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Abstract

A non-empty set X of a carrier A of an algebra A is called
Q-independent if the equality of two term functions f and g of the
algebra A on any finite system of elements a1, a2, . . . , an of X
implies f(p(a1), p(a2), . . . , p(an)) = g(p(a1), p(a2), . . . , p(an)) for any
mapping p ∈ Q. An algebra B is a retract of A if B is the image
of a retraction (i.e. of an idempotent endomorphism of B). We
investigate Q-independent subsets of algebras which have a retraction
in their set of term functions.
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1. Introduction

A set X of elements of an algebra A is M -independent if the subalgebra
generated by X is free over the equational class generated by A (see [12]).
This definition (in an equivalent form) is due to E. Marczewski [13], who
observed that many different concepts of independence used in various
branches of mathematics are special cases of it. However this scheme of
independence was not wide enough to cover stochastic independence,
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independence in projective spaces and some others. As a common way
of defining almost all known notions of independence E. Marczewski in [16]
introduced the notion of independence with respect to a family Q
of mappings.

More details and the best general reference can be found in K. G lazek
[5, 7] and [8].

In [4] we investigated Q-independent subsets in Stone algebras for some
specified families Q of mappings (e.g. M , S, S0, G, I, and A1), using the
well-known triple representation of Stone algebras. Now, we summarize
without the proofs these results and generalize them. We indicate connec-
tions between Q-independence in an abstract algebra and Q-independence
in its subalgebras, reducts and retracts.

For a fixed algebra A = (A; F) we denote by T
(n)(A) (n = 1, 2, ...) the

class of all n-ary term functions of A, i.e. the smallest class of functions
satisfying the following conditions:

(i) en
i ∈ T

(n)(A), i.e. projections en
i (x1, x2, . . . , xn) = xi (for i = 1, 2, . . . , n)

are n-ary term functions;

(ii) if g1, g2, . . . , gk ∈ T
(n)(A), f ∈ F is a k-ary fundamental operation,

then

f̂(g1, g2, . . . , gk)(x1, x2, . . . , xn)=f(g1(x1, x2, . . . , xn), . . . , gk(x1, x2, . . . , xn))

belongs to T
(n)(A).

T
(0)(A) denotes the set of all (algebraic) constant functions of the algebra

A. It is convenient to identify a constant function with it’s value.

Let A = (A; F) be an algebra. Denote by M(A) the family of all map-
pings p : X → A from every nonempty subset X ⊆ A to A, and by H(A)
the set of all mappings p : X → A (X ⊆ A) which possess an extension
to a homomorphism p from 〈X〉A (the subalgebra generated by X) to A
(p|X = p).

A nonempty set X ⊆ A is said to be independent with respect to the

family Q ⊆ M(A) in algebra A (Q-independent or X ∈ Ind(A, Q), for
short) if Q ∩ AX ⊆ H(A), or equivalently

(∀n ∈ N, n ≤ card(X))(∀f, g ∈ T
(n)(A))(∀p : X → A)(∀a1, . . . , an ∈ X)

[f(a1, . . . , an) = g(a1, . . . , an) ⇒ f(p(a1), . . . , p(an)) = g(p(a1), . . . , p(an))].
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If we put Q = M =
⋃
{AX | X ⊆ A}, we obtain M -independence

(defined by E. Marczewski). For Q = S =
⋃
{〈X〉X

A
| X ⊆ A}, we

get S-independence (local independence introduced by J. Schmidt in [18]).
If Q = S0 =

⋃
{XX | X ⊆ A}, we have S0-independence (weak

independence in sense of S. Świerczkowski, [19]). For Q = G =
⋃
{p|X |

p ∈ AA is diminishing, X ⊆ A} we get G-independence (weak independence

in sense of G. Grätzer, [10]), where a mapping p is called diminishing if
(∀f, g ∈ T

(1)(A)) (∀a ∈ A) [f(a) = g(a) ⇒ f(p(a)) = g(p(a))]. Another
notion of independence may be obtain by putting Q = A1 = {f|X | f ∈

T
(1)(A), X ⊆ A} (introduced by K. G lazek in [6]). And for Q = I =⋃
{p | p ∈ AX injective, X ⊆ A}, we get I-independence (defined as

R-independence by K. G lazek, [6]). Let us recall that

(1)
Ind(A,M) ⊆ Ind(A, Q) for all Q ⊆ M,

Ind(A, S) ⊆ Ind(A, S0) and Ind(A, S) ⊆ Ind(A, A1).

Another kind of independence, the so-called t-independence, was introduced
by J. P lonka and W. Poguntke (see [17]). A set X ⊆ A is called t-independent

(X ∈ Indt(A)) in algebra A = (A; F) if for any finite system of different
elements a1, . . . , an ∈ X and for any n-ary term function f which is not a
projection, we have f(a1, . . . , an) 6= ai for all i = 1, . . . , n. It is easy to show
that Ind(A,M) ⊂ Indt(A) for every A. K. G lazek proved (see [6]) that
for every family J of subsets of A such that Ind(A,M) ⊂ J there exists
a family of mappings Q ⊂ M satisfying the equality Ind(A, Q) = J . So
there exists a family of mappings Q such that Indt(A) = Ind(A, Q), but
the problem of defining this family for any algebra is still open.

An algebra B is a retract of A if B is the image of some retraction g (i.e.
g ∈ End(A) and g(g(x)) = g(x) for all x ∈ A). Clearly g(A) = (g(A); F)
is a subalgebra of A. For a ∈ g(A), we denote by Fa = {x ∈ A | g(x) =
g(a) = a} the equivalence class of a modulo kernel of the retraction g.

The remaining notions and notations used are rather standard, and for
them the reader is referred to [2] and [12].

2. Q-independent subsets in Stone algebras

A Stone algebra is an algebra L = (L;∨,∧,∗ , 0, 1) of type (2, 2, 1, 0, 0) such
that (L;∨,∧, 0, 1) is a distributive lattice with the least element 0 and the
greatest element 1, ∗ is a unary operation on L such that a∧x = 0 iff x ≤ a∗
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and the following Stone identity holds x∗ ∨ x∗∗ = 1. We assume that the
reader is familiar with the basic properties of Stone algebras, as presented
in [1] or [11].

Two significant subsets of a Stone algebra L are the set of dense elements
D(L) = {x ∈ L | x∗ = 0} and the skeleton S(L) = {x ∈ L | x∗∗ = x}. Let
F(D(L)) denote the family of all filters of D(L). The relationship between
elements of S(L) and D(L) is expressed by the homomorphism ϕL : S(L) →
F(D(L)) defined by ϕL(a) = {x ∈ D(L) | x ≥ a∗}. C. C. Chen and G.
Grätzer (see [3]) proved that the triple (S(L), D(L), ϕL) characterizes L up
to isomorphism.

It is easy to check that g(x) = x∗∗ is a retraction of L and S(L) = g(L)
is a retract. The kernel of this retraction is exactly the so-called Glivenko

congruence θ and [1]θ = D(L). Every θ-class Fa contains exactly one
element of S(L), which is the greatest element in this class. Moreover,
Fa = (Fa;∨,∧) is a subalgebra of the reduct LD = (L;∨,∧) of the
algebra L, which is a distributive lattice. Define a mapping φ : L → D(L)
by φ(x) = x ∨ x∗. Then φ|Fa

is a lattice-isomorphism from Fa onto ϕL(a)
for every a ∈ S(L).

Since the families of Q-independence sets in distributive lattices were
precisely characterized (by G. Szász [20], E. Marczewski [14], J. P lonka,
W. Poguntke [17], and A. Chwastyk, K. G lazek [4]), the next result
establishes connections between Q-independence in distributive lattices and
Q-independence in Stone algebras. For the proofs of the next two theorems
we refer the reader to [4].

Theorem 1. Let L = (L;∨,∧,∗ , 0, 1) be a Stone algebra. Then

1) (∀a ∈ S(L))(∀X ⊆ Fa) [X ∈ Ind(L, S0) ⇔ X ∈ Ind(Fa, S0)];

2) (∀X ⊆ D(L))[X ∈ Ind(L, G) ⇔ X \ {1} ∈ Ind(D(L),M)];

3) (∀X ⊆ L)[X∈Ind(L, Q) ⇒ φ(X)∈Ind(D(L), Q)] for Q = M,S or S0.

It is easily seen that the retract S(L) = (S(L);∨,∧,∗ , 0, 1) is a Boolean
algebra. The next theorem shows how the resent results of Q-independence
in Boolean algebras (E. Marczewski [15], K. G lazek [6], K. Golema-Hartman
[9]) may be used to investigate Q-independence in Stone algebras.
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Theorem 2. Let L = (L;∨,∧,∗ , 0, 1) be a Stone algebra and X ⊆ L. Then

1) X ∈ Indt(L) ⇔ |X| = |g(X)| ∧ g(X) ∈ Ind(S(L),M);

2) S(L) ⊇ X ∈ Ind(L, Q) ⇔ X ∈ Ind(S(L),M) for Q = S, S0 or G;

3) X ∈ Ind(L, Q) ⇒ g(X) ∈ Ind(S(L), Q) for Q = M,S, S0, I, G.

3. Subalgebras, reducts, retractions and Q-independence

Now, we will formulate connections between Q-independence in algebras and
Q-independence in their subalgebras and reducts.

Theorem 3. Let A = (A; F) be an algebra, X ⊆ B ⊆ A and F
′ ⊆ F. If

B′ = (B; F′) is a subalgebra of the reduct (A; F′) of the algebra A, then

(2) X ∈ Ind(A, S0) ⇒ X ∈ Ind(B′, S0).

Moreover, if B = (B; F) is a subalgebra of A and Q = S, S0 or A1, then

(3) X ∈ Ind(A, Q) ⇔ X ∈ Ind(B, Q).

Proof. Suppose that X ⊆ B ⊆ A and X ∈ Ind(A, S0). Let f1, f2

be n-ary term functions on some reduct (A, F′) of the algebra A and
f1(a1, . . . , an) = f2(a1, . . . , an) for some a1, . . . , an ∈ X, n ∈ N . These term
functions corresponding to some terms, which can be realized in
the algebra A as n-ary term functions f3, f4. Then f3(a1, . . . , an) =
f1(a1, . . . , an) = f2(a1, . . . , an) = f4(a1, . . . , an) implies f3(p(a1), . . . , p(an))
= f4(p(a1), . . . , p(an)) for every p : X → X. As p(ai) ∈ X ⊆ B
(i = 1, . . . , n) we have f1(p(a1), . . . , p(an)) = f2(p(a1), . . . , p(an)).
Thus X ∈ Ind(B′, S0).

In the case where B is a subalgebra of A the implication (2) holds also for
S and A1-independence, because q(ai) ∈ B for all mappings q : X → 〈X〉B
or q = f0|X (f0 ∈ T

(1)(A)).

For the converse implication, choose X ∈ Ind(B, Q), Q = S, S0 or A1

and f5(b1, . . . , bn) = f6(b1, . . . , bn) for some f5, f6 ∈ T
(n)(A), a1, . . . , an ∈ X.
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Since B is the subalgebra of A, we conclude that fi(a1, . . . , an) ∈ B and
fi|B ∈ T

(n)(B) for i = 5, 6. Hence f5(p(a1), . . . , p(an)) = f6(p(a1), . . . , p(an))
for every p ∈ XX , p ∈ 〈X〉X

A
= 〈X〉X

B
or p = f0|X , f0 ∈ T

(1)(A), and the
proof is complete.

The next result shows relations between Q-independence in algebras which
have a retraction in their set of term functions and Q-independence in their
retracts.

Theorem 4. Let A = (A; F) be an algebra and X ⊆ A. If there exists a

retraction g of A such that g ∈ T
(1)(A)\T

(0)(A) and g is not the projection,

then

(a) X ∈ Ind(A, Q) ∪ Indt(A) ⇒ X ∩ g(A) = ∅ for Q = M or I;

(b) X ∈ Ind(A, Q) ⇒ [X ⊆ g(A) ∨ X ∩ g(A) = ∅] for Q = S0 or S;

(c) X ∈ Ind(A, Q) ⇒ g(X) ∈ Ind(g(A), Q) for Q = M or A1;

(d) g(A) ⊇ X ∈ Ind(g(A), Q) ⇒ X ∈ Ind(A, Q) for Q = A1, S, S0, G;

(e) X ∈ Ind(A, Q) ⇒ |g(X)| = |X| for Q = M or I;

(f) X ∈ Ind(A, Q) ⇒ [|g(X)| = |X| ∨ (∃a ∈ g(A))X ⊆ Fa] for

Q = S0 or S.

Proof.

(a) Suppose that there exists a ∈ X ∩ g(A). Then e1
1(a) = a = g(a) and, by

assumption, e1
1 6= g ∈ T

(1)(A), so {a} /∈ Ind(A,M) which is equivalent
(see [6]) to {a} /∈ Ind(A, I). From t-independence definition, we see that
{a} /∈ Indt(A). Since the families of M , I and t-independent subsets are
hereditary, we obtain a contradiction.

(b) Choose X ∈ Ind(A, S0) and a ∈ X ∩ g(A), b ∈ X. Consider the term
functions f3(x, y) = g(x), e2

1(x, y) = x, (obviously, f3 6= e2
1) and a

mapping p3 : X → X given by p3(x) = b. Then f3(a, b) = g(a) =
a = e2

1(a, b) and f3(p3(a), p3(b)) = e2
1(p3(a), p3(b)), by S0-independence.

Hence f3(b, b) = e2
1(b, b), which implies g(b) = b. We thus get b ∈ g(A)

and, in consequence, X ⊆ g(A). According to (1), this implication holds
also for S-independence.
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(c) Let f1(a1, . . . , an) = f2(a1, . . . , an) for some f1, f2 ∈ T
(n)(A), a1, . . . , an

∈ g(X). Certainly, ai = g(bi) (i = 1, . . . , n) for some b1, . . . , bn ∈ X.
Then f1(g(b1), . . . , g(bn)) = f2(g(b1), . . . , g(bn)), so g(f1(b1, . . . , bn)) =
g(f2(b1, . . . , bn)) and ĝ(f1), ĝ(f2) ∈ T

(n)(A).

Suppose now that X ∈ Ind(A,M), then ĝ(f1) = ĝ(f2) in
the algebra A (see [13]). Hence ĝ(f1)(c1, . . . , cn) = ĝ(f2)(c1, . . . , cn)
for every c1, . . . , cn ∈ g(A). Since ci = g(ci) (i = 1, . . . , n), we
get f1(c1, . . . , cn) = f2(c1, . . . , cn), so f1 = f2 in g(A). Consequently,
g(X) ∈ Ind(g(A),M).

Taking X ∈ Ind(A, A1), we obtain g(f1(p(a1), . . . , p(an))) =
g(f2(p(a1), . . . , p(an))) for every p = f0|X , f0 ∈ T

(1)(A), this means that
f1(g(p(a1)), . . . , g(p(an)))=f1(p(g(a1)), . . . , p(g(an)))=f1(p(b1), . . . , p(bn))
= f2(p(b1), . . . , p(bn)). Therefore g(X) ∈ Ind(g(A), A1).

(d) Let g(A) ⊇ X ∈ Ind(g(A), Q) for Q = A1, S, S0 or G and p ∈ Q ∩ AX .
It is easy to see that p : X → g(A). Moreover, g is an endomorphism,
so 〈X〉A = 〈X〉g(A). Then p possess the extension to a homomorphism
p̄ : 〈X〉A → g(A) ⊆ A, which yields X ∈ Ind(A, Q).

(e) On the contrary, suppose that g(a) = g(b) for some a, b ∈ X. Define two
binary term functions f3(x, y) = g(x) and f4(x, y) = g(y). As g is not a
constant function, we have g(c) 6= g(a) for some c ∈ A. Considering an
injective mapping p1 : {a, b} → A defined by p1(a) = a, p1(b) = c, we
get f3(a, b) = g(a) = g(b) = f4(a, b), but f3(p1(a), p1(b)) = g(p1(a)) =
g(a) 6= g(c) = g(p1(b)) = f4(p1(a), p1(b)), which shows that {a, b} is
not I-independent in algebra A, so it is not M -independent, by (1). In
consequence, X /∈ Ind(A, Q) for Q = M, I.

(f) This follows by the same method as in (e).
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