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Abstract

A non-deterministic hypersubstitution maps any operation symbol
of a tree language of type τ to a set of trees of the same type, i.e. to a
tree language. Non-deterministic hypersubstitutions can be extended
to mappings which map tree languages to tree languages preserving
the arities. We define the application of a non-deterministic hypersub-
stitution to an algebra of type τ and obtain a class of derived algebras.
Non-deterministic hypersubstitutions can also be applied to equations
of type τ . Formally, we obtain two closure operators which turn out to
form a conjugate pair of completely additive closure operators. This
allows us to use the theory of conjugate pairs of additive closure op-
erators for a characterization of M -solid non-deterministic varieties
of algebras. As an application we consider M -solid non-deterministic
varieties of semigroups.
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1. Introduction

Let (fi)i∈I be an indexed set of operation symbols where fi is ni-ary, let
X := {x1, . . . , xn, . . .} be a countably infinite set of variables and for each
n ≥ 1 let Xn := {x1, . . . , xn} be a finite set of variables. We denote by
Wτ (X) and Wτ (Xn), respectively the sets of all terms of a finite type τ =
(ni)i∈I and of all n-ary terms of type τ . We use the well-known Galois
connection Id-Mod between sets of identities and classes of algebras of a
given type. For any set Σ of identities we denote by ModΣ the model class
of all algebras of type τ which satisfy all identities of Σ; and for any class
K of algebras of the same type we denote by IdK the set of all identities
satisfied by all algebras in K. Classes of the form ModΣ are called varieties
of algebras of type τ . If A satisfies the equation s ≈ t as an identity, we
write A |= s ≈ t and if the class K of algebras of type τ satisfies s ≈ t, we
write K |= s ≈ t. If Σ ⊆ Wτ (X)2 is a set of equations, then K |= Σ means
that every equation from Σ is satisfied by every algebra from K. Any subset
of Wτ (X), i.e. any element of the power set P(Wτ (X)) or of P(Wτ (Xn))
is called a tree language. Our restriction to a finite type is motivated by
applications of tree languages in computer science. For tree languages one
may define the following superposition operations

Ŝn
m : P(Wτ (Xn))× P(Wτ (Xm))n → P(Wτ (Xm))

inductively by the following steps:

Definition 1.1. Let m,n ∈ N+(:= N \ {0}) and let B ∈ P(Wτ (Xn)) and
B1, . . . , Bn ∈ P(Wτ (Xm)) such that B, B1, . . . , Bn are non-empty.

(i) If B = {xj} for 1 ≤ j ≤ n, then Ŝn
m({xj}, B1, . . . , Bn) := Bj .

(ii) If B = {fi(t1, . . . , tni)}, and if we assume that Ŝn
m({tj}, B1, . . . , Bn) for

1 ≤ j ≤ n; are already defined, then Ŝn
m({fi(t1, . . . , tni)}, B1, . . . , Bn):=

{fi(r1, . . . , rni) | rj ∈ Ŝn
m({tj}, B1, . . . , Bn) for 1 ≤ j ≤ ni}.

(iii) If B is an arbitrary subset of Wτ (Xn), we define

Ŝn
m(B,B1, . . . , Bn) :=

⋃

b∈B

Ŝn
m({b}, B1, . . . , Bn).
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If one of the sets B, B1, . . . , Bn is empty, we define Ŝn
m(B, B1, . . . , Bn) := ∅.

Then we may consider the heterogeneous algebra

P− clone τ := ((P(Wτ (Xn)))n∈N+ ; (Ŝn
m)m,n∈N+ , ({xi})i≤n,n∈N+)

which is called the power clone of τ ([?]). We mention that P − clone τ
satisfies the well-known clone axioms (C1), (C2), (C3) (see e.g. [?, ?]).
If Pfin(Wτ (Xn)) is the set of all finite subsets of Wτ (Xn), then

Pfin − clone τ := ((Pfin(Wτ (Xn)))n∈N+ ; (Ŝn
m)n∈N+ , ({xi})i≤n,n∈N+)

is a subalgebra of P− clone τ ([?]).
We mention also that there is a one-based version of P − clone τ ,

the algebra Pn− clone τn := (P(Wτn(Xn)); Ŝn, {x1}, . . . , {xn}) where τn is a
finite type consisting of n-ary operation symbols only and where
Ŝn := Ŝn

n . Pn − clone τn is an example of a unitary Menger algebra of
rank n (see e.g [?]).

Similar structures can be obtained if one defines a superposition for
sets of operations. Let O(n)(A) be the set of all n-ary operations (n ≥ 1)
defined on the set A and let O(A) :=

⋃
n≥1 O(n)(A) be the set of all

operations defined on A. Let en,A
i be an n-ary projection defined on A,

i.e., en,A
i (a1, . . . , an) := ai for 1 ≤ i ≤ n, and let P(O(n)(A)) be the power

set of O(n)(A).

Definition 1.2. Let m,n ∈ N+ and B ∈ P(O(n)(A)), B1, . . . , Bn ∈
P(O(m)(A)) such that B, B1, . . . , Bn are non-empty.

(i) If B = {en,A
j } for 1 ≤ j ≤ n, then Ŝn,A

m ({en,A
j }, B1, . . . , Bn) := Bj .

(ii) If B = {fA
i (tA1 , . . . , tAni

)} with fA
i ∈ O(ni)(A), tAj ∈ O(n)(A) and assume

that Ŝn,A
m ({tAj }, B1, . . . , Bn) for 1 ≤ j ≤ ni are already defined, then

Ŝn,A
m ({fA

i (tA1 , . . . , tAni
)}, B1, . . . , Bn) :=

{fA
i (rA

1 , . . . , rA
ni

) | rA
j ∈ Ŝn,A

m ({tAj }, B1, . . . , Bn), 1 ≤ j ≤ ni}.

(iii) If B ∈ P(O(n)(A)) is arbitrary, then we define

Ŝn,A
m (B,B1, . . . , Bn) :=

⋃

b∈B

Ŝn,A
m ({b}, B1, . . . , Bn).
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If one of the sets B,B1, . . . , Bn is empty, then we define Ŝn,A
m (B,B1, . . . , Bn)

:= ∅. In this case we consider the heterogeneous algebra

PA − clone := ((P(O(n)(A)))n∈N+ ; (Ŝn,A
m )m,n∈N+ , ({en,A

i })i≤n,n∈N+).

Let A = (A; (fA
i )i∈I) be an algebra of type τ . Then we may consider the

subclone PA − cloneA of PA − clone which is defined as follows.

Definition 1.3. Let n ∈ N+ and B ∈ P(Wτ (Xn)). Then we define the set
BA of term operations induced on the algebra A = (A; (fA

i )i∈I) as follows:

(i) If B = {xj} for 1 ≤ j ≤ n, then BA := {en,A
j }.

(ii) If B = {fi(t1, . . . , tni)} then BA = {fA
i (tA1 , . . . , tAni

)} where fA
i is the

fundamental operation of A coresponding to the operation symbol fi

and where tAj are term operations on A which are induced in the usual
way by the tj ’s.

(iii) If B is an arbitrary non-empty subset of Wτ (Xn), then we define BA :=⋃
b∈B{b}A. If the set B is empty, then we define BA := ∅.

Let P(Wτ (Xn))A be the collection of all sets of n-ary term operations
induced by sets of n-ary terms of type τ on the algebra A = (A; (fA

i )i∈I).

From these definitions we obtain the following

Lemma 1.4. Let B ∈ P(Wτ (Xn)) and let B1, . . . , Bn ∈ P(Wτ (Xm)). Then

[Ŝn
m(B, B1, . . . , Bn)]A = Ŝn,A

m (BA, BA
1 , . . . , BA

n ).

Proof. If one of the sets B, B1, . . . , Bn is empty, then one of the sets
BA, BA

1 , . . . , BA
n is also empty. Thus

[Ŝn
m(B, B1, . . . , Bn)]A = ∅A = ∅ = Ŝn,A

m (BA, BA
1 , . . . , BA

n ).

Assume now that all of B, B1, . . . , Bn are different from the empty set.
At first we show by induction on the complexity of the term t that for
one-element sets B = {t} our equation is satisfied.
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For t = xi with 1 ≤ i ≤ n, we have BA = {xi}A = {en,A
i } and

[Ŝn
m(B,B1, . . . , Bn)]A = [Ŝn

m({xi}, B1, . . . , Bn)]A

= BA
i

= Ŝn,A
m ({en,A

i }, BA
1 , . . . , BA

n )

= Ŝn,A
m ({xi}A, BA

1 , . . . , BA
n )

= Ŝn,A
m (BA, BA

1 , . . . , BA
n ).

Let now t = fi(t1, . . . , tni) and assume that for all 1 ≤ k ≤ ni,

[Ŝn
m({tk}, B1, . . . , Bn)]A = Ŝn,A

m ({tk}A, BA
1 , . . . , BA

n ).

Then

[Ŝn
m({fi(t1, . . . , tni)}, B1, . . . , Bn)]A

= {fi(r1, . . . , rni) | rk ∈ Ŝn
m({tk}, B1, . . . , Bn), 1 ≤ k ≤ ni}A

= {fA
i (rA

1 , . . . , rA
ni

) | rk ∈ Ŝn
m({tk}, B1, . . . , Bn), 1 ≤ k ≤ ni}

= {fA
i (rA

1 , . . . , rA
ni

) | rA
k ∈ Ŝn

m({tk}, B1, . . . , Bn)A, 1 ≤ k ≤ ni}

= {fA
i (rA

1 , . . . , rA
ni

) | rA
k ∈ Ŝn,A

m ({tk}A, BA
1 , . . . , BA

n ), 1 ≤ k ≤ ni}

= Ŝn,A
m ({fA

i (tA1 , . . . , tAni
)}, BA

1 , . . . , BA
n )

= Ŝn,A
m ({fi(t1, . . . , tni)}A, BA

1 , . . . , BA
n ).

If B is a set of terms consisting of more than one element, then we have
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[Ŝn
m(B, B1, . . . , Bn)]A =

[
Ŝn

m(
⋃

b∈B

{b}, B1, . . . , Bn)
]A

=
[ ⋃

b∈B

Ŝn
m({b}, B1, . . . , Bn)

]A

=
⋃

b∈B

[Ŝn
m({b}, B1, . . . , Bn)]A

=
⋃

b∈B

Ŝn,A
m ({b}A, BA

1 , . . . , BA
n )

= Ŝn,A
m

( ⋃
b∈B

{b}A, BA
1 , . . . , BA

n

)

= Ŝn,A
m (BA, BA

1 , . . . , BA
n ).

Proposition 1.5.

PA − cloneA = ((P(Wτ (Xn))A)n∈N+ ; (Ŝn,A
m )m,n∈N+ , ({en,A

i })i≤n,n∈N+)

is a subalgebra of PA − clone.

Proof. Let BA ∈ P(Wτ (Xn))A and let BA
1 , . . . , BA

n ∈ P(Wτ (Xm))A, then
B ∈ P(Wτ (Xn)) and B1, . . . , Bn ∈ P(Wτ (Xm)).

From Lemma 1.4 we have that

Ŝn,A
m (BA, BA

1 , . . . , BA
n ) = [Ŝn

m(B, B1, . . . , Bn)]A ∈ P(Wτ (Xm))A.

If T (n)(A) is the set of all derived n-ary operations of the algebra
A = (A; (fA

i )i∈I), then we can also consider the algebra P(T(A)) :=
((P(T (n)(A)))n∈N+ ; (Ŝn,A

m )n,m∈N+ , ({en,A
i })i≤n,n∈N+). It is not difficult to

prove that PA − cloneA = P(T(A)).
Any mapping σ : {fi | i ∈ I} → P(Wτ (X)) with σ(fi) ⊆ Wτ (Xni),

for i ∈ I, is called a non-deterministic hypersubstitution (for short nd-
hypersubstitution) of type τ . We denote by Hypnd(τ) the set of all non-
deterministic hypersubstitutions of type τ . Every nd-hypersubstitution can
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be extended in the following inductive way to a mapping σ̂ : P(Wτ (X)) →
P(Wτ (X)).

(i) σ̂[∅] := ∅.
(ii) σ̂[{xi}] := {xi} for every variable xi ∈ X.

(iii) σ̂[{fi(t1, . . . , tni)}] := Ŝni
n (σ(fi), σ̂[{t1}], . . . , σ̂[{tni}]) if we inductively

assume that σ̂[{tk}], 1 ≤ k ≤ ni, are already defined.

(iv) σ̂[B] :=
⋃{σ̂[{b}] | b ∈ B} for B ⊆ Wτ (X).

In the sequel instead of σ̂[{t}] for a term t ∈ Wτ (X) we will simply write
σ̂[t].

In [?] was proved that for every nd-hypersubstitution σ the mapping σ̂ is
an endomorphism of P−clone τ . We recall also that the set Hypnd(τ) forms
a monoid with respect to the operation ◦nd defined by σ1 ◦nd σ2 := σ̂1 ◦ σ2

and the identity element σpid : fi 7→ {fi(x1, . . . , xni)} for every i ∈ I.
In the next section we apply nd-hypersubstitutions to equations and to

algebras.

2. The Conjugate Pair
(
χA

nd, χ
E
nd

)

If A = (A; (fA
i )i∈I) is an algebra of type τ and if σ ∈ Hypnd(τ) is an

nd-hypersubstitution, then we define

σ(A) := {(A; (lAi )i∈I) | li ∈ σ(fi)}.

The set σ(A) is called the set of derived algebras. Since for every sequence
(li)i∈I of terms there is a hypersubstitution mapping fi to li we can write
σ(A) also in the form σ(A) = {ρ(A) | ρ ∈ Hyp(τ) with ρ(fi) ∈ σ(fi)
for i ∈ I}. For a class K of algebras of type τ we define

σ(K) :=
⋃

A∈K

σ(A).

If M ⊆ Hypnd(τ) is the universe of a submonoid of Hypnd(τ), then
we define χA

M−nd[K] :=
⋃

σ∈M σ(K). For M = Hypnd(τ) we will simply
write χA

nd. We notice that χA
M−nd[K] consists of algebras of the same type.

For a set K ∈ P(P(Alg(τ))) of sets of algebras of type τ and a monoid M
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of nd-hypersubstitutions we define χA
M−nd[K] := {σ(K) | K ∈ K, σ ∈ M}.

For B1, B2 ∈ P(Wτ (X)) we define equations B1 ≈ B2. If Σ ∈ P(P(Wτ (X))×
P(Wτ (X))) and σ ∈ M ⊆ Hypnd(τ) we define

σ̂[Σ] := {σ̂[B1] ≈ σ̂[B2] | B1 ≈ B2 ∈ Σ}

and
χE

M−nd[Σ] := {σ̂[B1] ≈ σ̂[B2] | B1 ≈ B2 ∈ Σ, σ ∈ M}.

For M = Hypnd(τ) we will use simply the notation χE
nd.

We want to prove that there is a close connection between both opera-
tors. Instead of χA

M−nd[{{A}}] we will write χA
M−nd[A]. For K ⊆ χA

M−nd[A]
and for a set B ⊆ Wτ (X) of terms we define the set BK of induced term op-
erations. For the set σ(A) of derived algebras and for a set B ∈ P(Wτ (Xn))
of n-ary terms we define the set Bσ(A) of term operations induced by the
set σ(A) of derived algebras as follows

Definition 2.1. Let n ∈ N+ and B ∈ P(Wτ (Xn)), let A = (A; (fA
i )i∈I) be

an algebra of type τ , let σ ∈ Hypnd(τ) be an nd-hypersubstitution and let
σ(A) = {(A; (lAi )i∈I) | li ∈ σ(fi)} be the set of derived algebras. Then we
define the set Bσ(A) of term operations induced by the set σ(A) of derived
algebras as follows:

(i) If B := {xj} for 1 ≤ j ≤ n, then Bσ(A) := {en,ρ(A)
j | ρ(A) ∈ σ(A)} =

{en,A
j }.

(ii) If B = {fi(t1, . . . , tni)} then

Bσ(A) := {Ŝni,A
n ({fρ(A)

i | ρ(A) ∈ σ(A)}, {t1}σ(A), . . . , {tni}σ(A))}

=
⋃

ρ(A)∈σ(A)

{Ŝni,A
n ({fρ(A)

i }, {t1}σ(A), . . . , {tni}σ(A))}

=
⋃

ρ(A)∈σ(A)

{fρ(A)
i (r1, . . . , rni) | rk ∈ {tk}σ(A), for 1 ≤ k ≤ ni}
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where f
ρ(A)
i denotes the fundamental operation of the algebra ρ(A)

belonging to the operation symbol fi and assume that {tk}σ(A), 1 ≤
k ≤ ni, are already defined.

(iii) If B is an arbitrary non-empty subset of Wτ (Xn), then we define
Bσ(A) :=

⋃
b∈B

{b}σ(A). If the set B is empty, then we define Bσ(A) := ∅.

For any term t ∈ Wτ (Xn) and a class G of algebras of type τ we define

tG := {t}G := {tA | A ∈ G}.

Definition 2.2. Let A be an algebra of type τ and let K ⊆ χA
M−nd[A] and

let n ≥ 1 be an integer. Then we define

(i) If B = {xj} for 1 ≤ j ≤ n, then BK = {en,A
j } ⊆ T(n)(A).

(ii) If B = {fi(t1, . . . , tn)} and let Bj = tKj ⊆ T(n)(A) for 1 ≤ j ≤ ni are
already known, then

BK :={Ŝni,A
n (S, B1, . . . , Bni) | S = {ρ(fi)A | ρ ∈ Hyp(τ), ρ(A) ∈ K}

⊆ T(ni)(A)}.

Finally for an arbitrary nonempty set B ∈ P(Wτ (X)) we set BK :=⋃
b∈B

{b}K and for the empty set B we let BK := ∅.

Definition 2.2 contains Definition 2.1 as a special case since for every σ ∈
Hypnd(τ) we have σ(A) ⊆ χA

M−nd[A]. We have also {A} ⊆ χA
M−nd[A] and

{ρ(A)} ⊆ χA
M−nd[A] for a hypersubstitution ρ ∈ Hyp(τ) and it is easy to

see that for a single term s ∈ Wτ (Xn) we have {ρ̂[s]}{A} = ρ̂[s]A = sρ(A) =
{s}{ρ(A)}.

Now we prove:

Lemma 2.3. Let B ∈ P(Wτ (Xn)) be an arbitrary set of n-ary terms of
type τ , let A = (A; (fA

i )i∈I) be an algebra of type τ and let σ be an nd-
hypersubstitution of type τ . Then σ̂[B]A = Bσ(A).

Proof. If B is empty, then all is clear. If B is nonempty we will give a
proof by induction on the complexity of the terms from the set B.
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If B = {xj} for 1 ≤ j ≤ n, then σ̂[B]A = {xj}A = {en,A
j } by the definition

of σ and by Definition 1.3. Further, by Definition 2.1 we have

Bσ(A) = {xj}σ(A) =
{

e
n,ρ(A)
j | ρ(A) ∈ σ(A)} = {en,A

j

}

since all algebras ρ(A) have the same universe. Therefore σ̂[B]A = Bσ(A)

for B = {xj} for 1 ≤ j ≤ n.
Now let B = {fi(t1, . . . , tni)} and assume that σ̂[{tk}]A = {tk}σ(A) for

1 ≤ k ≤ ni. Then

σ̂[B]A = σ̂[{fi(t1, . . . , tni)}]A

=
[
Ŝni

n (σ(fi), σ̂[{t1}], . . . , σ̂[{tni}])
]A

= Ŝni,A
n

(
σ(fi)A, σ̂[{t1}]A, . . . , σ̂[{tni}]A

)

= Ŝni,A
n

(
{li | li ∈ σ(fi)}A, σ̂[{t1}]A, . . . , σ̂[{tni}]A

)

=
⋃

li∈σ(fi)

Ŝni,A
n

(
{lAi }, σ̂[{t1}]A, . . . , σ̂[{tni}]A

)

=
⋃

li∈σ(fi)

Ŝni,A
n

(
{lAi }, {t1}σ(A), . . . , {tni}σ(A)

)

= Ŝni,A
n

(
{fρ(A)

i | ρ(A) ∈ σ(A)}, {t1}σ(A), . . . , {tni}σ(A)
)

= {fi(t1, . . . , tni)}σ(A)

= Bσ(A).
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If B is a set of terms consisting of more than one element, then we have

σ̂[B]A =

{ ⋃

b∈B

σ̂[{b}]
}A

=
⋃

b∈B

σ̂[{b}]A =
⋃

b∈B

{b}σ(A) = Bσ(A).

From Lemma 2.3 we obtain the ”conjugate pair property” for the pair
(χA

M−nd, χ
E
M−nd) of operators. We use the notation A |= s ≈ t

if the algebra A of type τ satisfies the equation s ≈ t of type τ as an
identity and K |= s ≈ t if the class K satisfies s ≈ t. Moreover, we define

Definition 2.4. Let B1, B2 ⊆ Wτ (X) be sets of terms of type τ and assume
that A is an algebra of type τ and that K ⊆ χA

M−nd[A] for a monoid M ⊆
Hypnd(τ) of non-deterministic hypersubstitution. Then

K |= B1 ≈ B2 iff BK
1 = BK

2 .

Especially we have σ[A] |= B1 ≈ B2 iff B
σ[A]
1 = B

σ[A]
2 and {A} |= B1 ≈ B2

iff B
{A}
1 = B

{A}
2 and this means A |= B1 ≈ B2 iff BA

1 = BA
2 .

From Lemma 2.3 we obtain the following conjugate property.

Theorem 2.5. Let A be an algebra of type τ , and let B1 ≈ B2 ∈ P(Wτ(X))×
P(Wτ(X)) and assume that σ ∈ Hypnd(τ) be a non-deterministic hypersub-
stitution of type τ . Then

σ(A) |= B1 ≈ B2 ⇐⇒ A |= σ̂[B1] ≈ σ̂[B2].

Proof.

σ(A) |= B1 ≈ B2 ⇐⇒ B
σ(A)
1 = B

σ(A)
2

⇐⇒ σ̂[B1]A = σ̂[B2]A

⇐⇒ A |= σ̂[B1] ≈ σ̂[B1].
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Let now M ⊆ Hypnd(τ) be a monoid of non-deterministic hypersubstitu-
tions. Then we form the set

⋃{P(χA
M−nd[A]) | A ∈ Alg(τ)} and consider

Σ ⊆ P((P(Wτ (X)))2) and K ⊆ ⋃{P(χA
M−nd[A]) | A ∈ Alg(τ)}. Definition

2.4 defines a relation between both sets. In the usual way we obtain a Galois
connection (PMod; PId) of non-deterministic models and non-deterministic
identities defined by

PModΣ := {K | K ⊆ χA
M−nd[A] for some algebra A ∈ Alg(τ)

and ∀B1 ≈ B2 ∈ Σ(K |= B1 ≈ B2)}

PIdK := {B1≈B2 | B1 ≈ B2 ∈ P(Wτ (X))2 and ∀K ∈ K(K |= B1 ≈ B2)}

By definition, the operators χA
M−nd : P(P(Alg(τ))) → P(P(Alg(τ))) and

χE
M−nd : P((P(Wτ (X)))2) → P((P(Wτ (X)))2) are completely additive. This

means, for classes K ⊆ P(P(Alg(τ))) the result of the application of χA
M−nd

to K is the union of the results obtained by application of χA
M−nd to the single

classes K ⊆ Alg(τ) : χA
M−nd[K] =

⋃
σ∈M,

⋃
K∈K σ(K). In a corresponding

way for a set Σ ⊆ P((P(Wτ (X)))2) and a submonoid M ⊆ Hypnd(τ) we have
χE

M−nd[Σ] =
⋃

σ∈M

⋃
B1≈B2∈Σ σ̂[B1] ≈ σ̂[B2]. Therefore, both operators are

monotone, i.e.
K1 ⊆ K2 ⇒ χA

M−nd[K1] ⊆ χA
M−nd[K2]

and
Σ1 ⊆ Σ2 ⇒ χE

M−nd[Σ1] ⊆ χE
M−nd[Σ2].

Since σpid ∈ M and σpid(K) = {K}, the operator χA
M−nd is extensive, i.e.

K ⊆ χA
M−nd[K] for every class K ⊆ P(P(Alg(τ))). Since σ̂pid[{B}] = {B}

for every B ∈ P(Wτ (X)), the operator χE
M−nd is also extensive. It turns out

that both operators, χA
M−nd and χE

M−nd are closure operators. Altogether,
we have

Theorem 2.6. The pair (χA
M−nd, χ

E
M−nd) is a conjugate pair of additive

closure operators.

Proof. From Theorem 2.5, there follows χA
M−nd[K] |= B1 ≈ B2 ⇐⇒ K |=

χE
M−nd[B1 ≈ B2]. By the previous remarks it is left to show that the opera-

tors χA
M−nd and χE

M−nd are idempotent. Extensivity of χA
M−nd and χE

M−nd,
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implies χA
M−nd[K] ⊆ χA

M−nd[χ
A
M−nd[K]] and χE

M−nd[Σ] ⊆ χE
M−nd[χ

E
M−nd[Σ]]

for K ∈ P(
⋃{P(χA

M−nd[A]) | A ∈ Alg(τ)}) and W ∈ P((P(Wτ (X)))2).
We write K |= W iff K |= A ≈ B for all K ∈ K and all B1 ≈ B2

∈ W . We have to show that the opposite inclusions are satisfied. Let
B ∈ χA

M−nd[χ
A
M−nd[K]]. Then there are nd-hypersubstitutions σ1, σ2 ∈ M

and an algebra A ∈ K such that

B ∈ σ1[σ2(A)] = σ1[{(A; (lAi )i∈I) | li ∈ σ2(fi)}]

= {σ1(A; (lAi )i∈I) | li ∈ σ2(fi)}

= {{(A; (hA
i )i∈I) | hi ∈ σ̂1[li]} | li ∈ σ2(fi)}

= {(A; (hA
i )i∈I) | hi ∈ σ̂1[li] and li ∈ σ2(fi)}

= {(A; (hA
i )i∈I) | hi ∈ σ̂1[σ2(fi)]}

= {(A; (hA
i )i∈I) | hi ∈ (σ1 ◦nd σ2)(fi)}

= (σ1 ◦nd σ2)(A) ∈ χA
M−nd[K].

This shows χA
M−nd[χ

A
M−nd[K]] = χA

M−nd[K]. Now let B1 ≈ B2 ∈ χE
M−nd

[χE
M−nd[Σ]]. Then there is an equation U ≈ V in Σ and an nd-hyper-

substitution σ1, σ2 ∈ M such that B1 ≈ B2 ∈ σ̂1[σ2[U ]] ≈ σ̂1[σ2[V ]], i.e.
B1 ≈ B2 ∈ (σ1 ◦nd σ2)ˆ[U ] ≈ (σ1 ◦nd σ2)ˆ[V ] ∈ χE

M−nd[U ≈ V ] ⊆ χE
M−nd[Σ].

3. M−Nd-Solid Varieties

A solid variety V admits every mapping σ : {fi | i ∈ I} → Wτ (X) which
maps ni − ary operation symbols fi to ni − ary terms in the sense that
every derived algebra σ(A) = (A; (σ(fi)A)i∈I) belongs to V . Equivalently if
s ≈ t is an identity in a solid variety V, then σ̂[s] ≈ σ̂[t] are also satisfied as
identities in V for every hypersubstitution σ. We generalize the definition
of a solid variety to M -solid non-deterministic varieties.
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Definition 3.1. Let M ⊆ Hypnd(τ) be a monoid of non-deterministic
hypersubstitutions of type τ . A variety V of type τ is said to be an
M -solid non-deterministic variety, for short an M − nd-solid variety, if
{{A} | A ∈ V } |= {σ̂[{s}] ≈ σ̂[{t}] | s ≈ t ∈ IdV, σ ∈ M}. In the case
that M = Hypnd(τ) we will speak of a solid non-deterministic variety, for
short of an nd-solid variety.

Clearly, the class Alg(τ) of all algebras of type τ is nd-solid. The trivial
variety (consisting only of one-element algebras of type τ) is also nd-solid.
The class of all nd-solid varieties of type τ is contained in the class of all
solid varieties of this type.

Example 3.2. There is no nontrivial nd-solid variety of semigroups.

Let V be a variety of semigroups. For a proof we consider the nd-hypers-
ubstitutions σ1, σ2 ∈ Hypnd(2) defined by σ1(f) = {x, xy} and σ2(f) =
{xy, yx}. If V were an nd-solid variety of semigroups, then the application of
σ1 to the associative law gives identities which are satisfied in V . Let V ∗ :=
{{A} | A ∈ V }, then V ∗ |= {σ̂1[f(x, f(y, z))]} ≈ {σ̂1[f(f(x, y), z)]} gives
V ∗ |= {x, f(x, y), f(x, f(y, z))} ≈ {x, f(x, y), f(x, z), f(f(x, y), z)}. Since
every nd-solid variety is solid, this gives especially V ∗ |= {f(x, f(y, z))} ≈
{f(x, z)}. Applying σ2 to this identity gives V ∗ |= {f(x, f(y, z)),
f(x, f(z, y)), f(z, f(y, x)), f(y, f(z, x))} ≈ {f(x, z), f(z, x)}. We use again
the fact that every nd-solid variety is solid and the previous identity and
obtain V ∗ |= {f(x, z)} ≈ {f(z, x)} or V ∗ |= {f(x, y)} ≈ {f(x, z)} or
V ∗ |= {f(x, z)} ≈ {f(y, x)}. If we use again the fact that every nd-solid
variety must be solid in each of the cases we obtain that V is trivial.

If an identity s ≈ t in a variety V is satisfied for all nd-hypersubstitutions
we speak of an nd-hyperidentity. More generally we define

Definition 3.3. Let V be a variety of algebras of type τ , let s ≈ t be
an identity satisfied in V and let M ⊆ Hypnd(τ) be a monoid of non-
deterministic hypersubstitutions. Then s ≈ t is an M − nd hyperidentity
in V if V ∗ |= χE

M−nd[{s} ≈ {t}] where V ∗ = {{A} | A ∈ V }. In this case
we write V |=M−nd−hyp s ≈ t and for M = Hypnd(τ) we will simply write
V |=nd−hyp s ≈ t and call s ≈ t an nd-hyperidentity in V .

The relation K |= B1 ≈ B2 introduced in Definition 2.4 defines the Galois
connection (PMod,PId) with the operations
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PMod : P((P(Wτ (X)))2) → P
(⋃

{P(χA
M−nd[A]) | A ∈ Alg(τ)}

)
,

PId : P
(⋃

{P(χA
M−nd[A]) | A ∈ Alg(τ)}) → P((P(Wτ (X)))2

)
.

The relation |=M−nd−hyp defines one more Galois connection

(HM−ndPMod,HM−ndPId)

for sets Σ ⊆ P((P(Wτ (X)))2) and classes K ⊆ ⋃{P(χA
M−nd[A]) | A ∈

Alg(τ)} as follows

HM−ndPMod : P((P(Wτ (X)))2) → P
(⋃

{P(χA
M−nd[A]) | A ∈ Alg(τ)}

)
,

HM−ndPId : P
(⋃

{P(χA
M−nd[A]) | A ∈ Alg(τ)}) → P((P(Wτ (X)))2

)
.

The products PModPId, PIdPMod, HM−ndPIdHM−ndPMod, HM−nd

PModHM−ndPId are closure operators and their fixed points are complete
lattices. The lattice of all M − nd-solid varieties arises if we restrict the
operator HM−ndPModHM−ndPId to classes of the form V ∗ where V is
a variety of algebras of type τ . Moreover we have the conjugate pair
(χA

M−nd, χ
E
M−nd) of additive closure operators. Their fixed points form two

more complete lattices. Now we may apply the theory of conjugate pairs
of additive closure operators (see e.g. [?]) and obtain the following proposi-
tions:

Lemma 3.4. Let K ⊆ Alg(τ) be a class of algebras and let Σ ⊆ (PWτ (X)2)
be a set of equations. Then the following properties hold:

(i) HM−ndPId(K∗) = PIdχA
M−nd[K

∗],

(ii) HM−ndPId(K∗) ⊆ PId(K∗),

(iii) χE
M−nd[HM−ndPId(K∗)] = HM−ndPId(K∗),

(iv) χA
M−nd[PMod(HM−ndPId(K∗))] = PMod(HM−ndPId(K∗)),

(v) HM−ndPId(HM−ndPMod(Σ)) = PId(PMod(χE
M−nd[Σ])); and dually
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(i)′ HM−ndPMod(Σ) = PModχE
M−nd(Σ),

(ii)′ HM−ndPMod(Σ) ⊆ PMod(Σ),

(iii)′ χA
M−nd[HM−ndPMod(Σ)] = HM−ndPMod(Σ),

(iv)′ χE
M−nd[PId(HM−ndPMod(Σ))] = PId(HM−ndPMod(Σ)),

(v)′ HM−ndPMod[HM−ndPId(K∗)] = PMod(PId(χA
M−nd[K

∗])).

Using these propositions one obtains the following characterization of M −
nd-solid varieties.

Theorem 3.5. Let V be a variety of type τ and let Σ be an equational theory
of type τ (i.e. IdMod(Σ) = Σ). Further we assume that M ⊆ Hypnd(τ) is
a monoid of non-deterministic hypersubstitutions of type τ .

Then the following propositions are equivalent:

(i) HM−ndPModHM−ndPId(V ∗) = V ∗,

(ii) χA
M−nd[V

∗] = V ∗ (i.e. V ∗ is M − nd solid),

(iii) PId(V ∗) = HM−ndPId(V ∗) (i.e. every identity in V ∗ is satisfied as a
non-deterministic hyperidentity),

(iv) χE
M−nd[PIdV ∗] = PIdV ∗.

4. M−Nd-Solid Varieties of Semigroups

We consider some examples of M −nd-solid varieties of semigroups and use
the following notation for varieties of semigroups;

B = Mod{x(yz) ≈ (xy)z, x2 ≈ x} − the variety of bands,

RB = Mod{x(yz)≈(xy)z ≈ xz, x2 ≈ x} − the variety of rectangular bands

SL = Mod{x(yz) ≈ (xy)z, x2 ≈ x, xy ≈ yx} − the variety of semilattices,
bands,

LZ = Mod{xy ≈ x} − the variety of left-zero bands.
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Let M = {σpid, σ1, σ2} with σ1(f) = {x} and σ2(f) = {y}. Then M forms
a monoid and the multiplication ◦nd is given by the following table:

◦nd σpid σ1 σ2

σpid σpid σ1 σ2

σ1 σ1 σ1 σ2

σ2 σ2 σ1 σ2

We will prove the following proposition:

Proposition 4.1. Let M = {σpid, σ1, σ2} as defined before. A non-trivial
variety V of semigroups is M − nd-solid iff RB ⊆ V.

Proof. It is well-known that IdRB is the set of all outermost equations of
type τ = (2), i.e. the set of all equations s ≈ t such that the first variables
in s and in t and the last variables in s and in t agree. Therefore RB ⊆ V
means that all identities in V are outermost and for any s ≈ t ∈ Id we
have σ̂1[s] = { first variable in s} = { first variable in t} = σ̂1[t] and
σ̂2[s] = { last variable in s} = { last variable in t} = σ̂2[t]. Clearly
s ≈ t is closed under σpid.

Conversely, let V be a nontrivial M−nd-solid variety. Then σ1, σ2 ∈ M
requires RB ⊆ V.

Let var(B) be the set of all variables occurring in the set B of terms.
Now let

M ′ = {σ ∈ Hypnd(τ) | var(σ(f)) = {x}}.
Clearly M ′ ∪ {σpid} forms a submonoid of Hypnd(τ). Then we have

Proposition 4.2. A non-trivial variety V of semigroups is M ′ − nd-solid
iff LZ ⊆ V ⊆ B.

Proof. It is well-known that IdLZ is the set of all equations s ≈ t of type
τ = (2) such that the first variable in s is equal to the first variable in t.
Because of var(σ(f)) = {x} the terms in σ̂[s] and the terms in σ̂[t] can be
written as xr and as xl for some r, l ∈ N+. Since V ⊆ B by the idempotent
law all equations of the form xr ≈ xl are satisfied in V . This shows that V
is M ′ − nd-solid.
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Conversely, let V be a nontrivial M ′ − nd-solid variety of semigroups.
If we apply σ with σ(f) = {x, x2} to the identity f(x, y) ≈ f(x, y) we
obtain x ≈ x2, i.e. V ⊆ B. If we apply σ′ with σ′(f) = {x} we get
leftmost(s) ≈ leftmost(t) ∈ IdV and this means LZ ⊆ V. Altogether,
we have LZ ⊆ V ⊆ B.
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