Nd-SOLID VARIETIES

Klaus Denecke
Universität Potsdam, Fachbereich Mathematik
Postfach 601553, 14415 Potsdam, Germany
e-mail: kdenecke@rz.uni-potsdam.de

AND
Prisana Glubudom
Chiangmai University, Department of Mathematics
Chiangmai, Thailand 50200
e-mail: puprisana@yahoo.com
To the memory of Professor Kazimierz Głazek

Abstract

A non-deterministic hypersubstitution maps any operation symbol of a tree language of type τ to a set of trees of the same type, i.e. to a tree language. Non-deterministic hypersubstitutions can be extended to mappings which map tree languages to tree languages preserving the arities. We define the application of a non-deterministic hypersubstitution to an algebra of type τ and obtain a class of derived algebras. Non-deterministic hypersubstitutions can also be applied to equations of type τ. Formally, we obtain two closure operators which turn out to form a conjugate pair of completely additive closure operators. This allows us to use the theory of conjugate pairs of additive closure operators for a characterization of M-solid non-deterministic varieties of algebras. As an application we consider M-solid non-deterministic varieties of semigroups.

Keywords: Non-deterministic hypersubstitution, conjugate pair of additive closure operators, M-solid non-deterministic variety.

2000 Mathematics Subject Classification: 08A35, 08A40, 08A70.

1. Introduction

Let $\left(f_{i}\right)_{i \in I}$ be an indexed set of operation symbols where f_{i} is n_{i}-ary, let $X:=\left\{x_{1}, \ldots, x_{n}, \ldots\right\}$ be a countably infinite set of variables and for each $n \geq 1$ let $X_{n}:=\left\{x_{1}, \ldots, x_{n}\right\}$ be a finite set of variables. We denote by $W_{\tau}(X)$ and $W_{\tau}\left(X_{n}\right)$, respectively the sets of all terms of a finite type $\tau=$ $\left(n_{i}\right)_{i \in I}$ and of all n-ary terms of type τ. We use the well-known Galois connection Id-Mod between sets of identities and classes of algebras of a given type. For any set Σ of identities we denote by $\operatorname{Mod} \Sigma$ the model class of all algebras of type τ which satisfy all identities of Σ; and for any class K of algebras of the same type we denote by IdK the set of all identities satisfied by all algebras in K. Classes of the form $\operatorname{Mod} \Sigma$ are called varieties of algebras of type τ. If \mathcal{A} satisfies the equation $s \approx t$ as an identity, we write $\mathcal{A} \models s \approx t$ and if the class K of algebras of type τ satisfies $s \approx t$, we write $K \models s \approx t$. If $\Sigma \subseteq W_{\tau}(X)^{2}$ is a set of equations, then $K \models \Sigma$ means that every equation from Σ is satisfied by every algebra from K. Any subset of $W_{\tau}(X)$, i.e. any element of the power set $\mathcal{P}\left(W_{\tau}(X)\right)$ or of $\mathcal{P}\left(W_{\tau}\left(X_{n}\right)\right)$ is called a tree language. Our restriction to a finite type is motivated by applications of tree languages in computer science. For tree languages one may define the following superposition operations

$$
\hat{S}_{m}^{n}: \mathcal{P}\left(W_{\tau}\left(X_{n}\right)\right) \times \mathcal{P}\left(W_{\tau}\left(X_{m}\right)\right)^{n} \rightarrow \mathcal{P}\left(W_{\tau}\left(X_{m}\right)\right)
$$

inductively by the following steps:
Definition 1.1. Let $m, n \in \mathbb{N}^{+}(:=\mathbb{N} \backslash\{0\})$ and let $B \in \mathcal{P}\left(W_{\tau}\left(X_{n}\right)\right)$ and $B_{1}, \ldots, B_{n} \in \mathcal{P}\left(W_{\tau}\left(X_{m}\right)\right)$ such that B, B_{1}, \ldots, B_{n} are non-empty.
(i) If $B=\left\{x_{j}\right\}$ for $1 \leq j \leq n$, then $\hat{S}_{m}^{n}\left(\left\{x_{j}\right\}, B_{1}, \ldots, B_{n}\right):=B_{j}$.
(ii) If $B=\left\{f_{i}\left(t_{1}, \ldots, t_{n_{i}}\right)\right\}$, and if we assume that $\hat{S}_{m}^{n}\left(\left\{t_{j}\right\}, B_{1}, \ldots, B_{n}\right)$ for $1 \leq j \leq n$; are already defined, then $\hat{S}_{m}^{n}\left(\left\{f_{i}\left(t_{1}, \ldots, t_{n_{i}}\right)\right\}, B_{1}, \ldots, B_{n}\right):=$ $\left\{f_{i}\left(r_{1}, \ldots, r_{n_{i}}\right) \mid r_{j} \in \hat{S}_{m}^{n}\left(\left\{t_{j}\right\}, B_{1}, \ldots, B_{n}\right)\right.$ for $\left.1 \leq j \leq n_{i}\right\}$.
(iii) If B is an arbitrary subset of $W_{\tau}\left(X_{n}\right)$, we define

$$
\hat{S}_{m}^{n}\left(B, B_{1}, \ldots, B_{n}\right):=\bigcup_{b \in B} \hat{S}_{m}^{n}\left(\{b\}, B_{1}, \ldots, B_{n}\right) .
$$

If one of the sets B, B_{1}, \ldots, B_{n} is empty, we define $\hat{S}_{m}^{n}\left(B, B_{1}, \ldots, B_{n}\right):=\emptyset$. Then we may consider the heterogeneous algebra

$$
\mathcal{P}-\text { clone } \tau:=\left(\left(\mathcal{P}\left(W_{\tau}\left(X_{n}\right)\right)\right)_{n \in \mathbb{N}^{+}} ;\left(\hat{S}_{m}^{n}\right)_{m, n \in \mathbb{N}^{+}},\left(\left\{x_{i}\right\}\right)_{i \leq n, n \in \mathbb{N}^{+}}\right)
$$

which is called the power clone of $\tau([?])$. We mention that \mathcal{P} - clone τ satisfies the well-known clone axioms (C1), (C2), (C3) (see e.g. [?, ?]). If $\mathcal{P}_{\text {fin }}\left(W_{\tau}\left(X_{n}\right)\right)$ is the set of all finite subsets of $W_{\tau}\left(X_{n}\right)$, then

$$
\mathcal{P}_{\text {fin }}-\text { clone } \tau:=\left(\left(\mathcal{P}_{\text {fin }}\left(W_{\tau}\left(X_{n}\right)\right)\right)_{n \in \mathbb{N}^{+}} ;\left(\hat{S}_{m}^{n}\right)_{n \in \mathbb{N}^{+}},\left(\left\{x_{i}\right\}\right)_{i \leq n, n \in \mathbb{N}^{+}}\right)
$$

is a subalgebra of $\mathcal{P}-$ clone $\tau([?])$.
We mention also that there is a one-based version of \mathcal{P} - clone τ, the algebra $\mathcal{P}_{n}-$ clone $\tau_{n}:=\left(\mathcal{P}\left(W_{\tau_{n}}\left(X_{n}\right)\right) ; \hat{S}^{n},\left\{x_{1}\right\}, \ldots,\left\{x_{n}\right\}\right)$ where τ_{n} is a finite type consisting of n-ary operation symbols only and where $\hat{S}^{n}:=\hat{S}_{n}^{n} . \mathcal{P}_{n}-$ clone τ_{n} is an example of a unitary Menger algebra of rank n (see e.g [?]).

Similar structures can be obtained if one defines a superposition for sets of operations. Let $O^{(n)}(A)$ be the set of all n-ary operations ($n \geq 1$) defined on the set A and let $O(A):=\bigcup_{n \geq 1} O^{(n)}(A)$ be the set of all operations defined on A . Let $e_{i}^{n, A}$ be an n-ary projection defined on A , i.e., $e_{i}^{n, A}\left(a_{1}, \ldots, a_{n}\right):=a_{i}$ for $1 \leq i \leq n$, and let $\mathcal{P}\left(O^{(n)}(A)\right)$ be the power set of $O^{(n)}(A)$.

Definition 1.2. Let $m, n \in \mathbb{N}^{+}$and $B \in \mathcal{P}\left(O^{(n)}(A)\right), B_{1}, \ldots, B_{n} \in$ $\mathcal{P}\left(O^{(m)}(A)\right)$ such that B, B_{1}, \ldots, B_{n} are non-empty.
(i) If $B=\left\{e_{j}^{n, A}\right\}$ for $1 \leq j \leq n$, then $\hat{S}_{m}^{n, A}\left(\left\{e_{j}^{n, A}\right\}, B_{1}, \ldots, B_{n}\right):=B_{j}$.
(ii) If $B=\left\{f_{i}^{A}\left(t_{1}^{A}, \ldots, t_{n_{i}}^{A}\right)\right\}$ with $f_{i}^{A} \in O^{\left(n_{i}\right)}(A), t_{j}^{A} \in O^{(n)}(A)$ and assume that $\hat{S}_{m}^{n, A}\left(\left\{t_{j}^{A}\right\}, B_{1}, \ldots, B_{n}\right)$ for $1 \leq j \leq n_{i}$ are already defined, then $\hat{S}_{m}^{n, A}\left(\left\{f_{i}^{A}\left(t_{1}^{A}, \ldots, t_{n_{i}}^{A}\right)\right\}, B_{1}, \ldots, B_{n}\right):=$ $\left\{f_{i}^{A}\left(r_{1}^{A}, \ldots, r_{n_{i}}^{A}\right) \mid r_{j}^{A} \in \hat{S}_{m}^{n, A}\left(\left\{t_{j}^{A}\right\}, B_{1}, \ldots, B_{n}\right), 1 \leq j \leq n_{i}\right\}$.
(iii) If $B \in \mathcal{P}\left(O^{(n)}(A)\right)$ is arbitrary, then we define

$$
\hat{S}_{m}^{n, A}\left(B, B_{1}, \ldots, B_{n}\right):=\bigcup_{b \in B} \hat{S}_{m}^{n, A}\left(\{b\}, B_{1}, \ldots, B_{n}\right) .
$$

If one of the sets B, B_{1}, \ldots, B_{n} is empty, then we define $\hat{S}_{m}^{n, A}\left(B, B_{1}, \ldots, B_{n}\right)$ $:=\emptyset$. In this case we consider the heterogeneous algebra

$$
\mathcal{P}_{A}-\text { clone }:=\left(\left(\mathcal{P}\left(O^{(n)}(A)\right)\right)_{n \in \mathbb{N}^{+}} ;\left(\hat{S}_{m}^{n, A}\right)_{m, n \in \mathbb{N}^{+}},\left(\left\{e_{i}^{n, A}\right\}\right)_{i \leq n, n \in \mathbb{N}^{+}}\right) .
$$

Let $\mathcal{A}=\left(A ;\left(f_{i}^{A}\right)_{i \in I}\right)$ be an algebra of type τ. Then we may consider the subclone \mathcal{P}_{A} - clone \mathcal{A} of \mathcal{P}_{A} - clone which is defined as follows.

Definition 1.3. Let $n \in \mathbb{N}^{+}$and $B \in \mathcal{P}\left(W_{\tau}\left(X_{n}\right)\right)$. Then we define the set B^{A} of term operations induced on the algebra $\mathcal{A}=\left(A ;\left(f_{i}^{A}\right)_{i \in I}\right)$ as follows:
(i) If $B=\left\{x_{j}\right\}$ for $1 \leq j \leq n$, then $B^{\mathcal{A}}:=\left\{e_{j}^{n, \mathcal{A}}\right\}$.
(ii) If $B=\left\{f_{i}\left(t_{1}, \ldots, t_{n_{i}}\right)\right\}$ then $B^{\mathcal{A}}=\left\{f_{i}^{\mathcal{A}}\left(t_{1}^{\mathcal{A}}, \ldots, t_{n_{i}}^{\mathcal{A}}\right)\right\}$ where $f_{i}^{\mathcal{A}}$ is the fundamental operation of \mathcal{A} coresponding to the operation symbol f_{i} and where $t_{j}^{\mathcal{A}}$ are term operations on \mathcal{A} which are induced in the usual way by the t_{j} 's.
(iii) If B is an arbitrary non-empty subset of $W_{\tau}\left(X_{n}\right)$, then we define $B^{\mathcal{A}}:=$ $\bigcup_{b \in B}\{b\}^{\mathcal{A}}$. If the set B is empty, then we define $B^{\mathcal{A}}:=\emptyset$.

Let $\mathcal{P}\left(W_{\tau}\left(X_{n}\right)\right)^{\mathcal{A}}$ be the collection of all sets of n-ary term operations induced by sets of n-ary terms of type τ on the algebra $\mathcal{A}=\left(A ;\left(f_{i}^{A}\right)_{i \in I}\right)$.

From these definitions we obtain the following
Lemma 1.4. Let $B \in \mathcal{P}\left(W_{\tau}\left(X_{n}\right)\right)$ and let $B_{1}, \ldots, B_{n} \in \mathcal{P}\left(W_{\tau}\left(X_{m}\right)\right)$. Then

$$
\left[\hat{S}_{m}^{n}\left(B, B_{1}, \ldots, B_{n}\right)\right]^{\mathcal{A}}=\hat{S}_{m}^{n, \mathcal{A}}\left(B^{\mathcal{A}}, B_{1}^{\mathcal{A}}, \ldots, B_{n}^{\mathcal{A}}\right)
$$

Proof. If one of the sets B, B_{1}, \ldots, B_{n} is empty, then one of the sets $B^{\mathcal{A}}, B_{1}^{\mathcal{A}}, \ldots, B_{n}^{\mathcal{A}}$ is also empty. Thus

$$
\left[\hat{S}_{m}^{n}\left(B, B_{1}, \ldots, B_{n}\right)\right]^{\mathcal{A}}=\emptyset^{\mathcal{A}}=\emptyset=\hat{S}_{m}^{n, \mathcal{A}}\left(B^{\mathcal{A}}, B_{1}^{\mathcal{A}}, \ldots, B_{n}^{\mathcal{A}}\right)
$$

Assume now that all of B, B_{1}, \ldots, B_{n} are different from the empty set. At first we show by induction on the complexity of the term t that for one-element sets $B=\{t\}$ our equation is satisfied.

For $t=x_{i}$ with $1 \leq i \leq n$, we have $B^{\mathcal{A}}=\left\{x_{i}\right\}^{\mathcal{A}}=\left\{e_{i}^{n, \mathcal{A}}\right\}$ and

$$
\begin{aligned}
{\left[\hat{S}_{m}^{n}\left(B, B_{1}, \ldots, B_{n}\right)\right]^{\mathcal{A}} } & =\left[\hat{S}_{m}^{n}\left(\left\{x_{i}\right\}, B_{1}, \ldots, B_{n}\right)\right]^{\mathcal{A}} \\
& =B_{i}^{\mathcal{A}} \\
& =\hat{S}_{m}^{n, \mathcal{A}}\left(\left\{e_{i}^{n, \mathcal{A}}\right\}, B_{1}^{\mathcal{A}}, \ldots, B_{n}^{\mathcal{A}}\right) \\
& =\hat{S}_{m}^{n, \mathcal{A}}\left(\left\{x_{i}\right\}^{\mathcal{A}}, B_{1}^{\mathcal{A}}, \ldots, B_{n}^{\mathcal{A}}\right) \\
& =\hat{S}_{m}^{n, \mathcal{A}}\left(B^{\mathcal{A}}, B_{1}^{\mathcal{A}}, \ldots, B_{n}^{\mathcal{A}}\right)
\end{aligned}
$$

Let now $t=f_{i}\left(t_{1}, \ldots, t_{n_{i}}\right)$ and assume that for all $1 \leq k \leq n_{i}$,

$$
\left[\hat{S}_{m}^{n}\left(\left\{t_{k}\right\}, B_{1}, \ldots, B_{n}\right)\right]^{\mathcal{A}}=\hat{S}_{m}^{n, \mathcal{A}}\left(\left\{t_{k}\right\}^{\mathcal{A}}, B_{1}^{\mathcal{A}}, \ldots, B_{n}^{\mathcal{A}}\right)
$$

Then

$$
\begin{aligned}
& {\left[\hat{S}_{m}^{n}\left(\left\{f_{i}\left(t_{1}, \ldots, t_{n_{i}}\right)\right\}, B_{1}, \ldots, B_{n}\right)\right]^{\mathcal{A}}} \\
& \quad=\left\{f_{i}\left(r_{1}, \ldots, r_{n_{i}}\right) \mid r_{k} \in \hat{S}_{m}^{n}\left(\left\{t_{k}\right\}, B_{1}, \ldots, B_{n}\right), 1 \leq k \leq n_{i}\right\}^{\mathcal{A}} \\
& \quad=\left\{f_{i}^{\mathcal{A}}\left(r_{1}^{\mathcal{A}}, \ldots, r_{n_{i}}^{\mathcal{A}}\right) \mid r_{k} \in \hat{S}_{m}^{n}\left(\left\{t_{k}\right\}, B_{1}, \ldots, B_{n}\right), 1 \leq k \leq n_{i}\right\} \\
& \quad=\left\{f_{i}^{\mathcal{A}}\left(r_{1}^{\mathcal{A}}, \ldots, r_{n_{i}}^{\mathcal{A}}\right) \mid r_{k}^{\mathcal{A}} \in \hat{S}_{m}^{n}\left(\left\{t_{k}\right\}, B_{1}, \ldots, B_{n}\right)^{\mathcal{A}}, 1 \leq k \leq n_{i}\right\} \\
& \quad=\left\{f_{i}^{\mathcal{A}}\left(r_{1}^{\mathcal{A}}, \ldots, r_{n_{i}}^{\mathcal{A}}\right) \mid r_{k}^{\mathcal{A}} \in \hat{S}_{m}^{n, \mathcal{A}}\left(\left\{t_{k}\right\}^{\mathcal{A}}, B_{1}^{\mathcal{A}}, \ldots, B_{n}^{\mathcal{A}}\right), 1 \leq k \leq n_{i}\right\} \\
& \quad=\hat{S}_{m}^{n, \mathcal{A}}\left(\left\{f_{i}^{\mathcal{A}}\left(t_{1}^{\mathcal{A}}, \ldots, t_{n_{i}}^{\mathcal{A}}\right)\right\}, B_{1}^{\mathcal{A}}, \ldots, B_{n}^{\mathcal{A}}\right) \\
& \quad=\hat{S}_{m}^{n, \mathcal{A}}\left(\left\{f_{i}\left(t_{1}, \ldots, t_{n_{i}}\right)\right\}^{\mathcal{A}}, B_{1}^{\mathcal{A}}, \ldots, B_{n}^{\mathcal{A}}\right) .
\end{aligned}
$$

If B is a set of terms consisting of more than one element, then we have

$$
\begin{aligned}
{\left[\hat{S}_{m}^{n}\left(B, B_{1}, \ldots, B_{n}\right)\right]^{\mathcal{A}} } & =\left[\hat{S}_{m}^{n}\left(\bigcup_{b \in B}\{b\}, B_{1}, \ldots, B_{n}\right)\right]^{\mathcal{A}} \\
& =\left[\bigcup_{b \in B} \hat{S}_{m}^{n}\left(\{b\}, B_{1}, \ldots, B_{n}\right)\right]^{\mathcal{A}} \\
& =\bigcup_{b \in B}\left[\hat{S}_{m}^{n}\left(\{b\}, B_{1}, \ldots, B_{n}\right)\right]^{\mathcal{A}} \\
& =\bigcup_{b \in B} \hat{S}_{m}^{n, \mathcal{A}}\left(\{b\}^{\mathcal{A}}, B_{1}^{\mathcal{A}}, \ldots, B_{n}^{\mathcal{A}}\right) \\
& =\hat{S}_{m}^{n, \mathcal{A}}\left(\bigcup_{b \in B}\{b\}^{\mathcal{A}}, B_{1}^{\mathcal{A}}, \ldots, B_{n}^{\mathcal{A}}\right) \\
& =\hat{S}_{m}^{n, \mathcal{A}}\left(B^{\mathcal{A}}, B_{1}^{\mathcal{A}}, \ldots, B_{n}^{\mathcal{A}}\right) .
\end{aligned}
$$

Proposition 1.5.

$$
\mathcal{P}_{A}-\text { clone } \mathcal{A}=\left(\left(\mathcal{P}\left(W_{\tau}\left(X_{n}\right)\right)^{\mathcal{A}}\right)_{n \in \mathbb{N}^{+}} ;\left(\hat{S}_{m}^{n, A}\right)_{m, n \in \mathbb{N}^{+}},\left(\left\{e_{i}^{n, A}\right\}\right)_{i \leq n, n \in \mathbb{N}^{+}}\right)
$$

is a subalgebra of $\mathcal{P}_{A}-$ clone.
Proof. Let $B^{\mathcal{A}} \in \mathcal{P}\left(W_{\tau}\left(X_{n}\right)\right)^{\mathcal{A}}$ and let $B_{1}^{\mathcal{A}}, \ldots, B_{n}^{\mathcal{A}} \in \mathcal{P}\left(W_{\tau}\left(X_{m}\right)\right)^{\mathcal{A}}$, then $B \in \mathcal{P}\left(W_{\tau}\left(X_{n}\right)\right)$ and $B_{1}, \ldots, B_{n} \in \mathcal{P}\left(W_{\tau}\left(X_{m}\right)\right)$.

From Lemma 1.4 we have that

$$
\hat{S}_{m}^{n, \mathcal{A}}\left(B^{\mathcal{A}}, B_{1}^{\mathcal{A}}, \ldots, B_{n}^{\mathcal{A}}\right)=\left[\hat{S}_{m}^{n}\left(B, B_{1}, \ldots, B_{n}\right)\right]^{\mathcal{A}} \in \mathcal{P}\left(W_{\tau}\left(X_{m}\right)\right)^{\mathcal{A}}
$$

If $T^{(n)}(\mathcal{A})$ is the set of all derived n-ary operations of the algebra $\mathcal{A}=\left(A ;\left(f_{i}^{A}\right)_{i \in I}\right)$, then we can also consider the algebra $\mathcal{P}(\mathcal{T}(\mathcal{A})):=$ $\left(\left(\mathcal{P}\left(T^{(n)}(\mathcal{A})\right)\right)_{n \in \mathbb{N}^{+}} ;\left(\hat{S}_{m}^{n, A}\right)_{n, m \in \mathbb{N}^{+}},\left(\left\{e_{i}^{n, A}\right\}\right)_{i \leq n, n \in \mathbb{N}^{+}}\right)$. It is not difficult to prove that $\mathcal{P}_{A}-$ clone $\mathcal{A}=\mathcal{P}(\mathcal{T}(\mathcal{A}))$.

Any mapping $\sigma:\left\{f_{i} \mid i \in I\right\} \rightarrow \mathcal{P}\left(W_{\tau}(X)\right)$ with $\sigma\left(f_{i}\right) \subseteq W_{\tau}\left(X_{n_{i}}\right)$, for $i \in I$, is called a non-deterministic hypersubstitution (for short ndhypersubstitution) of type τ. We denote by $H y p^{n d}(\tau)$ the set of all nondeterministic hypersubstitutions of type τ. Every $n d$-hypersubstitution can
be extended in the following inductive way to a mapping $\hat{\sigma}: \mathcal{P}\left(W_{\tau}(X)\right) \rightarrow$ $\mathcal{P}\left(W_{\tau}(X)\right)$.
(i) $\hat{\sigma}[\emptyset]:=\emptyset$.
(ii) $\hat{\sigma}\left[\left\{x_{i}\right\}\right]:=\left\{x_{i}\right\}$ for every variable $x_{i} \in X$.
(iii) $\hat{\sigma}\left[\left\{f_{i}\left(t_{1}, \ldots, t_{n_{i}}\right)\right\}\right]:=\hat{S}_{n}^{n_{i}}\left(\sigma\left(f_{i}\right), \hat{\sigma}\left[\left\{t_{1}\right\}\right], \ldots, \hat{\sigma}\left[\left\{t_{n_{i}}\right\}\right]\right)$ if we inductively assume that $\hat{\sigma}\left[\left\{t_{k}\right\}\right], 1 \leq k \leq n_{i}$, are already defined.
(iv) $\hat{\sigma}[B]:=\bigcup\{\hat{\sigma}[\{b\}] \mid b \in B\}$ for $B \subseteq W_{\tau}(X)$.

In the sequel instead of $\hat{\sigma}[\{t\}]$ for a term $t \in W_{\tau}(X)$ we will simply write $\hat{\sigma}[t]$.

In [?] was proved that for every $n d$-hypersubstitution σ the mapping $\hat{\sigma}$ is an endomorphism of \mathcal{P} - clone τ. We recall also that the set $H y p^{\text {nd }}(\tau)$ forms a monoid with respect to the operation $\circ_{n d}$ defined by $\sigma_{1} \circ_{n d} \sigma_{2}:=\hat{\sigma}_{1} \circ \sigma_{2}$ and the identity element $\sigma_{p i d}: f_{i} \mapsto\left\{f_{i}\left(x_{1}, \ldots, x_{n_{i}}\right)\right\}$ for every $i \in I$.

In the next section we apply $n d$-hypersubstitutions to equations and to algebras.

2. The Conjugate Pair $\left(\chi_{n d}^{\mathcal{A}}, \chi_{n d}^{E}\right)$

If $\mathcal{A}=\left(A ;\left(f_{i}^{\mathcal{A}}\right)_{i \in I}\right)$ is an algebra of type τ and if $\sigma \in \operatorname{Hyp}^{n d}(\tau)$ is an $n d$-hypersubstitution, then we define

$$
\sigma(\mathcal{A}):=\left\{\left(A ;\left(l_{i}^{\mathcal{A}}\right)_{i \in I}\right) \mid l_{i} \in \sigma\left(f_{i}\right)\right\} .
$$

The set $\sigma(\mathcal{A})$ is called the set of derived algebras. Since for every sequence $\left(l_{i}\right)_{i \in I}$ of terms there is a hypersubstitution mapping f_{i} to l_{i} we can write $\sigma(\mathcal{A})$ also in the form $\sigma(\mathcal{A})=\left\{\rho(\mathcal{A}) \mid \rho \in \operatorname{Hyp}(\tau)\right.$ with $\rho\left(f_{i}\right) \in \sigma\left(f_{i}\right)$ for $i \in I\}$. For a class K of algebras of type τ we define

$$
\sigma(K):=\bigcup_{\mathcal{A} \in K} \sigma(\mathcal{A}) .
$$

If $M \subseteq H y p^{n d}(\tau)$ is the universe of a submonoid of $H y p^{n d}(\tau)$, then we define $\chi_{M-n d}^{A}[K]:=\bigcup_{\sigma \in M} \sigma(K)$. For $M=\operatorname{Hyp}^{n d}(\tau)$ we will simply write $\chi_{n d}^{A}$. We notice that $\chi_{M-n d}^{A}[K]$ consists of algebras of the same type. For a set $\mathcal{K} \in \mathcal{P}(\mathcal{P}(\operatorname{Alg}(\tau)))$ of sets of algebras of type τ and a monoid M
of $n d$-hypersubstitutions we define $\chi_{M-n d}^{A}[\mathcal{K}]:=\{\sigma(K) \mid K \in \mathcal{K}, \sigma \in M\}$. For $B_{1}, B_{2} \in \mathcal{P}\left(W_{\tau}(X)\right)$ we define equations $B_{1} \approx B_{2}$. If $\Sigma \in \mathcal{P}\left(\mathcal{P}\left(W_{\tau}(X)\right) \times\right.$ $\left.\mathcal{P}\left(W_{\tau}(X)\right)\right)$ and $\sigma \in M \subseteq H y p{ }^{n d}(\tau)$ we define

$$
\hat{\sigma}[\Sigma]:=\left\{\hat{\sigma}\left[B_{1}\right] \approx \hat{\sigma}\left[B_{2}\right] \mid B_{1} \approx B_{2} \in \Sigma\right\}
$$

and

$$
\chi_{M-n d}^{E}[\Sigma]:=\left\{\hat{\sigma}\left[B_{1}\right] \approx \hat{\sigma}\left[B_{2}\right] \mid B_{1} \approx B_{2} \in \Sigma, \sigma \in M\right\}
$$

For $M=H y p^{n d}(\tau)$ we will use simply the notation $\chi_{n d}^{E}$.
We want to prove that there is a close connection between both operators. Instead of $\chi_{M-n d}^{A}[\{\{A\}\}]$ we will write $\chi_{M-n d}^{A}[A]$. For $K \subseteq \chi_{M-n d}^{A}[A]$ and for a set $B \subseteq W_{\tau}(X)$ of terms we define the set B^{K} of induced term operations. For the set $\sigma(\mathcal{A})$ of derived algebras and for a set $B \in \mathcal{P}\left(W_{\tau}\left(X_{n}\right)\right)$ of n-ary terms we define the set $B^{\sigma(\mathcal{A})}$ of term operations induced by the set $\sigma(\mathcal{A})$ of derived algebras as follows

Definition 2.1. Let $n \in \mathbb{N}^{+}$and $B \in \mathcal{P}\left(W_{\tau}\left(X_{n}\right)\right)$, let $\mathcal{A}=\left(A ;\left(f_{i}^{A}\right)_{i \in I}\right)$ be an algebra of type τ, let $\sigma \in \operatorname{Hyp}^{n d}(\tau)$ be an $n d$-hypersubstitution and let $\sigma(\mathcal{A})=\left\{\left(A ;\left(l_{i}^{A}\right)_{i \in I}\right) \mid l_{i} \in \sigma\left(f_{i}\right)\right\}$ be the set of derived algebras. Then we define the set $B^{\sigma(\mathcal{A})}$ of term operations induced by the set $\sigma(\mathcal{A})$ of derived algebras as follows:
(i) If $B:=\left\{x_{j}\right\}$ for $1 \leq j \leq n$, then $B^{\sigma(\mathcal{A})}:=\left\{e_{j}^{n, \rho(\mathcal{A})} \mid \rho(\mathcal{A}) \in \sigma(\mathcal{A})\right\}=$ $\left\{e_{j}^{n, A}\right\}$.
(ii) If $B=\left\{f_{i}\left(t_{1}, \ldots, t_{n_{i}}\right)\right\}$ then

$$
\begin{aligned}
B^{\sigma(\mathcal{A})} & :=\left\{\hat{S}_{n}^{n_{i}, \mathcal{A}}\left(\left\{f_{i}^{\rho(\mathcal{A})} \mid \rho(\mathcal{A}) \in \sigma(\mathcal{A})\right\},\left\{t_{1}\right\}^{\sigma(\mathcal{A})}, \ldots,\left\{t_{n_{i}}\right\}^{\sigma(\mathcal{A})}\right)\right\} \\
& =\bigcup_{\rho(\mathcal{A}) \in \sigma(\mathcal{A})}\left\{\hat{S}_{n}^{n_{i}, \mathcal{A}}\left(\left\{f_{i}^{\rho(\mathcal{A})}\right\},\left\{t_{1}\right\}^{\sigma(\mathcal{A})}, \ldots,\left\{t_{n_{i}}\right\}^{\sigma(\mathcal{A})}\right)\right\} \\
& =\bigcup_{\rho(\mathcal{A}) \in \sigma(\mathcal{A})}\left\{f_{i}^{\rho(\mathcal{A})}\left(r_{1}, \ldots, r_{n_{i}}\right) \mid r_{k} \in\left\{t_{k}\right\}^{\sigma(\mathcal{A})}, \text { for } 1 \leq k \leq n_{i}\right\}
\end{aligned}
$$

where $f_{i}^{\rho(\mathcal{A})}$ denotes the fundamental operation of the algebra $\rho(\mathcal{A})$ belonging to the operation symbol f_{i} and assume that $\left\{t_{k}\right\}^{\sigma(\mathcal{A})}, 1 \leq$ $k \leq n_{i}$, are already defined.
(iii) If B is an arbitrary non-empty subset of $W_{\tau}\left(X_{n}\right)$, then we define $B^{\sigma(\mathcal{A})}:=\bigcup_{b \in B}\{b\}^{\sigma(\mathcal{A})}$. If the set B is empty, then we define $B^{\sigma(\mathcal{A})}:=\emptyset$.

For any term $t \in W_{\tau}\left(X_{n}\right)$ and a class G of algebras of type τ we define

$$
t^{G}:=\{t\}^{G}:=\left\{t^{\mathcal{A}} \mid \mathcal{A} \in G\right\} .
$$

Definition 2.2. Let \mathcal{A} be an algebra of type τ and let $K \subseteq \chi_{M-n d}^{A}[\mathcal{A}]$ and let $n \geq 1$ be an integer. Then we define
(i) If $B=\left\{x_{j}\right\}$ for $1 \leq j \leq n$, then $B^{K}=\left\{e_{j}^{n, A}\right\} \subseteq \mathcal{T}^{(n)}(\mathcal{A})$.
(ii) If $B=\left\{f_{i}\left(t_{1}, \ldots, t_{n}\right)\right\}$ and let $B_{j}=t_{j}^{K} \subseteq \mathcal{T}^{(n)}(\mathcal{A})$ for $1 \leq j \leq n_{i}$ are already known, then

$$
\begin{aligned}
B^{K}:= & \left\{\hat{S}_{n}^{n_{i}, A}\left(S, B_{1}, \ldots, B_{n_{i}}\right) \mid S=\left\{\rho\left(f_{i}\right)^{\mathcal{A}} \mid \rho \in H y p(\tau), \rho(\mathcal{A}) \in K\right\}\right. \\
& \left.\subseteq \mathcal{T}^{\left(n_{i}\right)}(\mathcal{A})\right\} .
\end{aligned}
$$

Finally for an arbitrary nonempty set $B \in \mathcal{P}\left(W_{\tau}(X)\right)$ we set $B^{K}:=$ $\bigcup_{b \in B}\{b\}^{K}$ and for the empty set B we let $B^{K}:=\emptyset$.

Definition 2.2 contains Definition 2.1 as a special case since for every $\sigma \in$ $\operatorname{Hyp}^{n d}(\tau)$ we have $\sigma(\mathcal{A}) \subseteq \chi_{M-n d}^{A}[A]$. We have also $\{\mathcal{A}\} \subseteq \chi_{M-n d}^{A}[A]$ and $\{\rho(\mathcal{A})\} \subseteq \chi_{M-n d}^{A}[A]$ for a hypersubstitution $\rho \in \operatorname{Hyp}(\tau)$ and it is easy to see that for a single term $s \in W_{\tau}\left(X_{n}\right)$ we have $\{\hat{\rho}[s]\}^{\{\mathcal{A}\}}=\hat{\rho}[s]^{\mathcal{A}}=s^{\rho(\mathcal{A})}=$ $\{s\}^{\{\rho(\mathcal{A})\}}$.

Now we prove:
Lemma 2.3. Let $B \in \mathcal{P}\left(W_{\tau}\left(X_{n}\right)\right)$ be an arbitrary set of n-ary terms of type τ, let $\mathcal{A}=\left(A ;\left(f_{i}^{A}\right)_{i \in I}\right)$ be an algebra of type τ and let σ be an ndhypersubstitution of type τ. Then $\hat{\sigma}[B]^{\mathcal{A}}=B^{\sigma(\mathcal{A})}$.

Proof. If B is empty, then all is clear. If B is nonempty we will give a proof by induction on the complexity of the terms from the set B.

If $B=\left\{x_{j}\right\}$ for $1 \leq j \leq n$, then $\hat{\sigma}[B]^{\mathcal{A}}=\left\{x_{j}\right\}^{\mathcal{A}}=\left\{e_{j}^{n, A}\right\}$ by the definition of σ and by Definition 1.3. Further, by Definition 2.1 we have

$$
B^{\sigma(\mathcal{A})}=\left\{x_{j}\right\}^{\sigma(\mathcal{A})}=\left\{e_{j}^{n, \rho(\mathcal{A})} \mid \rho(\mathcal{A}) \in \sigma(\mathcal{A})\right\}=\left\{e_{j}^{n, A}\right\}
$$

since all algebras $\rho(\mathcal{A})$ have the same universe. Therefore $\hat{\sigma}[B]^{\mathcal{A}}=B^{\sigma(\mathcal{A})}$ for $B=\left\{x_{j}\right\}$ for $1 \leq j \leq n$.

Now let $B=\left\{f_{i}\left(t_{1}, \ldots, t_{n_{i}}\right)\right\}$ and assume that $\hat{\sigma}\left[\left\{t_{k}\right\}\right]^{\mathcal{A}}=\left\{t_{k}\right\}^{\sigma(\mathcal{A})}$ for $1 \leq k \leq n_{i}$. Then

$$
\begin{aligned}
\hat{\sigma}[B]^{\mathcal{A}} & =\hat{\sigma}\left[\left\{f_{i}\left(t_{1}, \ldots, t_{n_{i}}\right)\right\}\right]^{\mathcal{A}} \\
& =\left[\hat{S}_{n}^{n_{i}}\left(\sigma\left(f_{i}\right), \hat{\sigma}\left[\left\{t_{1}\right\}\right], \ldots, \hat{\sigma}\left[\left\{t_{n_{i}}\right\}\right]\right)\right]^{\mathcal{A}} \\
& =\hat{S}_{n}^{n_{i}, \mathcal{A}}\left(\sigma\left(f_{i}\right)^{\mathcal{A}}, \hat{\sigma}\left[\left\{t_{1}\right\}\right]^{\mathcal{A}}, \ldots, \hat{\sigma}\left[\left\{t_{n_{i}}\right\}\right]^{\mathcal{A}}\right) \\
& =\hat{S}_{n}^{n_{i}, \mathcal{A}}\left(\left\{l_{i} \mid l_{i} \in \sigma\left(f_{i}\right)\right\}^{\mathcal{A}}, \hat{\sigma}\left[\left\{t_{1}\right\}\right]^{\mathcal{A}}, \ldots, \hat{\sigma}\left[\left\{t_{n_{i}}\right\}\right]^{\mathcal{A}}\right) \\
& =\bigcup_{l_{i} \in \sigma\left(f_{i}\right)} \hat{S}_{n}^{n_{i}, \mathcal{A}}\left(\left\{l_{i}^{\mathcal{A}}\right\}, \hat{\sigma}\left[\left\{t_{1}\right\}\right]^{\mathcal{A}}, \ldots, \hat{\sigma}\left[\left\{t_{n_{i}}\right\}\right]^{\mathcal{A}}\right) \\
& =\bigcup_{l_{i} \in \sigma\left(f_{i}\right)} \hat{S}_{n}^{n_{i}, \mathcal{A}}\left(\left\{l_{i}^{\mathcal{A}}\right\},\left\{t_{1}\right\}^{\sigma(\mathcal{A})}, \ldots,\left\{t_{n_{i}}\right\}^{\sigma(\mathcal{A})}\right) \\
& =\hat{S}_{n}^{n_{i}, \mathcal{A}}\left(\left\{f_{i}^{\rho(\mathcal{A})} \mid \rho(\mathcal{A}) \in \sigma(\mathcal{A})\right\},\left\{t_{1}\right\}^{\sigma(\mathcal{A})}, \ldots,\left\{t_{n_{i}}\right\}^{\sigma(\mathcal{A})}\right) \\
& =\left\{f_{i}\left(t_{1}, \ldots, t_{n_{i}}\right)\right\}^{\sigma(\mathcal{A})} \\
& =B^{\sigma(\mathcal{A})}
\end{aligned}
$$

If B is a set of terms consisting of more than one element, then we have

$$
\hat{\sigma}[B]^{\mathcal{A}}=\left\{\bigcup_{b \in B} \hat{\sigma}[\{b\}]\right\}^{\mathcal{A}}=\bigcup_{b \in B} \hat{\sigma}[\{b\}]^{\mathcal{A}}=\bigcup_{b \in B}\{b\}^{\sigma(\mathcal{A})}=B^{\sigma(\mathcal{A})}
$$

From Lemma 2.3 we obtain the "conjugate pair property" for the pair $\left(\chi_{M-n d}^{A}, \chi_{M-n d}^{E}\right)$ of operators. We use the notation $\mathcal{A} \vDash s \approx t$ if the algebra \mathcal{A} of type τ satisfies the equation $s \approx t$ of type τ as an identity and $K \models s \approx t$ if the class K satisfies $s \approx t$. Moreover, we define

Definition 2.4. Let $B_{1}, B_{2} \subseteq W_{\tau}(X)$ be sets of terms of type τ and assume that \mathcal{A} is an algebra of type τ and that $K \subseteq \chi_{M-n d}^{A}[A]$ for a monoid $\mathcal{M} \subseteq$ $\mathcal{H} y p^{n d}(\tau)$ of non-deterministic hypersubstitution. Then

$$
K \models B_{1} \approx B_{2} \text { iff } B_{1}^{K}=B_{2}^{K}
$$

Especially we have $\sigma[\mathcal{A}] \models B_{1} \approx B_{2}$ iff $B_{1}^{\sigma[\mathcal{A}]}=B_{2}^{\sigma[\mathcal{A}]}$ and $\{\mathcal{A}\} \models B_{1} \approx B_{2}$ iff $B_{1}^{\{\mathcal{A}\}}=B_{2}^{\{\mathcal{A}\}}$ and this means $\mathcal{A} \models B_{1} \approx B_{2}$ iff $B_{1}^{\mathcal{A}}=B_{2}^{\mathcal{A}}$.

From Lemma 2.3 we obtain the following conjugate property.
Theorem 2.5. Let \mathcal{A} be an algebra of type τ, and let $B_{1} \approx B_{2} \in \mathcal{P}(W \tau(X)) \times$ $\mathcal{P}(W \tau(X))$ and assume that $\sigma \in H^{\prime \prime} p^{n d}(\tau)$ be a non-deterministic hypersubstitution of type τ. Then

$$
\sigma(\mathcal{A}) \models B_{1} \approx B_{2} \Longleftrightarrow \mathcal{A} \models \hat{\sigma}\left[B_{1}\right] \approx \hat{\sigma}\left[B_{2}\right]
$$

Proof.

$$
\begin{aligned}
\sigma(\mathcal{A}) \models B_{1} \approx B_{2} & \Longleftrightarrow B_{1}^{\sigma(\mathcal{A})}=B_{2}^{\sigma(\mathcal{A})} \\
& \Longleftrightarrow \hat{\sigma}\left[B_{1}\right]^{\mathcal{A}}=\hat{\sigma}\left[B_{2}\right]^{\mathcal{A}} \\
& \Longleftrightarrow \mathcal{A} \models \hat{\sigma}\left[B_{1}\right] \approx \hat{\sigma}\left[B_{1}\right]
\end{aligned}
$$

Let now $M \subseteq H y p^{n d}(\tau)$ be a monoid of non-deterministic hypersubstitutions. Then we form the set $\bigcup\left\{\mathcal{P}\left(\chi_{M-n d}^{A}[\mathcal{A}]\right) \mid \mathcal{A} \in \operatorname{Alg}(\tau)\right\}$ and consider $\Sigma \subseteq \mathcal{P}\left(\left(\mathcal{P}\left(W_{\tau}(X)\right)\right)^{2}\right)$ and $\mathcal{K} \subseteq \bigcup\left\{\mathcal{P}\left(\chi_{M-n d}^{A}[\mathcal{A}]\right) \mid \mathcal{A} \in \operatorname{Alg}(\tau)\right\}$. Definition 2.4 defines a relation between both sets. In the usual way we obtain a Galois connection (\mathcal{P} Mod; $\mathcal{P} I d$) of non-deterministic models and non-deterministic identities defined by
$\mathcal{P} \operatorname{Mod} \Sigma:=\left\{K \mid K \subseteq \chi_{M-n d}^{A}[\mathcal{A}]\right.$ for some algebra $\mathcal{A} \in \operatorname{Alg}(\tau)$

$$
\begin{gathered}
\text { and } \left.\forall B_{1} \approx B_{2} \in \Sigma\left(K \models B_{1} \approx B_{2}\right)\right\} \\
\mathcal{P} I d \mathcal{K}:=\left\{B_{1} \approx B_{2} \mid B_{1} \approx B_{2} \in \mathcal{P}\left(W_{\tau}(X)\right)^{2} \text { and } \forall K \in \mathcal{K}\left(K \models B_{1} \approx B_{2}\right)\right\}
\end{gathered}
$$

By definition, the operators $\chi_{M-n d}^{\mathcal{A}}: \mathcal{P}(\mathcal{P}(\operatorname{Alg}(\tau))) \rightarrow \mathcal{P}(\mathcal{P}(\operatorname{Alg}(\tau)))$ and $\chi_{M-n d}^{E}: \mathcal{P}\left(\left(\mathcal{P}\left(W_{\tau}(X)\right)\right)^{2}\right) \rightarrow \mathcal{P}\left(\left(\mathcal{P}\left(W_{\tau}(X)\right)\right)^{2}\right)$ are completely additive. This means, for classes $\mathcal{K} \subseteq \mathcal{P}(\mathcal{P}(\operatorname{Alg}(\tau)))$ the result of the application of $\chi_{M-n d}^{A}$ to \mathcal{K} is the union of the results obtained by application of $\chi_{M-n d}^{A}$ to the single classes $K \subseteq A l g(\tau): \chi_{M-n d}^{A}[\mathcal{K}]=\bigcup_{\sigma \in M,} \bigcup_{K \in \mathcal{K}} \sigma(K)$. In a corresponding way for a set $\Sigma \subseteq \mathcal{P}\left(\left(\mathcal{P}\left(W_{\tau}(X)\right)\right)^{2}\right)$ and a submonoid $M \subseteq H y p^{n d}(\tau)$ we have $\chi_{M-n d}^{E}[\Sigma]=\bigcup_{\sigma \in M} \bigcup_{B_{1} \approx B_{2} \in \Sigma} \hat{\sigma}\left[B_{1}\right] \approx \hat{\sigma}\left[B_{2}\right]$. Therefore, both operators are monotone, i.e.

$$
\mathcal{K}_{1} \subseteq \mathcal{K}_{2} \Rightarrow \chi_{M-n d}^{A}\left[\mathcal{K}_{1}\right] \subseteq \chi_{M-n d}^{A}\left[\mathcal{K}_{2}\right]
$$

and

$$
\Sigma_{1} \subseteq \Sigma_{2} \Rightarrow \chi_{M-n d}^{E}\left[\Sigma_{1}\right] \subseteq \chi_{M-n d}^{E}\left[\Sigma_{2}\right] .
$$

Since $\sigma_{\text {pid }} \in M$ and $\sigma_{\text {pid }}(K)=\{K\}$, the operator $\chi_{M-n d}^{A}$ is extensive, i.e. $\mathcal{K} \subseteq \chi_{M-n d}^{A}[\mathcal{K}]$ for every class $\mathcal{K} \subseteq \mathcal{P}(\mathcal{P}(\operatorname{Alg}(\tau)))$. Since $\hat{\sigma}_{\text {pid }}[\{B\}]=\{B\}$ for every $B \in \mathcal{P}\left(W_{\tau}(X)\right)$, the operator $\chi_{M-n d}^{E}$ is also extensive. It turns out that both operators, $\chi_{M-n d}^{A}$ and $\chi_{M-n d}^{E}$ are closure operators. Altogether, we have

Theorem 2.6. The pair $\left(\chi_{M-n d}^{A}, \chi_{M-n d}^{E}\right)$ is a conjugate pair of additive closure operators.

Proof. From Theorem 2.5, there follows $\chi_{M-n d}^{A}[K] \models B_{1} \approx B_{2} \Longleftrightarrow K \models$ $\chi_{M-n d}^{E}\left[B_{1} \approx B_{2}\right]$. By the previous remarks it is left to show that the operators $\chi_{M-n d}^{A}$ and $\chi_{M-n d}^{E}$ are idempotent. Extensivity of $\chi_{M-n d}^{A}$ and $\chi_{M-n d}^{E}$,
implies $\chi_{M-n d}^{A}[\mathcal{K}] \subseteq \chi_{M-n d}^{A}\left[\chi_{M-n d}^{A}[\mathcal{K}]\right]$ and $\chi_{M-n d}^{E}[\Sigma] \subseteq \chi_{M-n d}^{E}\left[\chi_{M-n d}^{E}[\Sigma]\right]$ for $\mathcal{K} \in \mathcal{P}\left(\bigcup\left\{\mathcal{P}\left(\chi_{M-n d}^{A}[\mathcal{A}]\right) \mid \mathcal{A} \in A l g(\tau)\right\}\right)$ and $W \in \mathcal{P}\left(\left(\mathcal{P}\left(W_{\tau}(X)\right)\right)^{2}\right)$. We write $\mathcal{K} \models W$ iff $K \models A \approx B$ for all $K \in \mathcal{K}$ and all $B_{1} \approx B_{2}$ $\in W$. We have to show that the opposite inclusions are satisfied. Let $\mathcal{B} \in \chi_{M-n d}^{A}\left[\chi_{M-n d}^{A}[\mathcal{K}]\right]$. Then there are $n d$-hypersubstitutions $\sigma_{1}, \sigma_{2} \in M$ and an algebra $\mathcal{A} \in \mathcal{K}$ such that

$$
\begin{aligned}
\mathcal{B} \in \sigma_{1}\left[\sigma_{2}(\mathcal{A})\right] & =\sigma_{1}\left[\left\{\left(A ;\left(l_{i}^{\mathcal{A}}\right)_{i \in I}\right) \mid l_{i} \in \sigma_{2}\left(f_{i}\right)\right\}\right] \\
& =\left\{\sigma_{1}\left(A ;\left(l_{i}^{\mathcal{A}}\right)_{i \in I}\right) \mid l_{i} \in \sigma_{2}\left(f_{i}\right)\right\} \\
& =\left\{\left\{\left(A ;\left(h_{i}^{\mathcal{A}}\right)_{i \in I}\right) \mid h_{i} \in \hat{\sigma}_{1}\left[l_{i}\right]\right\} \mid l_{i} \in \sigma_{2}\left(f_{i}\right)\right\} \\
& =\left\{\left(A ;\left(h_{i}^{\mathcal{A}}\right)_{i \in I}\right) \mid h_{i} \in \hat{\sigma}_{1}\left[l_{i}\right] \text { and } l_{i} \in \sigma_{2}\left(f_{i}\right)\right\} \\
& =\left\{\left(A ;\left(h_{i}^{\mathcal{A}}\right)_{i \in I}\right) \mid h_{i} \in \hat{\sigma}_{1}\left[\sigma_{2}\left(f_{i}\right)\right]\right\} \\
& =\left\{\left(A ;\left(h_{i}^{\mathcal{A}}\right)_{i \in I}\right) \mid h_{i} \in\left(\sigma_{1} \circ_{n d} \sigma_{2}\right)\left(f_{i}\right)\right\} \\
& =\left(\sigma_{1} \circ_{n d} \sigma_{2}\right)(\mathcal{A}) \in \chi_{M-n d}^{\mathcal{A}}[\mathcal{K}] .
\end{aligned}
$$

This shows $\chi_{M-n d}^{A}\left[\chi_{M-n d}^{A}[\mathcal{K}]\right]=\chi_{M-n d}^{A}[\mathcal{K}]$. Now let $B_{1} \approx B_{2} \in \chi_{M-n d}^{E}$ $\left[\chi_{M-n d}^{E}[\Sigma]\right]$. Then there is an equation $U \approx V$ in Σ and an $n d$-hypersubstitution $\sigma_{1}, \sigma_{2} \in M$ such that $B_{1} \approx B_{2} \in \hat{\sigma}_{1}\left[\sigma_{2}[U]\right] \approx \hat{\sigma}_{1}\left[\sigma_{2}[V]\right]$, i.e. $B_{1} \approx B_{2} \in\left(\sigma_{1} \circ_{n d} \sigma_{2}\right)^{\wedge}[U] \approx\left(\sigma_{1} \circ_{n d} \sigma_{2}\right)^{\wedge}[V] \in \chi_{M-n d}^{E}[U \approx V] \subseteq \chi_{M-n d}^{E}[\Sigma]$.

3. $M-\mathrm{Nd}$-Solid Varieties

A solid variety V admits every mapping $\sigma:\left\{f_{i} \mid i \in I\right\} \rightarrow W_{\tau}(X)$ which maps n_{i} - ary operation symbols f_{i} to n_{i} - ary terms in the sense that every derived algebra $\sigma(\mathcal{A})=\left(A ;\left(\sigma\left(f_{i}\right)^{A}\right)_{i \in I}\right)$ belongs to V. Equivalently if $s \approx t$ is an identity in a solid variety V , then $\hat{\sigma}[s] \approx \hat{\sigma}[t]$ are also satisfied as identities in V for every hypersubstitution σ. We generalize the definition of a solid variety to M-solid non-deterministic varieties.

Definition 3.1. Let $\mathcal{M} \subseteq \mathcal{H} y p^{n d}(\tau)$ be a monoid of non-deterministic hypersubstitutions of type τ. A variety V of type τ is said to be an M-solid non-deterministic variety, for short an $M-n d$-solid variety, if $\{\{\mathcal{A}\} \mid \mathcal{A} \in V\} \mid=\{\hat{\sigma}[\{s\}] \approx \hat{\sigma}[\{t\}] \mid s \approx t \in I d V, \sigma \in M\}$. In the case that $\mathcal{M}=\mathcal{H} y p^{n d}(\tau)$ we will speak of a solid non-deterministic variety, for short of an $n d$-solid variety.

Clearly, the class $A l g(\tau)$ of all algebras of type τ is $n d$-solid. The trivial variety (consisting only of one-element algebras of type τ) is also $n d$-solid. The class of all $n d$-solid varieties of type τ is contained in the class of all solid varieties of this type.

Example 3.2. There is no nontrivial $n d$-solid variety of semigroups.
Let V be a variety of semigroups. For a proof we consider the $n d$-hypersubstitutions $\sigma_{1}, \sigma_{2} \in H y p{ }^{n d}(2)$ defined by $\sigma_{1}(f)=\{x, x y\}$ and $\sigma_{2}(f)=$ $\{x y, y x\}$. If V were an $n d$-solid variety of semigroups, then the application of σ_{1} to the associative law gives identities which are satisfied in V. Let $V^{*}:=$ $\{\{\mathcal{A}\} \mid \mathcal{A} \in V\}$, then $V^{*} \models\left\{\hat{\sigma}_{1}[f(x, f(y, z))]\right\} \approx\left\{\hat{\sigma}_{1}[f(f(x, y), z)]\right\}$ gives $V^{*}=\{x, f(x, y), f(x, f(y, z))\} \approx\{x, f(x, y), f(x, z), f(f(x, y), z)\}$. Since every $n d$-solid variety is solid, this gives especially $V^{*} \models\{f(x, f(y, z))\} \approx$ $\{f(x, z)\}$. Applying σ_{2} to this identity gives $V^{*} \vDash\{f(x, f(y, z))$, $f(x, f(z, y)), f(z, f(y, x)), f(y, f(z, x))\} \approx\{f(x, z), f(z, x)\}$. We use again the fact that every $n d$-solid variety is solid and the previous identity and obtain $V^{*} \models\{f(x, z)\} \approx\{f(z, x)\}$ or $V^{*} \models\{f(x, y)\} \approx\{f(x, z)\}$ or $V^{*} \models\{f(x, z)\} \approx\{f(y, x)\}$. If we use again the fact that every $n d$-solid variety must be solid in each of the cases we obtain that V is trivial.

If an identity $s \approx t$ in a variety V is satisfied for all $n d$-hypersubstitutions we speak of an $n d$-hyperidentity. More generally we define

Definition 3.3. Let V be a variety of algebras of type τ, let $s \approx t$ be an identity satisfied in V and let $\mathcal{M} \subseteq \mathcal{H} y p^{n d}(\tau)$ be a monoid of nondeterministic hypersubstitutions. Then $s \approx t$ is an $M-n d$ hyperidentity in V if $V^{*} \models \chi_{M-n d}^{E}[\{s\} \approx\{t\}]$ where $V^{*}=\{\{\mathcal{A}\} \mid \mathcal{A} \in V\}$. In this case we write $V \neq_{M-n d-h y p} s \approx t$ and for $M=\operatorname{Hyp}^{n d}(\tau)$ we will simply write $V \not \models_{n d-h y p} s \approx t$ and call $s \approx t$ an $n d$-hyperidentity in V.

The relation $K \models B_{1} \approx B_{2}$ introduced in Definition 2.4 defines the Galois connection (\mathcal{P} Mod, $\mathcal{P} I d$) with the operations

$$
\begin{gathered}
\mathcal{P} \text { Mod }: \mathcal{P}\left(\left(\mathcal{P}\left(W_{\tau}(X)\right)\right)^{2}\right) \rightarrow \mathcal{P}\left(\bigcup\left\{\mathcal{P}\left(\chi_{M-n d}^{A}[\mathcal{A}]\right) \mid \mathcal{A} \in \operatorname{Alg}(\tau)\right\}\right) \\
\mathcal{P} I d: \mathcal{P}\left(\bigcup\left\{\mathcal{P}\left(\chi_{M-n d}^{A}[\mathcal{A}]\right) \mid \mathcal{A} \in \operatorname{Alg}(\tau)\right\}\right) \rightarrow \mathcal{P}\left(\left(\mathcal{P}\left(W_{\tau}(X)\right)\right)^{2}\right)
\end{gathered}
$$

The relation $=_{M-n d-h y p}$ defines one more Galois connection

$$
\left(H_{M-n d} \mathcal{P} M o d, H_{M-n d} \mathcal{P} I d\right)
$$

for sets $\Sigma \subseteq \mathcal{P}\left(\left(\mathcal{P}\left(W_{\tau}(X)\right)\right)^{2}\right)$ and classes $\mathcal{K} \subseteq \bigcup\left\{\mathcal{P}\left(\chi_{M-n d}^{A}[\mathcal{A}]\right) \mid \mathcal{A} \in\right.$ $\operatorname{Alg}(\tau)\}$ as follows

$$
\begin{gathered}
H_{M-n d} \mathcal{P} M o d: \mathcal{P}\left(\left(\mathcal{P}\left(W_{\tau}(X)\right)\right)^{2}\right) \rightarrow \mathcal{P}\left(\bigcup\left\{\mathcal{P}\left(\chi_{M-n d}^{A}[\mathcal{A}]\right) \mid \mathcal{A} \in A l g(\tau)\right\}\right), \\
H_{M-n d} \mathcal{P} I d: \mathcal{P}\left(\bigcup\left\{\mathcal{P}\left(\chi_{M-n d}^{A}[\mathcal{A}]\right) \mid \mathcal{A} \in A l g(\tau)\right\}\right) \rightarrow \mathcal{P}\left(\left(\mathcal{P}\left(W_{\tau}(X)\right)\right)^{2}\right)
\end{gathered}
$$

The products $\mathcal{P} M o d \mathcal{P} I d, \mathcal{P} I d \mathcal{P} M o d, \quad H_{M-n d} \mathcal{P} I d H_{M-n d} \mathcal{P} M o d, \quad H_{M-n d}$ $\mathcal{P} \operatorname{Mod} H_{M-n d} \mathcal{P} I d$ are closure operators and their fixed points are complete lattices. The lattice of all $M-n d$-solid varieties arises if we restrict the operator $H_{M-n d} \mathcal{P} \operatorname{Mod} H_{M-n d} \mathcal{P} I d$ to classes of the form V^{*} where V is a variety of algebras of type τ. Moreover we have the conjugate pair $\left(\chi_{M-n d}^{A}, \chi_{M-n d}^{E}\right)$ of additive closure operators. Their fixed points form two more complete lattices. Now we may apply the theory of conjugate pairs of additive closure operators (see e.g. [?]) and obtain the following propositions:

Lemma 3.4. Let $K \subseteq A l g(\tau)$ be a class of algebras and let $\Sigma \subseteq\left(\mathcal{P} W_{\tau}(X)^{2}\right)$ be a set of equations. Then the following properties hold:
(i) $H_{M-n d} \mathcal{P} I d\left(K^{*}\right)=\mathcal{P} I d \chi_{M-n d}^{A}\left[K^{*}\right]$,
(ii) $H_{M-n d} \mathcal{P} \operatorname{Id}\left(K^{*}\right) \subseteq \mathcal{P} \operatorname{Id}\left(K^{*}\right)$,
(iii) $\chi_{M-n d}^{E}\left[H_{M-n d} \mathcal{P} \operatorname{Id}\left(K^{*}\right)\right]=H_{M-n d} \mathcal{P} I d\left(K^{*}\right)$,
(iv) $\chi_{M-n d}^{A}\left[\mathcal{P} M o d\left(H_{M-n d} \mathcal{P} \operatorname{Id}\left(K^{*}\right)\right)\right]=\mathcal{P} \operatorname{Mod}\left(H_{M-n d} \mathcal{P} I d\left(K^{*}\right)\right)$,
(v) $H_{M-n d} \mathcal{P} \operatorname{Id}\left(H_{M-n d} \mathcal{P} \operatorname{Mod}(\Sigma)\right)=\mathcal{P} \operatorname{Id}\left(\mathcal{P} \operatorname{Mod}\left(\chi_{M-n d}^{E}[\Sigma]\right)\right)$; and dually
(i) ${ }^{\prime} H_{M-n d} \mathcal{P} \operatorname{Mod}(\Sigma)=\mathcal{P} \operatorname{Mod} \chi_{M-n d}^{E}(\Sigma)$,
(ii) $)^{\prime} H_{M-n d} \mathcal{P} \operatorname{Mod}(\Sigma) \subseteq \mathcal{P} \operatorname{Mod}(\Sigma)$,
$(\text { iii })^{\prime} \chi_{M-n d}^{A}\left[H_{M-n d} \mathcal{P} \operatorname{Mod}(\Sigma)\right]=H_{M-n d} \mathcal{P} \operatorname{Mod}(\Sigma)$,
$(\mathrm{iv})^{\prime} \chi_{M-n d}^{E}\left[\mathcal{P} \operatorname{Id}\left(H_{M-n d} \mathcal{P} \operatorname{Mod}(\Sigma)\right)\right]=\mathcal{P} \operatorname{Id}\left(H_{M-n d} \mathcal{P} \operatorname{Mod}(\Sigma)\right)$,
$(\mathrm{v})^{\prime} \quad H_{M-n d} \mathcal{P} \operatorname{Mod}\left[H_{M-n d} \mathcal{P} \operatorname{Id}\left(K^{*}\right)\right]=\mathcal{P} \operatorname{Mod}\left(\mathcal{P} \operatorname{Id}\left(\chi_{M-n d}^{A}\left[K^{*}\right]\right)\right)$.
Using these propositions one obtains the following characterization of $M-$ $n d$-solid varieties.

Theorem 3.5. Let V be a variety of type τ and let Σ be an equational theory of type τ (i.e. $\operatorname{IdMod}(\Sigma)=\Sigma$). Further we assume that $\mathcal{N} \subseteq \mathcal{H} y p^{\text {nd }}(\tau)$ is a monoid of non-deterministic hypersubstitutions of type τ.

Then the following propositions are equivalent:
(i) $H_{M-n d} \mathcal{P} \operatorname{Mod} H_{M-n d} \mathcal{P} \operatorname{Id}\left(V^{*}\right)=V^{*}$,
(ii) $\chi_{M-n d}^{A}\left[V^{*}\right]=V^{*}$ (i.e. V^{*} is $M-n d$ solid),
(iii) $\operatorname{P} \operatorname{Id}\left(V^{*}\right)=H_{M-n d} \mathcal{P} \operatorname{Id}\left(V^{*}\right)$ (i.e. every identity in V^{*} is satisfied as a non-deterministic hyperidentity),
(iv) $\chi_{M-n d}^{E}\left[\mathcal{P} I d V^{*}\right]=\mathcal{P} I d V^{*}$.

4. $M-\mathrm{Nd}$-Solid Varieties of Semigroups

We consider some examples of $M-n d$-solid varieties of semigroups and use the following notation for varieties of semigroups;
$B=\operatorname{Mod}\left\{x(y z) \approx(x y) z, x^{2} \approx x\right\}-$ the variety of bands,
$R B=\operatorname{Mod}\left\{x(y z) \approx(x y) z \approx x z, x^{2} \approx x\right\}-$ the variety of rectangular bands
$S L=\operatorname{Mod}\left\{x(y z) \approx(x y) z, x^{2} \approx x, x y \approx y x\right\}-$ the variety of semilattices, bands,
$L Z=\operatorname{Mod}\{x y \approx x\}-$ the variety of left-zero bands.

Let $M=\left\{\sigma_{p i d}, \sigma_{1}, \sigma_{2}\right\}$ with $\sigma_{1}(f)=\{x\}$ and $\sigma_{2}(f)=\{y\}$. Then M forms a monoid and the multiplication $\circ_{n d}$ is given by the following table:

$\circ_{n d}$	$\sigma_{p i d}$	σ_{1}	σ_{2}
$\sigma_{p i d}$	$\sigma_{p i d}$	σ_{1}	σ_{2}
σ_{1}	σ_{1}	σ_{1}	σ_{2}
σ_{2}	σ_{2}	σ_{1}	σ_{2}

We will prove the following proposition:
Proposition 4.1. Let $M=\left\{\sigma_{p i d}, \sigma_{1}, \sigma_{2}\right\}$ as defined before. A non-trivial variety V of semigroups is $M-n d$-solid iff $R B \subseteq V$.

Proof. It is well-known that $I d R B$ is the set of all outermost equations of type $\tau=(2)$, i.e. the set of all equations $s \approx t$ such that the first variables in s and in t and the last variables in s and in t agree. Therefore $R B \subseteq V$ means that all identities in V are outermost and for any $s \approx t \in I d$ we have $\hat{\sigma}_{1}[s]=\{$ first variable in $s\}=\{$ first variable in $t\}=\hat{\sigma}_{1}[t]$ and $\hat{\sigma}_{2}[s]=\{$ last variable in s$\}=\{$ last variable in t$\}=\hat{\sigma}_{2}[t]$. Clearly $s \approx t$ is closed under $\sigma_{p i d}$.

Conversely, let V be a nontrivial $M-n d$-solid variety. Then $\sigma_{1}, \sigma_{2} \in M$ requires $R B \subseteq V$.

Let $\operatorname{var}(B)$ be the set of all variables occurring in the set B of terms. Now let

$$
M^{\prime}=\left\{\sigma \in H y p^{n d}(\tau) \mid \operatorname{var}(\sigma(f))=\{x\}\right\} .
$$

Clearly $M^{\prime} \cup\left\{\sigma_{\text {pid }}\right\}$ forms a submonoid of $H y p^{\text {nd }}(\tau)$. Then we have
Proposition 4.2. A non-trivial variety V of semigroups is $M^{\prime}-n d$-solid iff $L Z \subseteq V \subseteq B$.

Proof. It is well-known that $\operatorname{IdL} Z$ is the set of all equations $s \approx t$ of type $\tau=(2)$ such that the first variable in s is equal to the first variable in t. Because of $\operatorname{var}(\sigma(f))=\{x\}$ the terms in $\hat{\sigma}[s]$ and the terms in $\hat{\sigma}[t]$ can be written as x^{r} and as x^{l} for some $r, l \in \mathbb{N}^{+}$. Since $V \subseteq B$ by the idempotent law all equations of the form $x^{r} \approx x^{l}$ are satisfied in V. This shows that V is $M^{\prime}-n d$-solid.

Conversely, let V be a nontrivial $M^{\prime}-n d$-solid variety of semigroups. If we apply σ with $\sigma(f)=\left\{x, x^{2}\right\}$ to the identity $f(x, y) \approx f(x, y)$ we obtain $x \approx x^{2}$, i.e. $V \subseteq B$. If we apply σ^{\prime} with $\sigma^{\prime}(f)=\{x\}$ we get leftmost $(s) \approx$ leftmost $(t) \in I d V$ and this means $L Z \subseteq V$. Altogether, we have $L Z \subseteq V \subseteq B$.

References

[1] K. Denecke and S.L. Wismath, Universal Algebra and Applications in Theoretical Computer Science, Chapman \& Hall/CRC, Boca Raton, London, New York, Washington, D.C. 2002.
[2] K. Denecke, P. Glubudom and J. Koppitz, Power Clones and NonDeterministic Hypersubstitutions, preprint 2005.
[3] F. Gécseg and M. Steinby, Tree Languages, pp. 1-68 in: Handbook of Formal Languages, Vol. 3, Chapter 1, Tree Languages, Springer-Verlag 1997.
[4] K. Denecke and J. Koppitz, M-solid Varieties of Algebras, Advances in Mathematics, Vol. 10, Springer 2006.
[5] S. Leeratanavalee, Weak hypersubstitutions, Thesis, University of Potsdam 2002.
[6] K. Menger, The algebra of functions: past, present, future, Rend. Mat. 20 (1961), 409-430.
[7] B.M. Schein, and V.S. Trokhimenko, Algebras of multiplace functions, Semigroup Forum 17 (1979), 1-64.
[8] W. Taylor, Abstract Clone Theory, Algebras and Orders, Kluwer Academic Publishers, Dordrecht, Boston, London (1993), 507-530.

Received 30 May 2006
Revised 15 June 2007

