science. For tree languages one
may define the following superposition operations

St 2 PWr(Xn)) X PWr(Xi))" — P(Wr (X))

m

inductively by the following steps:

Definition 1.1. Let m,n € NT(:= N\ {0}) and let B € P(W,(X,)) and
By,...,B, € P(W.(X,,)) such that B, By, ..., B, are non-empty.

(i) If B = {x;} for 1 < j < n, then S*({z;},B1,...,By,) = Bj.

(i) B ={fi(t1,-..,tn,)}, and if we assume that Sr ({t;}, By, ..., By) for
1 < j < n; are already defined, then S, ({ fi(t1, - .., tn,)}, B1, ..., Bn):=
{fi(rl, R 7Tni) | rj (S Sg]({tj},Bl, ... ,Bn) for 1 < ] < nl}

(iii) If B is an arbitrary subset of W (X,,), we define

Sp(B,B,...,Bn) = | ) Sh({b},Bi,...,Bn).
beB
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If one of the sets B, By, ..., By, is empty, we define S’%(B, By,...,By) = 0.
Then we may consider the heterogeneous algebra

P —clone 7 := (P(Wr(Xn)nen+; (Sm)mnent ({2:})i<nnent)

which is called the power clone of 7 ([?]). We mention that P — clone T
satisfies the well-known clone axioms (C1), (C2), (C3) (see e.g. [?, 7]).
If Ptin(Wr(X,)) is the set of all finite subsets of W, (X,,), then

Pfin — clone T := ((Tfin(WT(Xn)))neNJr; (S’gz)neNJrv ({xi})ign,neNJr)

is a subalgebra of P — clone 7 ([?]).

We mention also that there is a one-based version of P — clone T,
the algebra P,, — clone 7, := (P(W,, (X,)); S™, {z1}, ..., {x,}) where 7, is a
finite type consisting of n-ary operation symbols only and where
Sno= S’ZLL P, — clone 7, is an example of a unitary Menger algebra of
rank n (see e.g [?]).

Similar structures can be obtained if one defines a superposition for
sets of operations. Let O (A) be the set of all n-ary operations (n > 1)
defined on the set A and let O(A) := |J,~; O™ (A) be the set of all

operations defined on A. Let e?’A be an n-ary projection defined on A,

ie., e?’A(al, .. ap) == a; for 1 < i < n, and let P(O™(A)) be the power

set of O (A).

Definition 1.2. Let m,n € Nt and B € P(O™(A)),B;,...,B, €
P(O™)(A)) such that B, By, ..., B, are non-empty.

(i) If B= {e?’A} for 1 < j < n, then Sﬁ{A({e?’A},Bl, ..., Bpn):

B;.

(ii) If B ={fA(t{,... . ta)} with fA € O("i)(A),t3-4 € O™ (A) and assume
that Sﬁ{A({tf},Bl, ..., By) for 1 < j <mn; are already defined, then
SALAW, )}, Bl .., By) =

(A0, oy e e SEAY, By, .. Ba) 1 < j < i)

(iii) If B € P(O™(A)) is arbitrary, then we define

SpA(B,By,...,By) = | ] SpA({b}, By, ..., By).
beB
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If one of the sets B, By, ..., B, is empty, then we define S',TQA(B, Bi,...,By)
:= (). In this case we consider the heterogeneous algebra

P — clone := (PO (A)))nen+; (S mments (L€ D icnment)-

Let A = (4; (fiA)iej) be an algebra of type 7. Then we may consider the
subclone P4 — cloneA of P4 — clone which is defined as follows.

Definition 1.3. Let n € Nt and B € P(W,(X,,)). Then we define the set
B of term operations induced on the algebra A = (A; (fA)ier) as follows:

(i) If B = {x;} for 1 < j < n, then B* := {e?’ﬂ}.

(ii) If B = {fi(t1,...,tn,)} then B4 = {fA(tf,.. ., ¢})} where fis the
fundamental operation of A coresponding to the operation symbol f;
and where t;q are term operations on A which are induced in the usual
way by the ¢;’s.

(iii) If B is an arbitrary non-empty subset of W,(X,), then we define B* :=
Upep{b}™. If the set B is empty, then we define B* := 0.

Let P(W,(X,))”* be the collection of all sets of m-ary term operations
induced by sets of n-ary terms of type 7 on the algebra A = (A; (f)icr)

From these definitions we obtain the following

Lemma 1.4. Let B € P(W,(X,,)) and let By,...,B, € P(W.(X,)). Then

[S™(B, By, ...,By)|" = S%4BA, B, ..., BA).

Proof. If one of the sets B, B1,...,B, is empty, then one of the sets
B4, B, ..., B/ is also empty. Thus

(S.(B, By, Byl = 0% = 0 = S5A(BA B, ..., B,

Assume now that all of B, By,..., B, are different from the empty set.
At first we show by induction on the complexity of the term ¢ that for
one-element sets B = {t} our equation is satisfied.
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For t = x; with 1 <i < n, we have BA = {z;}* = {e"!} and

[S™ (B, By, ...,B)|"* = [S" ({x:}, By, ..., By

= SmA{M, B, ... B
= St {wi} Bl B
= S BA B, ... BA.

Let now t = f;(t1,...,ty,) and assume that for all 1 < k < n;,

[S™ ({tx}, B, ..., Bn)|"* = STt 4 B, ..., B2,

[S2 ({fi(t1s - - tn) }, Br, ., Bo)|A
={fi(r1,...,m,) | i € S2({tr}, B1, ..., By),1 <k <n}A
= {0 o) e SE({t) By -, Ba), 1 < k< myb
= A0y e e St ({tk), B, B 1 < k < ng}
= (AL ) el e S B, L B, 1 < k<)

= SEA{SARS . DY, B, .. B

?"ng n

S it tn) YA B . B,

n

If B is a set of terms consisting of more than one element, then we have
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A~

[S?(B,By,...,B,)*

[S;g( U {b}, By, ... ,Bn)rl

beB

- [U S;,g({b},Bl,...,Bn)]A

beB

N

= U Sh({b}, B, ..., Bo)l*
bEB

= bUB S ({0 B B
S

gt ( U {04, BA, .. ,B:f)

beB

S (BA, BY, ... B).

n

Proposition 1.5.

Pa — cloneA = (PWr(Xn)Mnen+: (S mmen+ ({ef" Dicnnent)
s a subalgebra of P4 — clone.

Proof. Let B* € P(W,(X,))" and let Bft,..., Bt € P(W,(X,,))”, then
B € P(W,(X,)) and By, ..., By € P(Wr(Xom)).

From Lemma 1.4 we have that

SnABA B, ... BY =[S"(B,By,...,By)|" € P(W, (X))t .

If TM(A) is the set of all derived n-ary operations of the algebra
A = (A;(f)ie1), then we can also consider the algebra P(T(A)) :=
(PT(A)))nen+s (S Dnments (€D icnment). Tt is not difficult to
prove that P4 — cloneA = P(T(A)).

Any mapping o : {f; | i € I} — P(W, (X)) with o(fi) C W (X,,),
for i € I, is called a non-deterministic hypersubstitution (for short nd-
hypersubstitution) of type 7. We denote by Hyp™®(r) the set of all non-
deterministic hypersubstitutions of type 7. Every nd-hypersubstitution can
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be extended in the following inductive way to a mapping ¢ : P(W,(X)) —
PV, (X)),

0] := 0.

—~
—
S~—
Q>

(ii) o[{z;}] := {x;} for every variable z; € X.

(i) 6[{fi(t1,. .. tn,)}] == 8P (a(fi), 6[{t1}],...,6[{tn,}]) if we inductively
assume that 6[{tx}],1 < k < n,, are already defined.

(iv) &[B]:=U{c[{b}] | b € B} for B C W (X).

In the sequel instead of &[{t}] for a term ¢ € W, (X) we will simply write
at].

In [?] was proved that for every nd-hypersubstitution o the mapping ¢ is
an endomorphism of P — clone 7. We recall also that the set Hyp™?(7) forms
a monoid with respect to the operation o,4 defined by o1 0,4 02 := 61 0 09
and the identity element 0,4 : fi — {fi(z1,...,2p,)} for every i € I.

In the next section we apply nd-hypersubstitutions to equations and to
algebras.

2. The Conjugate Pair (Xﬁd,xfd)

If A = (A;(fYier) is an algebra of type 7 and if ¢ € Hyp"(r) is an
nd-hypersubstitution, then we define

o(A) = {(4; (I)ier) | 1 € o (f)}-

The set o(A) is called the set of derived algebras. Since for every sequence
(I;)ier of terms there is a hypersubstitution mapping f; to I; we can write
o(A) also in the form o(A) = {p(A) | p € Hyp(r) with p(fi) € o(fi)
for ¢ € I'}. For a class K of algebras of type 7 we define

AeK

If M C Hyp™(r) is the universe of a submonoid of Hyp™(r), then
we define x4, ,[K] := Uyep 0(K). For M = Hyp™(r) we will simply
write x;?d. We notice that X]‘?/[_nd [K] consists of algebras of the same type.
For a set X € P(P(Alg(7))) of sets of algebras of type 7 and a monoid M
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of nd-hypersubstitutions we define x4, ,[X] := {0(K) | K € X,0 € M}.
For By, By € P(W,(X)) we define equations By ~ By. If ¥ € P(P(W (X)) x
P(W,(X))) and 0 € M C Hyp"*(1) we define

5[] := {6[B1] ~ 6[Bs] | B1 ~ B, € %}

and
Xhr—nalZ] := {6[B1] = 6[Bs] | Bi ~ By € £,0 € M}.

For M = Hyp"?(r) we will use simply the notation yZ,.

We want to prove that there is a close connection between both opera-
tors. Instead of x4, _, 4[{{A}}] we will write x4,_, 4[4]. For K C x4, ,[A]
and for a set B C W, (X) of terms we define the set BX of induced term op-
erations. For the set o(A) of derived algebras and for a set B € P(W,-(X,,))
of n-ary terms we define the set B of term operations induced by the
set o(A) of derived algebras as follows

Definition 2.1. Let n € N* and B € P(W,.(X,,)), let A = (A; (f)ier) be

]

an algebra of type 7, let o € Hyp™(r) be an nd-hypersubstitution and let
o(A) = {(A;(IMN)ier) | 1 € o(f;)} be the set of derived algebras. Then we
define the set B of term operations induced by the set o(A) of derived
algebras as follows:

(i) If B:= {x;} for 1 <j < n, then B := {e?’p(ﬂ) | p(A) € o(A)} =
{el}.

(i) If B = {f;(t1,...,tn,)} then

BI = (S A | p(A) € ()} {0}, }7 )

U S AU {007, {17

p(A)ea(A)

= U {fip(ﬂ)(rl,...,rni) | € {tk}"(A), for 1 <k <mn;}
p(A)ea(A)
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where f7 D denotes the fundamental operation of the algebra p(A)
belonging to the operation symbol f; and assume that {t;} 1 <
k < n;, are already defined.

(iii) If B is an arbitrary non-empty subset of W, (X)), then we define

B .= | {b}°™. If the set B is empty, then we define B := §).
beB

For any term t € W, (X,,) and a class G of algebras of type 7 we define
t9 .= {1} = " | A € G}.

Definition 2.2. Let A be an algebra of type 7 and let K C x4, _, ;[A] and
let n > 1 be an integer. Then we define

(i) If B = {z;} for 1 <j <n, then BX = {e?’A} C TM(A).

(ii) If B = {fi(t1,...,tn)} and let B; =t € TM(A) for 1 < j < n; are
already known, then

BR = {8348, Br,..., Ba,) | S = {p(f)* | p € Hyp(7), p(A) € K}
c Tm(A)).
Finally for an arbitrary nonempty set B € P(W,(X)) we set BX :=

U {b}¥ and for the empty set B we let BX := ().
beB

Definition 2.2 contains Definition 2.1 as a special case since for every o €
Hyp"(1) we have o(A) C x4;_,.4[A]. We have also {A} C x4, , 4[A] and
{p(A)} C x4,_,.4lA] for a hypersubstitution p € Hyp(7) and it is easy to
see that for a single term s € W,(X,,) we have {p[s]}{ = p[s]A = 5P =
{s}{P(A},

Now we prove:
Lemma 2.3. Let B € P(W, (X)) be an arbitrary set of n-ary terms of

type T, let A = (A; (fZ-A)ie]) be an algebra of type 7 and let o be an nd-
hypersubstitution of type T. Then 6[B]* = B°W,

Proof. If B is empty, then all is clear. If B is nonempty we will give a
proof by induction on the complexity of the terms from the set B.
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If B = {z;} for 1 < j < n, then 6[B]* = {z;}"* = {e?’A} by the definition
of o and by Definition 1.3. Further, by Definition 2.1 we have

B — (370 = {0 o) € o) = (¢}

since all algebras p(A) have the same universe. Therefore 6[B]* = B4
for B = {z;} for 1 < j <n.

Now let B = {fi(t1,...,t,,)} and assume that ¢[{t;}]* = {t;}°V for
1 <k <n;. Then

1B = ol{ it 1))
= [t slte ottt )]
= S (o sl o))
= 52 (s s € oA ol 6 {ta 1)

= U St (el ol
li€o(fs)

= U ggw‘l({l;q},{tl}a(ﬂ)jn_7{tm}a(/l)>

li€o(fs)
= SuA ({1 p(A) € oA} (1} ()7

= {filtr,... ta)}°W

= B°W,
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If B is a set of terms consisting of more than one element, then we have

A
o[B* = {U 6[{6}]} = Jol{oy* = J foy ™ = 7

beB beB beB
|

From Lemma 2.3 we obtain the ”conjugate pair property” for the pair
(Xf/lfnd,xﬁfnd) of operators. We use the notation A | s =~ ¢
if the algebra A of type 7 satisfies the equation s ~ t of type 7 as an
identity and K |= s ~ ¢ if the class K satisfies s &~ t. Moreover, we define

Definition 2.4. Let By, By C W, (X) be sets of terms of type 7 and assume
that A is an algebra of type 7 and that K C XI]?/Ifnd[A] for a monoid M C
Hyp™®(7) of non-deterministic hypersubstitution. Then

K = B, =~ B, iff BX = BE.

Especially we have o[A] = B; ~ By iff BT[A] = Bg[‘A} and {A} = B1 =~ By
iff B = B and this means A = By ~ B, iff B{* = BA.

From Lemma 2.3 we obtain the following conjugate property.

Theorem 2.5. Let A be an algebra of type T, and let By =~ By € P(Wt(X))X
PWT(X)) and assume that o € Hyp" () be a non-deterministic hypersub-
stitution of type 7. Then

Proof.

o(A) =By~ By, «= B/ =pJ¥
— 6B = 6[Bo]?
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Let now M C Hyp"¥(7) be a monoid of non-deterministic hypersubstitu-
tions. Then we form the set U{P(x%,_,4l4]) | A € Alg(T)} and consider
¥ CP(PW,(X)))?) and K C U{P(x4;_alAl) | A € Alg()}. Definition
2.4 defines a relation between both sets. In the usual way we obtain a Galois
connection (PMod; PId) of non-deterministic models and non-deterministic
identities defined by

PModY := {K | K C x4;_,.4lA] for some algebra A € Alg(t)
and VB) ~ By € ¥(K = B; ~ Bs)}
PIdK := {By~Bsy | By = By € P(W,(X))? and VK € K(K |= By ~ By)}

By definition, the operators x4, _,.; : P(P(Alg())) — P(P(Alg(r))) and
X5 q PUPWL(X)))?) — P(P(Wr(X)))?) are completely additive. This
means, for classes K C P(P(Alg(7))) the result of the application of x4, .4
to K is the union of the results obtained by application of XAM—nd to the single
classes K C Alg(7) : x4;_qlX] = Usenr, Ukesco(K). In a corresponding
way for a set ¥ C P((P(W,(X)))?) and a submonoid M C Hyp"?(7) we have
X3 -nal2] = Users Up xpyex 6[B1] & 6[Bs]. Therefore, both operators are
monotone, i.e.
K1 € Ko = Xhr_nalX1] S X2 —nalK2]

and
Y1 CY¥o=> Xﬁ,nd[zl] - X]\E/Ifnd[zﬂ‘

Since 0, € M and opiq(K) = {K}, the operator xﬁ_nd is extensive, i.e.
K C x4y ,.q41K] for every class KX C P(P(Alg(r))). Since 6,q[{B}] = {B}
for every B € P(W,(X)), the operator x};_, , is also extensive. It turns out
that both operators, Xﬁ—nd and Xﬁ_nd are closure operators. Altogether,
we have

Theorem 2.6. The pair (Xﬁ—nd’xﬁ—nd) is a conjugate pair of additive
closure operators.

Proof. From Theorem 2.5, there follows x4, ,,[K] E B1 ~ By < K =
Xf/lfnd[Bl ~ Bs]. By the previous remarks it is left to show that the opera-
tors X]‘?/[_nd and Xf/[_nd are idempotent. Extensivity of Xf\é‘/[_nd and Xf/[_nd,
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implies XJ\A4—nd[gq - Xf/[—nd[X _nalX]] and XM nal2] € XM nd[XJ\E4 nal 2]
for X € PP _glA]) | A € Alg(r)}) and W € P(P(W,(X))?).
We write K E W if K E A ~ B for all K € X and all By ~ By

€ W. We have to show that the opposite inclusions are satisfied. Let
B € x4 _alxd_,alX]]. Then there are nd-hypersubstitutions 01,00 € M
and an algebra A € X such that

B € a1foa(A)] = o1[{(A; (i{ier) | i € o2(fi)}]
= {o1(4; (i1ier) | i € o2(fi)}
= {(4; (h)ier) | hi € a1[l} | 1 € o2(fi)}
= {(A: (hYier) | hi € 61[l;] and 1; € o2(fi)}
= {(A; (hYier) | hi € 61[o2(f3)]}
= {(A; (hier) | hi € (91 0na 02)(fi)}

= (01 ond 02)(A) € X7 _nalX]-

This shows x4, _aX4r_.alKl] = X4 nalX]. Now let By ~ By € x¥,_ .
(X% _,a/Zl]. Then there is an equation U ~ V in ¥ and an nd-hyper-
substitution 1,09 € M such that By &~ By € 61[02[U]] = a1[o2[V]], i.e.
By = By € (0103402) " [U] = (01 0na 02) " [V] € X1 _alU = V] € X371 alZ]-

|

3. M —Nd-Solid Varieties

A solid variety V' admits every mapping o : {f; | i € I} — W;(X) which
maps n; — ary operation symbols f; to n; — ary terms in the sense that
every derived algebra o(A) = (4; (o(f;)*)ier) belongs to V. Equivalently if
s ~ t is an identity in a solid variety V, then [s] = [t] are also satisfied as
identities in V for every hypersubstitution o. We generalize the definition
of a solid variety to M-solid non-deterministic varieties.
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Definition 3.1. Let M C Hyp™(7) be a monoid of non-deterministic
hypersubstitutions of type 7. A variety V of type 7 is said to be an
M-solid non-deterministic variety, for short an M — nd-solid variety, if
{{A} | A e V} E{6[{s}] = 6[{t}] | s =t € IdV,o0 € M}. In the case
that M = Hyp"? (1) we will speak of a solid non-deterministic variety, for
short of an nd-solid variety.

Clearly, the class Alg(7) of all algebras of type 7 is nd-solid. The trivial
variety (consisting only of one-element algebras of type 7) is also nd-solid.
The class of all nd-solid varieties of type 7 is contained in the class of all
solid varieties of this type.

Example 3.2. There is no nontrivial nd-solid variety of semigroups.

Let V be a variety of semigroups. For a proof we consider the nd-hypers-
ubstitutions 1,092 € Hyp"(2) defined by o1(f) = {z,zy} and o2(f) =
{zy,yx}. If V were an nd-solid variety of semigroups, then the application of
o1 to the associative law gives identities which are satisfied in V. Let V* :=
[{A} [ A € V}, then V* = {&1[f(z, fy, 2))]} ~ {&1[F(f(2,9), 2)]} gives
VE E {a f@y) o f2)} & {a, f@,y), (2, 2), F(F@,9).2)}. Since
every nd-solid variety is solid, this gives especially V* = {f(z, f(y,2))} =~
{f(z,2)}. Applying o2 to this identity gives V* = {f(z, f(y,2)),
P, F ), £ F2), F . f(z,2)} ~ {f(2,2), f(z,2)}. We use again
the fact that every nd-solid variety is solid and the previous identity and
obtain V* = {f(a,2)} ~ {f(z,0)} or V* £ {f(w.y)} ~ {f(z,2)} or
V* = {f(z,2)} = {f(y,x)}. If we use again the fact that every nd-solid
variety must be solid in each of the cases we obtain that V' is trivial.

If an identity s =~ ¢ in a variety V is satisfied for all nd-hypersubstitutions
we speak of an nd-hyperidentity. More generally we define

Definition 3.3. Let V be a variety of algebras of type 7, let s =~ t be
an identity satisfied in V and let M C Hyp™(r) be a monoid of non-
deterministic hypersubstitutions. Then s ~ ¢ is an M — nd hyperidentity
in V if V* | x4 [{s} = {t}] where V* = {{A} | A € V}. In this case
we write V' Ep—nd—hyp s = t and for M = H yp™(1) we will simply write
V End—hyp § &~ t and call s ~ ¢t an nd-hyperidentity in V.

The relation K = B; ~ Bj introduced in Definition 2.4 defines the Galois
connection (PMod, PId) with the operations
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PMod : P(PW(X))?) = P (| HPOG—nalA]) |4 € Alg(n)}),

21 P (P O—nd) | A € Alg(r)}) — P(@W(X)))?)

The relation =p7—pnd—nyp defines one more Galois connection
(Hyr—naPMod, Hyy—nqP1d)

for sets ¥ C P((P(W,(X)))?) and classes X C U{P(x{_,.4lA]) | A €
Alg(T)} as follows

Hyrna®Mod : P(PV-(X))?) — P (P0calA)) | A € Alg(n)})

HtnaP1d: P (PO _0al]) | 4 € Alg(r)}) — PPOV(X))?)

The products PModPId, PIdPMod, Hpj_pgPIdHp_naPMod, Hpr_na
PModH p;_,qPId are closure operators and their fixed points are complete
lattices. The lattice of all M — nd-solid varieties arises if we restrict the
operator Hy;_nqPModH pj_,qPId to classes of the form V* where V is
a variety of algebras of type 7. Moreover we have the conjugate pair
(Xﬁind, x5 _,.q) of additive closure operators. Their fixed points form two
more complete lattices. Now we may apply the theory of conjugate pairs
of additive closure operators (see e.g. [?]) and obtain the following proposi-
tions:

Lemma 3.4. Let K C Alg(7) be a class of algebras and let ¥ C (PW,(X)?)
be a set of equations. Then the following properties hold:

(i) Ha—ngPId(K*) = PIdxi_nq[K*],
(i) HarnaPId(K?) C PIA(K™),

)

)
(i) X¥7_pal Hrr—naPId(K*)]) = Har—naPId(K*),
(iv) x4 g[PMod(Hy—pngPId(K*))] = PMod(H p—ngPId(K*)),
)

(V) Hpr—naPId(Hpr—pnaPMod(X)) = PId(PMod(xE, , ,[%])); and dually
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(i ! HandCPMOd(Z) = :PMOdXJ\E4—nd(E)7
(il) Hpyr—pnaPMod(X) C PMod(Y),

" xE L JPIA(H - pnaPMod(X))] = PIA(Hpr—naPMod (X)),

)

)

(i) x4y gl HM—naPMod(2)] = Hys—paPMod(E),

(iv)

(V) Hpyr—nd®PMod[Hp—paPId(K*)] = PMod(PId(x%; . 4[K*])).

Using these propositions one obtains the following characterization of M —
nd-solid varieties.

Theorem 3.5. Let V be a variety of type T and let X be an equational theory
of type T (i.e. [dMod(X) = X). Further we assume that M C Hyp"?(7) is
a monoid of non-deterministic hypersubstitutions of type 7.

Then the following propositions are equivalent:

(i) Har—naPModHy_ngPId(V*) = V¥,
(i) x4y 4V =V* (i.e. V*is M — nd solid),

(iii) PId(V*) = Hpyr—ngPId(V*) (i.e. every identity in V* is satisfied as a
non-deterministic hyperidentity),

(iv) x& _, JPIdV*] = PIdV*.

4. M—Nd-Solid Varieties of Semigroups

We consider some examples of M — nd-solid varieties of semigroups and use
the following notation for varieties of semigroups;

B = Mod{x(yz) =~ (zy)z, 2% ~ x} — the variety of bands,
RB = Mod{x(yz)=~(zy)z ~ rz,2% ~ 2} — the variety of rectangular bands

SL = Mod{x(yz) =~ (zy)z,2% ~ z,ry ~ yr} — the variety of semilattices,
bands,

LZ = Mod{zxy =~ x} — the variety of left-zero bands.
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Let M = {opid, 01,02} with o1(f) = {z} and o2(f) = {y}. Then M forms
a monoid and the multiplication o,4 is given by the following table:

Ond ‘O'pid g1 02

Opid | Opid 01 02
01 o1 o1 02

02 02 g1 02

We will prove the following proposition:

Proposition 4.1. Let M = {0piq, 01,02} as defined before. A non-trivial
variety V of semigroups is M — nd-solid iff RB C V.

Proof. It is well-known that IdRB is the set of all outermost equations of
type 7 = (2), i.e. the set of all equations s ~ ¢ such that the first variables
in s and in ¢ and the last variables in s and in t agree. Therefore RB C V
means that all identities in V' are outermost and for any s ~ ¢t € Id we
have 61[s] = { first variable in s} = { first variable in ¢t} = 6]t and
do[s] = { last variable in s} = { last variable in t} = &9[t]. Clearly
s =t is closed under op;q.

Conversely, let V' be a nontrivial M —nd-solid variety. Then o1,09 € M
requires RB C V. [

Let var(B) be the set of all variables occurring in the set B of terms.
Now let

M' = {o € Hyp"!(7) | var(o(f)) = {z}}.

Clearly M’ U {04} forms a submonoid of Hyp™¢ (7). Then we have

Proposition 4.2. A non-trivial variety V of semigroups is M’ — nd-solid
iff LZ CV CB.

Proof. It is well-known that IdLZ is the set of all equations s & t of type
7 = (2) such that the first variable in s is equal to the first variable in t.
Because of var(o(f)) = {z} the terms in &[s] and the terms in &[¢] can be
written as 2" and as z! for some 7,1 € N*. Since V C B by the idempotent
law all equations of the form z" ~ z! are satisfied in V. This shows that V'
is M' — nd-solid.
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Conversely, let V' be a nontrivial M’ — nd-solid variety of semigroups.
If we apply o with o(f) = {z,2%} to the identity f(x,y) ~ f(z,y) we
obtain x ~ 22, i.e. V C B. If we apply o/ with o/(f) = {z} we get
leftmost(s) ~ leftmost(t) € IdV and this means LZ C V. Altogether,
we have LZ CV C B. ]

REFERENCES

[1] K. Denecke and S.L. Wismath, Universal Algebra and Applications in
Theoretical Computer Science, Chapman & Hall/CRC, Boca Raton, London,
New York, Washington, D.C. 2002.

[2] K. Denecke, P. Glubudom and J. Koppitz, Power Clones and Non-
Deterministic Hypersubstitutions, preprint 2005.

[3] F. Gécseg and M. Steinby, Tree Languages, pp. 1-68 in: Handbook of Formal
Languages, Vol. 3, Chapter 1, Tree Languages, Springer-Verlag 1997.

[4] K. Denecke and J. Koppitz, M-solid Varieties of Algebras, Advances in Math-
ematics, Vol. 10, Springer 2006.

[6] S. Leeratanavalee, Weak hypersubstitutions, Thesis, University of Potsdam
2002.

[6] K. Menger, The algebra of functions: past, present, future, Rend. Mat. 20
(1961), 409-430.

[7] B.M. Schein, and V.S. Trokhimenko, Algebras of multiplace functions, Semi-
group Forum 17 (1979), 1-64.

[8] W. Taylor, Abstract Clone Theory, Algebras and Orders, Kluwer Academic
Publishers, Dordrecht, Boston, London (1993), 507-530.

Received 30 May 2006
Revised 15 June 2007


http://www.tcpdf.org

