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Abstract

This is a survey of the results obtained by K. G lazek and his
co-workers. We restrict our attention to the problems of axiomatiza-
tions of n-ary groups, classes of n-ary groups, properties of
skew elements and homomorphisms induced by skew elements,
constructions of covering groups, classifications and representations of
n-ary groups. Some new results are added too.
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1. Introduction

Ternary and n-ary generalizations of algebraic structures are the most
natural ways for further development and deeper understanding of their
fundamental properties. First ternary algebraic operations were intro-
duced already in the XIXth century by A. Cayley. As a development
of Cayley’s ideas they were considered n-ary generalization of matrices
and their determinants and general theory of n-ary algebras [5, 48],
n-group rings [62] and algebras [61]. For some physical applications in
Nambu mechanics, supersymmetry, Yang-Baxter equation, etc. see e.g. [58].
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On the other hand, Hopf algebras and their ternary generalizations play
the basic role in the quantum group theory. On one of the L. Gluskin’s
seminars (in ’60s of the past century) B. Gleichgewicht, a friend of K. G lazek,
had familiarized himself with the theory of n-ary systems. It was him
who brought the idea of researching such structures to Wroc law where at
that time a group of algebraists lead by E. Marczewski was active. Some
time later (in ’70s and ’80s) a group of mathematicians interested in n-ary
systems gathered around the G lazek’s and Gleichgewicht’s algebraic semi-
nar at the Institute of Mathematics of Wroc law University. Constructive
discussions on this seminar resulted later in many articles of such authors
like (in alphabetic order): W.A. Dudek, B. Gleichgewicht, J. Michalski,
I. Sierocki, M.B. Wanke-Jakubowska and M.E. Wanke-Jerie. The first
bibliography of n-groups and some group-like n-ary systems [28] prepared
by K. G lazek in 1983 was based on the work of this seminar.

Below we present a short survey of the results of K. G lazek’s and his
co-workers. We also present few theorems of other authors and add several
new unpublished results. We restrict our attention to the problems of
axiomatizations of n-ary groups, classes of n-ary groups, properties of skew
elements and homomorphisms induced by skew elements, constructions of
covering groups, classifications and representations of n-ary groups.
We finish our survey with results on independent sets of n-ary
groups contained in the article [16], which is probably the last Glazek’s
article.

2. Preliminaries

The non-empty set G together with an n-ary operation f : Gn → G is called
an n-ary groupoid or an n-ary operative and is denoted by (G; f).

According to the general convention used in the theory of such groupoids
the sequence of elements xi, xi+1, . . . , xj is denoted by xj

i . In the case
j < i this symbol is empty. If xi+1 = xi+2 = . . . = xi+t = x, then

instead of xi+t
i+1 we write

(t)
x . In this convention f(x1, . . . , xn) = f(xn

1 ) and

f(x1, . . . , xi, x, . . . , x︸ ︷︷ ︸
t

, xi+t+1, . . . , xn) = f

(
xi

1,
(t)
x , xn

i+t+1

)
.
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If m = k(n− 1) + 1, then the m-ary operation g of the form

g
(
x

k(n−1)+1
1

)
= f(f(...f(f︸ ︷︷ ︸

k

(xn
1 ), x2n−1

n+1 ), ...), x
k(n−1)+1
(k−1)(n−1)+2

)

is denoted by f(k) and is called the long product of f or an m-ary operation
derived from f. In certain situations, when the arity of g does not play a
crucial role, or when it will differ depending on additional assumptions, we
write f(.) , to mean f(k) for some k = 1, 2, ....

An n-ary groupoid (G; f) is called (i, j)-associative or an (i, j)-associative
if

(1) f
(
xi−1

1 , f
(
xn+i−1

i

)
, x2n−1

n+i

)
= f

(
xj−1

1 , f
(
xn+j−1

j

)
, x2n−1

n+j

)

holds for all x1, . . . , x2n−1 ∈ G. If this identity holds for all 1 6 i < j 6 n,
then we say that the operation f is associative and (G; f) is called an n-ary
semigroup or, in the Gluskin’s terminology, an n-ary associative (cf. [41]).
In the binary case (i.e., for n = 2) it is an arbitrary semigroup.

If for all x0, x1, . . . , xn ∈ G and fixed i ∈ {1, . . . , n} there exists an
element z ∈ G such that

(2) f
(
xi−1

1 , z, xn
i+1

)
= x0

then we say that this equation is i-solvable or solvable at the place i. If this
solution is unique, then we say that (2) is uniquely i-solvable.

An n-ary groupoid (G; f) uniquely solvable for all i = 1, . . . , n is called
an n-ary quasigroup. An associative n-ary quasigroup is called an n-ary
group. Note that for n = 2 it is an arbitrary group.

The idea of investigations of such groups seems to be going back to
E. Kasner’s lecture [43] at the fifty-third annual meeting of the American
Association for the Advancement of Science in 1904. But the first paper con-
taining the first important results was written (under inspiration of Emmy
Noether) by W. Dörnte in 1928 (cf. [7]). In this paper Dörnte observed
that any n-ary groupoid (G; f) of the form f(xn

1 ) = x1 ◦ x2 ◦ . . . ◦ xn,
where (G, ◦) is a group, is an n-ary group but for every n > 2 there are
n-ary groups which are not of this form. n-Ary groups of the first form are
called reducible or derived from the group (G, ◦), the second - irreducible.
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Moreover in some n-ary groups there exists an element e (called an n-ary
identity or a neutral element) such that

f

(
(i−1)
e , x,

(n−i)
e

)
= x

holds for all x ∈ G and for all i = 1, . . . , n. It is interesting that n-ary groups
containing neutral element are reducible (cf. [7]). Irreducible n-ary groups
do not contains such elements. On the other hand, there are n-ary groups
with two, three and more neutral elements. The set Zn = {0, 1, . . . , n − 1}
with the operation f(xn+1

1 ) = (x1 + x2 + . . . + xn+1)(modn) is an example
of an n-ary group in which all elements are neutral. The set of all neutral
elements of a given n-ary group (if it is non-empty) forms an n-ary subgroup
(cf. [14] or [26]).

It is worth to note that in the definition of an n-ary group, under the
assumption of the associativity of f , it suffices to postulate the existence
of a solution of (2) at the places i = 1 and i = n or at one place i other
than 1 and n. Then one can prove uniqueness of the solution of (2) for all
i = 1, . . . , n (cf. [49], p. 21317).

On the other hand, Sokolov proved in [54] that in the case of n-ary
quasigroups (i.e., in the case of the existence of a unique solution of (2) for
any place i = 1, . . . , n) it is sufficient to postulate the (j, j + 1)-associativity
for some fixed j = 1, . . . , n−1. Basing on the Sokolov’s method W.A. Dudek,
K. G lazek and B. Gleichgewicht proved in 1997 the following proposition
(for details see [17]).

Proposition 1 (W.A. Dudek, K. G lazek, B. Gleichgewicht, 1997). An n-
ary groupoid (G; f) is an n-ary group if and only if (at least) one of the
following conditions is satisfied:

(a) the (1, 2)-associative law holds and the equation (2) is solvable for
i = n and uniquely solvable for i = 1,

(b) the (n− 1, n)-associative law holds and the equation (2) is solvable for
i = 1 and uniquely solvable for i = n,

(c) the (i, i + 1)-associative law holds for some i ∈ {2, ..., n − 2} and the
equation (2) is uniquely solvable for i and some j > i.
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This result was generalized by W.A. Dudek and I. Groździńska (cf. [18])
and independently by N. Celakoski (cf. [6]) in the following way:

Proposition 2 (N. Celakoski, 1977, W.A. Dudek, I. Groździńska, 1979).
An n-ary semigroup (G; f) is an n-ary group if and only if for some
1 6 k 6 n − 2 and all ak

1 ∈ G there are elements xn−1
k+1 , y

n−1
k+1 ∈ G such

that

f
(
ak

1 , x
n−1
k+1 , b

)
= f

(
b, yn−1

k+1 , a
k
1

)
= b

for all b ∈ G.

The above two propositions and methods used in the proofs gave the impulse
to further study the axiomatics of n-ary groups (cf. [50, 51, 56, 57] and
many others). From different results obtained by various authors we select
one simple characterization proved in [23].

Proposition 3 (A.M. Gal’mak, 1995). An n-ary semigroup (G; f) is an
n-ary group if and only if for some 1 6 i, j 6 n − 1 and all a, b ∈ G there
are x, y ∈ G such that

f

(
x,

(i−1)

b ,
(n−i)
a

)
= f

(
(n−j)
a ,

(j−1)

b , y

)
= b.

Note that in some papers there were investigated so-called infinitary
(n = ∞) semigroups and quasigroups, i.e., groupoids (G; f), where for all
natural i, j the operation f : G∞ → G satisfies the identity

f
(
xi−1

1 , f
(
x∞i

)
, y∞1

)
= f

(
xj−1

1 , f
(
x∞j

)
, y∞1

)

and the equation f(xk−1
1 , zk, x

∞
k+1) = x0 has a unique solution zk at any

place k.

From the general results obtained in [2] and [44] one can deduce that
infinitary groups have only one element. Below we present a simple proof of
this fact.

If (G; f) is an infinitary group, then, according to the definition, for any
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y, z ∈ G and u = f(
(∞)
y ) there exists x ∈ G such that z = f(u, y, x,

(∞)
y ).

Thus

f

(
z,

(∞)
y

)

= f

(
f

(
u, y, x,

(∞)
y

)
,
(∞)
y

)
= f

(
u, y, f

(
x,

(∞)
y

)
,
(∞)
y

)

= f

(
f

(
(∞)
y

)
, y, f

(
x,

(∞)
y

)
,
(∞)
y

)
= f

(
y, f

(
(∞)
y

)
, y, f

(
x,

(∞)
y

)
,
(∞)
y

)

= f

(
y, u, y, f

(
x,

(∞)
y

)
,
(∞)
y

)
= f

(
y, f

(
u, y, x,

(∞)
y

)
,
(∞)
y

)
= f

(
y, z,

(∞)
y

)
,

i.e., for all y, z ∈ G we have

f

(
z,

(∞)
y

)
= f

(
y, z,

(∞)
y

)
.

Using this identity and the fact that for all x, y ∈ G there exists z ∈ G such

that x = f(z,
(∞)
y ), we obtain

f

(
(∞)
x

)
= f

(
x, f

(
z,

(∞)
y

)
,
(∞)
x

)
= f

(
x, f

(
y, z,

(∞)
y

)
,
(∞)
x

)

= f

(
x, y, f

(
z,

(∞)
y

)
,
(∞)
x

)
= f

(
x, y,

(∞)
x

)
,

which, by the uniqueness of the solution at the second place, implies x = y.
So, G has only one element.

To avoid repetitions in the sequel we consider only the case when n is
a natural number higher than 2, but a part of our results is also true for
n = 2.
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3. Varieties of n-ary groups

Directly from the definition of an n-ary group (G; f) we can see that for
every x ∈ G there exists only one z ∈ G satisfying the equation

(3) f

(
(n−1)
x , z

)
= x.

This element is called skew to x and is denoted by x. In a ternary group
(n = 3) derived from the binary group (G, ◦) the skew element coincides
with the inverse element in (G, ◦). Thus, in some sense, the skew element is
a generalization of the inverse element in binary groups. This suggests that
for n > 3 any n-ary group (G; f) can be considered as an algebra (G; f,¯ )
with two operations: one n-ary f : Gn → G and one unary ¯: x→ x.

In ternary groups, as it was proved by W. Dörnte (cf. [7]), we have
f(x, y, z) = f(z, y, x) and x = x, but for n > 3 it is not true. For n > 3
there are n-ary groups in which one fixed element is skew to all elements
(cf. [12]) and n-ary groups in which any element is skew to itself. Then, of

course, f(
(n)
x ) = x for every x ∈ G. Such n-ary groups are called idempotent.

Nevertheless, the concept of skew elements plays a crucial role in the
theory of n-ary groups. Namely, as W. Dörnte proved, in any n-ary group
(G; f) for all x, y ∈ G, 2 6 i, j 6 n and 1 6 k 6 n we have

f

(
(i−2)
x , x,

(n−i)
x , y

)
= y,(4)

f

(
y,

(n−j)
x , x,

(j−2)
x

)
= y.(5)

These two identities, called now Dörnte’s identities, are used by many au-
thors in description of a class of n-ary groups.

Theorem 4 (B. Gleichgewicht, K. G lazek, 1967). An algebra (G; f,¯) with
one associative n-ary (n > 2) operation f and one unary operation ¯ : x 7→ x
is an n-ary group if and only if the conditions (4) and (5) are satisfied for
all x, y ∈ G and i = j = 2, 3.
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It is the first important characterization of the variety of n-ary groups. For
example, basing on this theorem it is not difficult to see that the function

h (x, y, z) = f

(
x, y,

(n−3)
x , z

)

is the so-called Mal’cev operation. So, the class of all n-groups (for any fixed
n > 2) is a Mal’cev variety, all congruences of a given n-ary group commutes
and the lattice of all congruences of a fixed n-ary group is modular. More-
over, the generalized Zassenhaus Lemma and the generalized Schreier and
Hölder-Jordan Theorems hold in any n-ary group (cf. [32]). Schreier vari-
eties of n-ary groups are described by V. A. Artamonov (see [1]).

Unfortunately, the above system of identities defining the variety of n-
ary groups is not independent. The first independent system of identities
selecting the variety of n-ary groups from the variety of n-ary semigroups
was given by K. G lazek and his coauthors ten years later (cf. [17]). Below
we present the minimal system of identities defining this variety. It is the
main result of [9].

Theorem 5 (W.A. Dudek, 1980). The class of n-ary groups coincides with
the variety of n-ary groupoids (G; f,̄ ) with an unary operation ¯: x→ x for
some fixed i, j ∈ {2, . . . , n} satisfying the identities (4), (5) and the identity

f
(
f(xn

1 ), x2n−1
n+1

)
= f

(
x1, f(xn+1

2 ), x2n−1
n+2

)
.

Theorem 5 is valid for n > 2, but this theorem can be extended to the case
n = 2. Namely, let̂: x→ x̂ be an unary operation, where x̂ is a solution of
the equation

f(2)

(
(2n−2)
x , x̂

)
= x.

Then using the same method as in the proof of Theorem 2 in [17] we can
prove the following result announced in [9].

Theorem 6 (W.A. Dudek, 1980). The class of n-ary (n > 2) groups
coincides with the variety of algebras (G; f,̂ ) with one associative n-ary
operation f and one unary operation ̂ : x → x̂ satisfying for some fixed
i, j ∈ {2, . . . , n} the following identities

f(2)

(
y,

(i−2)
x , x̂,

(2n−i−1)
x

)
= y = f(2)

(
(2n−1−j)

x , x̂,
(j−2)
x , y

)
.
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Other systems of identities defining the variety of n-ary groups one can find
in [13] and [57].

4. Skew elements

An n-ary power of x in an n-ary group (G; f) is defined in the following way:

x<0> = x and x<k+1> = f(
(n−1)
x , x<k>) for all k > 0. x<−k> is an element

z such that f(x<k−1>,
(n−2)
x , z) = x<0> = x. Then x = x<−1>, x = x<n−3>

and

(6) f
(
x<k1>, . . . , x<kn>

)
= x<k1+...+kn+1>

(7)
(
x<k>

)<t>

= x<kt(n−1)+k+t>.

Now, putting x(0) = x and denoting by x(s+1) the skew element to x(s),
we obtain the sequence of elements: x, x(1), x(2), x(3), x(4) and so on. In a
4-ary group derived from the additive group Z8 we have x ≡ 6x(mod 8),
x ≡ 4x(mod 8) and x(s) = 0 for every s > 2, but in an n-ary group derived
from the additive group of integers x(s) 6= x(t) for all s 6= t. Any subgroup
containing x contains also x and all x(s). The order of the smallest subgroup
containing x is called the n-ary order of x and is denoted by ordn(x). It is
the smallest positive integer k such that x<k> = x (cf. [49]). Obviously

ordn(x) > ordn

(
x
)

> ordn

(
x(2)

)
> ordn

(
x(3)

)
> . . .

In fact ordn(x) is a divisor of ordn(x).

In connection with this K. G lazek posed in 1978 the following question:

Question 1. When ordn(x) = ordn(x) ?

The first partial answer was given in [59]: If an n-ary group (G; f) has a
finite order relatively prime to n− 2, then ordn(x) = ordn(x) for all x ∈ G.
The full answer was found two years later (cf. [8]): in the case when ordn(x)
is finite, ordn(x) = ordn(x) if and only if ordn(x) and n − 2 are relatively
prime.
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Examples of infinite n-ary groups in which all elements have the same n-
ary order k > 1 are given in [10]. Such groups are a set-theoretic union of
disjoint isomorphic subgroups of order k. The skew element is idempotent,
i.e., ordn(x) = 1, if and only if ordn(x) is a divisor of n − 2 (cf. [8]). If an
n-ary group has a finite order g and every prime divisor of g is a divisor of
n− 2, then for every element x of this group there exists a natural number
t such that ordn(x(t)) = 1.

Theorem 7 (I.M. Dudek, W.A. Dudek, 1981). Let ordn(x) = pβ1

1 p
β2

2 . . . pβm

m ,
where p1, p2 . . . , pm are primes. Then limt→∞ ordn(x(t)) = 1 or limt→∞

ordn(x(t)) = pβ1

1 p
α2

2 . . . pαk

k , where primes p1, p2 . . . , pk, k 6 m, are not
divisors of n− 2.

In [10] it is proved that x(m) = x<Sm>, where Sm = (2−n)m−1
n−1 . So, x(m) = x

if and only if ordn(x) divides Sm. The natural question is: for which n-
ary groups there exists fixed m ∈ N such that x(m) = y(m) for all x, y ∈ G
(cf. [11]). For m = 1 the full answer is given in [12]. For m > 1 we have
only a partial answer. Namely, an n-ary group (G; f) in which x(m) = y(m)

holds for all x, y ∈ G is torsion free and its exponent is a divisor of S2
m −Sm

(cf. [53]).
An n-ary group is said to be semiabelian if it satisfies the identity

f
(
xn

1

)
= f

(
xn, x

n−1
2 , x1

)
.

The class of all semiabelian n-ary groups coincides with the class of medial
(entropic) n-ary groups, i.e., n-ary groups satisfying the identity

f
(
f
(
x1n

11

)
, f
(
x2n

21

)
, . . . , f

(
xnn

n1

))
= f

(
f
(
xn1

11

)
, f
(
xn2

12

)
, . . . , f

(
xnn

1n

))
.

This means that the matrix [xij]n×n can be read by rows or by columns.
Some authors use also the term abelian instead of semiabelian and con-

sider such n-ary groups as a special case of the so-called abelian (com-
mutative) general algebras. This implies that every n-ary subgroup of a
semiabelian n-ary group is a block of some congruence of this group and the
lattice of all n-ary subgroups of this group is modular.

An n-ary group (G; f) is semiabelian if and only if there exists an
element a ∈ G such that

f

(
x,

(n−2)
a , y

)
= f

(
y,

(n−2)
a , x

)
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for all x, y ∈ G (cf. [9]). This means that for n = 2, a semiabelian n-
ary (i.e., binary) group is commutative. For n > 2 a commutative n-ary
group is defined as a group in which f(xn

1 ) = f(xσ(1), xσ(2), . . . , xσ(n)) for
any permutation σ of {1, 2, . . . , n}. The class of commutative n-ary groups
is described by J. Timm (cf. [55]).

K. G lazek and B. Gleichgewicht observed in [32] that in any semiabelian
n-ary group we have

(8) f(xn
1 ) = f(x1, x2, . . . , xn),

which means that in these n-groups the operation ¯: x→ x is an endomor-
phism. Also hs(x) = x(s) is an endomorphism. The converse is not true.
So, in semiabelian n-ary groups

G(s) = {x(s)|x ∈ G}

is an n-ary subgroup for every natural s. (It is an n-ary subgroup in any n-
ary group satisfying (8), not necessary semiabelian.) Obviously G ⊃ G(1) ⊃
G(2) . . . It is clear that for any finite n-ary group (G; f) there exists t ∈ N

such that G(s) = G(t) for s > t. On the other hand, an n-ary group derived
from the additive group of integers is a simple example of n-ary group in
which G(s) 6= G(t) for all s 6= t (G(s) contains all integers divided by (n−2)s.
The question (Problem 5 in [11]) on the characterization of classes of n-ary
groups satisfying the descending chain condition for G(s) is open.

Note that in some n-ary groups (G; f) the operation ¯: x→ x induces a
cyclic subgroup in the group of all automorphisms of (G; f) (cf. [11]). More-
over this subgroup is invariant in the group Aut(G; f) and in the group of
all splitting-automorphisms in the sense of P lonka (cf. [47]), i.e., automor-
phisms satisfying the identity h(f(xn

1 )) = f(xi−1
1 , h(xi), x

n
i+1).

The natural question is:

Question 2. When the operation ¯: x→ x is an endomorphism?

The first answer was given in [14]:

Proposition 8 (W.A. Dudek, 2001). The operation ¯: x → x is an endo-
morphism of an n-ary group (G; f) if and only if there exists an element
a ∈ G such that
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(i) f(x, a, . . . , a, y) = f(x, a, . . . , a, y),

(ii) f(a, x, a, . . . , a) = f(a, x, a, . . . , a),

(iii) f(a, a, . . . , a) = f(a, a, . . . , a)

for all x, y ∈ G.

The last condition can be omitted. Indeed, using (6), (7) and the fact that
a = a<−1> and a = a<n−3> for every a ∈ G, it is not difficult to see that
the left and right side of (iii) are equal to a<n2−3n+1>. So, (iii) is valid in
any n-ary group.

Corollary 9. The operation ¯ : x → x is an endomorphism of an n-ary
group (G; f) if and only if the equations

(i) f(x, a, . . . , a, y) = f(x, a, . . . , a, y),

(ii) f(a, x, a, . . . , a) = f(a, x, a, . . . , a),

hold for all x, y ∈ G and some fixed a ∈ G.

Another answer is given in [53] and [52]:

Proposition 10 (F.M. Sokhatsky, 2003). The operation ¯ : x → x is an
endomorphism of an n-ary group (G; f) if and only if the following two
identities are satisfied:

f
( (n−1)

u , f
( (n−2)

x , u, u
))

= f
(
f
( (n−2)

x , u, u
)
,
(n−1)
u

)
,

f
(
f
(
x,

(n−2)
u , y

)
, . . . , f

(
x,

(n−2)
u , y

)
, u, u

)
=

= f
( (n−2)

y , f
(
u, f

(
x,

(n−1)
u

)
, . . . , f

(
x,

(n−1)
u

)
, x, u

)
, u
)
.
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Theorem 11 (N.A. Shchuchkin, 2006). For odd k, the operation (k) : x→
x(k) is an endomorphism of an n-ary group (G; f) if and only if the identity:

f(n−1)

(
x1,

((n−2)k)
x2 ,

((n−2)k)
x3 , . . . ,

((n−2)k)
xn+1 , xn+2

)
=

= f(x1, f(xn+1, xn,..., x2), . . . , f(xn+1, xn,..., x2)︸ ︷︷ ︸
(n−2)k times

, xn+2).

is satisfied.

Theorem 12 (N.A. Shchuchkin, 2006). For even k, the operation (k) :
x → x(k) is an endomorphism of an n-ary group (G; f) if and only if the
identity:

f(·)(f(xn
1 ), . . . , f(xn

1 )︸ ︷︷ ︸
(n−2)k

) = f(·)

(
((n−2)k)
x1 ,

((n−2)k)
x2 , . . . ,

((n−2)k)
xn

)

is satisfied.

5. Hosszú-Gluskin algebras

Let (G; f) be an n-ary group. Fixing in f(xn
1 ) some k < n elements we

obtain a new (n− k)-ary operation which in general is not associative. It is
associative only in the case when these fixed elements are located in some
special places (cf. [19]).

Binary operations of the form x ∗ y = f(x, an−1
2 , y), where elements

a2, . . . , an−1 ∈ G are fixed play a very important role. It is not difficult to
see that (G; ∗) is a group. Fixing different elements a2, . . . , an−1 we obtain
different groups. Since all these groups are isomorphic (cf. [19]) we can

consider only one group (G, ◦), where x ◦ y = f(x,
(n−2)
a , y). This group is

denoted by reta(G; f) and is called a binary retract of (G; f). The identity
of this group is a. The inverse element to x has the form

x−1 = f

(
a,

(n−3)
x , x, a

)
.
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An n-ary group (G; f) is semiabelian only in the case when its binary retract
reta(G; f) is commutative.

The strong connection between n-ary groups and their binary retracts
was observed for the first time in 1963 by M. Hosszú (cf. [42]). He proved
the following theorem:

Theorem 13. An n-ary groupoid (G; f), n > 2, is an n-ary group if and
only if

(i) on G one can define a binary operation · such that (G; ·) is a group,

(ii) there exist an automorphism ϕ of (G; ·) and b ∈ G such that ϕ(b) = b,

(iii) ϕn−1(x) = b · x · b−1 holds for every x ∈ G,

(iv) f(xn
1 ) = x1·ϕ(x2)·ϕ2(x3)·ϕ3(x4)·. . .·ϕ(xn)n−1·b for all x1, . . . , xn ∈ G.

Two years later, this theorem was proved by L. M. Gluskin in more general
form (cf. [41]). Now this theorem is known as the Hosszú-Gluskin Theorem.
Some important generalization of this theorem one can find in [19, 54]
and [57].

The algebra (G; ·, ϕ, b) of the type (2, 1, 0), where (G; ·) is a (binary)
group, b ∈ G is fixed, ϕ ∈ Aut(G; ·), ϕ(b) = b and ϕn−1(x) = b · x · b−1 for
every x ∈ G is called a Hosszú-Gluskin algebra (briefly: an HG-algebra). We
say that an HG-algebra (G; ·, ϕ, b) is associated with an n-ary group (G; f) if
the the last condition of Theorem 13 is satisfied. In this case we also say that
an n-ary group (G; f) is 〈ϕ, b〉-derived from the group (G; ·). If ϕ(x) = x for
every x ∈ G we say that (G; f) is b-derived from (G; ·). The systematical
study of connections between n-ary groups b-derived from given binary group
was initiated by K. G lazek and J. Michalski in [34] and continued by
J. Michalski, W.A. Dudek, M. Pop and many others. Connections between
(G; f) and n-ary groups 〈ϕ, b〉-derived from reta(G; f) are described by
W.A. Dudek and J. Michalski in [19, 20, 21]. All commutative n-ary groups
are b-derived from some of their retracts (cf. [55]).

Let G = (G; f,̄ ) be a semiabelian n-ary group. Then the HG-algebra
associated with G has a commutative group operation denoted by +.

Let H = (G; +, ϕ, b) be associated with G and Ga = (G; f,̄ , a). Then H

and Ga are term equivalent (cf. [16]) and
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−y = f

(
a,

(n−3)
y , y, a

)
,

x+ y = f

(
x,

(n−3)

(−y), (−y), a

)
,

ϕ(x) = f

(
a, x,

(n−2)
a

)
,

and b = f

(
(n)

a

)
.

To describe all term operations of Ga by using the language of HG-algebras
we denote by gi the following operation

(9) gi(x) = ki1ϕ
li1(x) + ki2ϕ

li2(x) + . . . + kitϕ
lit(x),

where t, li1, . . . , lit are non-negative integers and ki1, . . . , kit ∈ Z.

Theorem 14 (W.A. Dudek, K. G lazek, 2006). Let H = (G; +, ϕ, b) be the
HG-algebra associated with a semiabelian n-ary group G. Then all unary
term operations of H (and of Ga ) are of the form

g(x) = gi(x) + kgb

for some gi of the form (9) and kg ∈ Z.

Theorem 15 (W.A. Dudek, K. G lazek, 2006). Let H = (G; +, ϕ, b) be the
HG-algebra associated with a semiabelian n-ary group G. Then all m-ary
term operations of H (and of Ga ) are of the form

(10) F (x1, . . . , xm) =

m∑

i=1

gi(xi) + kF b

for some gi of the form (9) and kF ∈ Z.

The Hosszú-Gluskin Theorem was used by K. G lazek and his co-workers to
calculation of n-ary groups of some special types. For example, in [33] K.
G lazek and B. Gleichgewicht calculated all ternary semigroups and groups
for which their ternary operation f is a ternary polynomial over an infinite
commutative integral domain with identity. In the case when f is a ternary
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polynomial over an infinite commutative field K the operation f has the
form f(x, y, z) = x + y + z + d or f(x, y, z) = axyz, where a 6= 0 and d are
fixed. In the first case (K, f) is a ternary group, in the second (K −{0}, f).

Theorem 16 (K. G lazek, J. Michalski, 1984). Let m be odd and let (G; f)
be an n-ary group. Then the operation f has the form

f(xn
1 ) = x1 · x−1

2 · x3 · . . . · x−1
n−1 · xn,

where (G; ·) is an abelian group, if and only if f is idempotent and

f
(
xi

1, y, y, x
n
i+3

)
= f

(
xi

1, z, z, x
n
i+3

)

for all 0 6 i 6 n− 2. In this case (G; ·) = reta(G; f) for some a ∈ G.

Theorem 17 (K. G lazek, J. Michalski, 1984). Let (G; ·) be a group and let
t1, . . . , tn be fixed integers. Then G with the operation

f(xm
1 ) = (x1)t1 · (x2)t2 · . . . · (xn−1)tn−1 · (xn)tn ,

is an n-ary group if and only if

(1) xt1 = x = xtn ,

(2) tj = kj for some integer k and all j = 2, . . . , n− 1,

(3) (x · y)k = xk · yk.

In this case we say that (G; f) is derived from the k-exponential group.
Basing on the results obtained in [20] one can prove

Proposition 18 (W.A. Dudek, K. G lazek, 2006). An n-ary group (G; f)
is derived from the k-exponential (k > 0) group (G; ·) if and only if in (G; f)
there exists an idempotent a such that

f(k)

(
(n−2)
a , x,

(n−2)
a , x, . . . ,

(n−2)
a , x, a

)
= x

for all x ∈ G. In this case (G; ·) = reta(G; f).
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The following theorem proved in [19] plays the fundamental role in the
calculation of non-isomorphic n-ary groups.

Theorem 19 (W.A. Dudek, J. Michalski, 1984). Two n-ary groups (G1, f1),
(G2, f2) are isomorphic if and only if for some a ∈ G1 and b ∈ G2 there
exists an isomorphism h : reta(G1, f1) → retb(G2, f2) such that

h(a) = b,

h
(
f1(a, . . . , a)

)
= f2

(
b, . . . , b

)
,

h

(
f1

(
a, x,

(n−2)
a

))
= f2

(
b, h(x),

(n−2)

b

)
.

This theorem reduces the problem of the calculation of non-isomorphic n-
ary groups to the classification of their binary retracts. As an illustration of
results obtained by K. G lazek and his co-workers we present the complete
list of n-ary groups 〈ϕ, b〉-derived from cyclic groups.

Let (Zk,+) by the cyclic group modulo k. Consider the following three
n-ary operations:

fa(xn
1 ) ≡ (x1 + . . . + xn + a) (mod k),

gd(xn
1 ) ≡ (x1 + dx2 + . . . + dn−2xn−1 + xn) (mod k),

gd,c(x
n
1 ) ≡ (x1 + dx2 + . . . + dn−2xn−1 + xn + c) (mod k),

where a ∈ Zk, c, d ∈ Zk \ {0, 1}, dn−1 ≡ 1 (mod k). Additionally, for
the operation gd,c we assume that dc ≡ c (mod k) holds. By Theorem 13,
(Zk, fa), (Zk, gd) and (Zk, gd,c) are n-ary groups.

Theorem 20 (K. G lazek, J. Michalski, I. Sierocki, 1984). A k-element
n-ary group (G; f) is 〈ϕ, b〉-derived from the cyclic group of order k if and
only if it is isomorphic to exactly one n-ary group of the form (Zk, fa),
(Zk, gd) or (Zk, gd,c), where d|gcd(k, n − 1) and c|k.

An infinite cyclic group can be identified with the group (Z,+). This group
has only two automorphisms: ϕ(x) = x and ϕ(x) = −x. So, according to
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Theorem 13, n-ary groups defined on Z have the form (Z, fa) or (Z, g−1),
where

g−1(xn
1 ) = x1 − x2 + x3 − x4 + . . . + xn,

and n is odd. Since n-ary groups (Z, fa) and (Z, fb) are isomorphic for
a ≡ b (mod (n−1)), we have n−1 non-isomorphic n-ary groups of this form.
Isomorphisms have the form ϕk(x) = x− k.

So, we have proved

Theorem 21 (W.A. Dudek, K. G lazek, 2006). An n-ary group
〈ϕ, b〉-derived from the infinite cyclic group (Z,+) is isomorphic to n-ary
group (Z, fa), where 0 6 a 6 (n− 2), or with (Z, g−1), where n is odd.

A very similar result, but in incorrect form, was firstly formulated in [38].

Denote by Inn (G; ·) the group of all inner automorphisms of (G; ·), by
Out (G; ·) the factor group of Aut (G; ·) by Inn (G; ·), and by Outn (G; ·)
the set of all cosets γ ∈ Out (G; ·) containing γ such that γn−1 ∈ Inn (G; ·).
Then, the number of pairwise non-isomorphic n-ary groups 〈ϕ, b〉-derived
from a centerless group (G; ·), i.e., a group for which |Cent (G; ·) | = 1, is
smallest or equal to s =| Outn (G; ·) |. It is equal to s if and only if Out (G; ·)
is abelian (for details see [38]).

For every n and k 6= 2, 6, there exists exactly one n-ary group which is
〈ϕ, b〉-derived from Sk (for k = 2 and k = 6 we have one or two such n-ary
groups relatively to evenness of n).

Any finite group is uniquely determined by its multiplication table which
in fact is a Latin square. In the case of n-ary groups the role of multipli-
cation tables play n-dimensional cubes. So, the problem of enumeration
of all finite n-ary groups can be reduced to the problem of enumeration
of the corresponding cubes. But it is rather difficult problem. The better
approach was suggested by K. G lazek and J. Michalski. They proposed a
method based on the Hosszú-Gluskin Theorem and our Theorem 19, i.e.,
the calculation of all non-isomorphic n-ary groups by the classification of
their retracts and automorphisms of these retracts. Using this method they
obtain in [35, 36, 37] a full classification of all non-isomorphic n-ary groups
on sets with at most 7 elements. The complete list of such n-groups (with
some comments) one can find in [16].
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6. Covering group

A binary group (G∗, ◦) is said to be a covering group for the n-ary group
(G; f) if there exists an embedding τ : G→ G∗ such that τ(G) is a generating
set of G∗ and τ(f(xn

1 )) = τ(x1) ◦ τ(x2) ◦ . . . ◦ τ(xn) for every x1, . . . , xn ∈ G.
(G∗, ◦) is a universal covering group (or a free covering group) if for any
covering group (G•, �) there exists a homomorphism from G∗ onto G• such
that the following diagram is commutative:

G
↙ 	 ↘

G∗ −− → G•

onto

E.L. Post proved in [49] that for every n-ary group (G; f) there exist a
covering group (G∗, ◦) and its normal subgroup G0 such that G∗/G0 is a
cyclic group of order n−1 and f(xn

1 ) = x1◦x2◦. . .◦xn for all x1, . . . , xn ∈ G,
where G is identified with the generator of the group G∗/G0. So, the theory
of n-ary groups is closely related to the theory of cyclic extensions of groups,
but these theories are not equivalent.

Indeed, the above Post’s theorem shows that for any n-ary group (G; f)
we have the sequence

O −→ (G0, ◦) −→ (G∗, ◦)
ζ−→ (Zn,+n) −→ O,

where (G∗, ◦) is the free covering group of (G; f) and G = ζ−1(1). We have
also

(G∗
1, ◦)

↗ ↑ ↘
(G0, ◦) � | 	� (Zn,+n)

↘ ↓ ↗
(G∗

2, ◦)

where we use
� for the equivalence of extensions,

	 for the isomorphism of suitable n-ary groups.

Of course, two n-ary groups determined in the above-mentioned sense by two
equivalent cyclic extensions are isomorphic. However, as observed K. G lazek,
two non-equivalent cyclic extensions can determine two isomorphic n-ary
groups. Below we give an example of two non-equivalent cyclic extensions
induced by two isomorphic 4-ary groups.
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Example 1 (W.A. Dudek, K. G lazek, 2006). Consider two cyclic
extensions of the cyclic group Z3 by Z3:

0 −→ Z3
α−→ Z9

β1−→ Z3 −→ 0

and
0 −→ Z3

α−→ Z9
β2−→ Z3 −→ 0,

where the homomorphisms α, β1 and β2 are given by:

α(x) = 3x for x ∈ Z3,

β1(x) = x(mod 3) for x ∈ Z9,

β2(x) = 2x(mod 3) for x ∈ Z9.

It is easy to verify that the sets β−1
1 (1) = {1, 4, 7} and β−1

1 (1) = {2, 5, 8} with
the operation g(x, y, z, v) = (x+y+z+v)(mod 9) are 4-ary groups. These 4-
ary groups are isomorphic. The isomorphism ϕ : (β−1

1 (1), g) −→ (β−1
2 (1), g)

has the form ϕ(x) = 2x(mod 9). Nevertheless, the above-mentioned exten-
sions are not equivalent because there is no automorphism λ of Z9 such that
λ ◦ α = α and β2 ◦ λ = β1.

The Post’s construction of a covering group for given n-ary group (G; f)
is based on the following equivalence relation defined on the set of all finite
sequences of elements of G:

xk
1 ∼ ym

1 ⇐⇒ f(·)

(
zs
1, x

k
1 , u

t
1

)
= f(·)

(
zs
1, y

m
1 , u

t
1

)

for some zs
1, u

t
1 ∈ G. Since k ≡ m(mod(n− 1)), each sequence is equivalent

with some sequence of the length i = 1, 2, . . . , n − 1. Defining on the set
G∗ of such obtained equivalence classes the operation [xi

1] ∗ [yj
1] = [xi

1y
j
1] we

obtain a covering group of (G; f) (for details see [49]).
Basing on this method K. G lazek and B. Gleichgewicht proposed in [31]

(see also [27]) other more simple construction of a covering group for ternary
group. Namely, for a ternary group (G; f) they consider the set G2∪G with
the operation

x ◦ y = 〈x, y〉

x ◦ 〈y, z〉 = f(x, y, z)

〈x, y〉 ◦ z = f(x, y, z)

〈x, y〉 ◦ 〈z, u〉 = 〈f(x, y, z), u〉



Remarks to G lazek’s results on n-ary groups 219

and the relation ∼ defined as follows:

x ∼ y⇐⇒ x = y

〈x, y〉 ∼ 〈x′, y′〉 ⇐⇒ (∃a, b ∈ G) (f(x′, a, b) = x ∧ f(a, b, y) = y).

Then ∼ is a congruence on the algebra (G2 ∪ G, ◦) and (G2 ∪ G/ ∼, ◦̃),
where ◦̃ is the operation induced by ◦, is a universal covering group for
(G; f). Obviously this construction can be extended to an arbitrary n-ary
group, but, as it was observed by W.A. Dudek at the G lazek’s seminar in
1977, for n > 3 this construction coincides with the Post’s construction.
Nevertheless this construction gives the impulse to the nice construction
presented by J. Michalski (cf. [45]).

Theorem 22 (J. Michalski, 1981). Let c ba an arbitrary fixed element of
an n-ary group (G; f). Then the set G× Zn−1 with the operation

〈x, s〉 ∗ 〈y, t〉 =

〈
f

(
x,

(s)
c , y,

(t)
c , c,

(n−1−s�t)
c

)
, s � t

〉
,

where s�t = (s+t+1)(mod(n−1)), is a universal covering group for (G; f).

It is clear that G×{n− 2} is a normal subgroup of G×Zn−1. The set of all
classes (in the Post’s construction) induced by the sequences of the length
i + 1 can be identified with G × {i}. So, the set G can be identified with
G × {0}, i.e., τ(G) is a coset of G × Zn−1 modulo G × {n − 1}. Since for
τ(x) = 〈x, 0〉 we have τ(f(xn

1 )) = τ(x1) ∗ τ(x2) ∗ . . . ∗ τ(xn), an n-ary group
(G; f) can be identified with an n-ary group derived from G× {0}.

In [19] (see also [20]) it is proved that for every c ∈ G the groups
retc(G; f) and G× {n− 1} are isomorphic.

7. Representations

Let (G; g,˜) be a general algebra with one n-ary operation g and one unary
operation ˜ : G → G. If ψ,ϕ1, . . . , ϕn : G → H are homomorphism of
(G; g,̃ ) into a semiabelian n-ary group (H; f,̄ ), then, as it was observed by
K. G lazek and B. Gleichgewicht in [32], the mapping

f̂(ϕ1, . . . , ϕn) : G→ H
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defined by
f̂(ϕ1, . . . , ϕn)(x) = f(ϕ1(x), . . . , ϕn(x))

and the mapping ψ̂ : G→ H defined by

ψ̂(x) = ψ(x)

are also homomorphisms of (G; g,˜ ) into (H; f,¯ ). Moreover, the algebra
(F ; f̂ ,̂ ) of all homomorphisms of (G; g,˜ ) into (H; f,¯ ) belongs to the
same variety as the algebra (H; f,¯ ), so it is semiabelian too. The set of
all endomorphisms of a semiabelian n-ary group forms an (n, 2)-nearring
(E; f̂ , ◦) with unity, where ◦ is the superposition of endomorphisms.

Recall that an abstract algebra (E; f, ·) is an (n, 2)-nearring if (E; f) is
an n-ary group, (E; ·) is a binary semigroup and the following two identities

y · f(xn
1 ) = f(y · x1, y · x2, . . . , y · xn),

f(xn
1 ) · y = f(x1 · y, x2 · y, . . . , xn · y)

hold. In the case when (E; f) is a commutative n-ary group an (n, 2)-
nearring is called an (n, 2)-ring. Every (n, 2)-ring (E; f, ·) with a cancellable
element (with respect to the multiplication · ) is isomorphic to an (n, 2)-ring
of some endomorphisms of the n-ary group (E; f) (cf. [32]).

Further study of homomorphisms of n-ary groups was continued by
A.M. Gal’mak (cf. for example [22, 24, 25]). Most of his results are based
on the G lazek’s observation (cf. [29] or [30]) that every weak homomorphism
between commutative n-ary groups is an ordinary homomorphism and the
following Post’s construction of polyadic substitutions.

As it is well known an ordinary substitution, finite or infinite, is a one-
to-one map from the set A onto A. Let A1, A2, . . . , An−1 be a finite sequence
of sets of the same cardinality. The sequence σ = (σ1, σ2, . . . , σn−1) of maps

σ1 : A1 → A2, σ2 : A2 → A3, . . . , σn−1 : An−1 → A1

is called a n-ary substitution. The superposition of two n-ary substitutions
is the sequence τ = (τ1, τ2, . . . , τn−1) of maps

τ1 : A1 → A3, τ2 : A2 → A4, . . . , τn−2 : An−2 → A1, τn−1 : An−1 → A2.

The set of n-ary substitutions is closed with respect to the superposition
of n such substitutions. In fact it is an n-ary group with respect to this
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operation. Moreover, each n-ary group is isomorphic to the n-ary group of
substitutions of some set A (cf. [49]). Each n-ary group is isomorphic to
the n-ary group of some translations too [22].

Let now (A; f) be an n-ary group. The Cartesian product An−1 en-
dowed with the n-ary operation g defined as the skew product in the matrix
[aij ]n×(n−1), i.e.,

g((a11, a12, . . . , a1 n−1), (a21, a22, . . . , a2 n−1), . . . , (an1, an2, . . . , an n−1))

=(f(a11, a22, a33, . . . , an−1 n−1, an1), f(a12, a23, a34, . . . , an−2 n−1, an−1 1, an2),

. . . , f(a1 n−1, a21, a32, . . . , an−1 n−2ann−1)),

is an n-ary group (cf. [49]) which is called diagonal. The diagonal n-ary
group of invertible linear transformations of a complex vector space is used in
[40] to the description of one-dimensional representations of cyclic n-groups.
The invariant subspaces of a representation ρ, sequences of ρ-invariant sub-
spaces, the covering representation ρ̂ and the relations between ρ and ρ̂ are
discussed in [60].

Matrix representations of ternary groups are described in [4] (see also
[3]). In these representations each matrix is determined by two elements.
Below we present the general concept of such representations.

Let V be a complex vector space and EndV denotes a set of C−linear
endomorphisms of V .

Definition 23. A left bi-element representation of an n-ary group (G; f) in
a vector space V is a map ΠL : Gn−1 → EndV such that

ΠL
(
an−1

1

)
◦ ΠL

(
bn−1
1

)
= ΠL

(
f
(
an−1

1 , b1

)
, bn−1

2

)
,(11)

ΠL

(
(n−2)
a , a

)
= idV(12)

for all a, a1, . . . , an−1, b1, . . . , bn−1 ∈ G.

Note that the axioms considered in the above definition are the natural ones
satisfied by left multiplications x 7→ f(an−1

1 , x).
Using (12) and the associativity of the operation f it is not difficult to

see that

ΠL
(
f
(
an−1

1

)
, a2n−2

n

)
= ΠL

(
ai

1, f
(
an+i−1

i+1

)
, a2n−2

n+i

)
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for all a1, . . . , a2n−2 ∈ G and i = 1, 2, . . . , n − 1. Moreover, from (12), by
(5), we have also

ΠL

(
(j−1)
a , a,

(n−j−1)
a

)
= idV

for all a ∈ G and j = 1, 2, . . . , n− 1.

Lemma 24. A left bi-element representation of an n-ary group is uniquely
determined by two elements.

Proof. According to the definition of an n-ary group for every a, a1,
. . . , an−1, b ∈ G there exists c ∈ G such that

f
(
an−1

1 , a
)

= f

(
(n−2)

b , c, a

)
.

So,

ΠL
(
an−1

1

)
= ΠL

(
an−1

1

)
◦ ΠL

(
(n−2)
a , a

)
= ΠL

(
f
(
an−1

1 , a
)
,
(n−3)
a , a

)

= ΠL

(
f

(
(n−2)

b , c, a

)
,
(n−3)
a , a

)
= ΠL

(
(n−2)

b , c

)
◦ ΠL

(
(n−2)
a , a

)

= ΠL

(
(n−2)

b , c

)
,

which completes the proof.

Corollary 25. ΠL
(
an−1

1

)
=ΠL

(
bn−1
1

)
⇐⇒f

(
an−1

1 , a
)

=f
(
bn−1
1 , a

)
∀a ∈ G.

Proposition 26. Let (G; f) be an n-ary group derived from a binary group
(G;�). There is one-to-one correspondence between representations of (G;�)
and left bi-element representations of (G; f).

Proof. Because (G; f) is derived from (G;�), then

x� y = f

(
x,

(n−2)
e , y

)
and e = e,
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where e is the identity of (G;�). If π is a representation of (G;�), then
(as it is not difficult to see)

(13) ΠL
(
xn−1

1

)
= π(x1) ◦ π(x2) ◦ . . . ◦ π(xn−1)

is a left bi-element representation of (G; f). Conversely, if ΠL is a left
bi-element representation of (G; f), then

π(x) = ΠL

(
(n−2)
e , x

)

is a representation of (G;�) and (13) is satisfied.

Proposition 27. Any left bi-element representations of an n-ary group
(G; f) induces a representation of its retract.

Proof. Let (G;�) = reta(G; f) for some fixed a ∈ G. According
to Lemma 24, for all a1, . . . , an−1 ∈ G there exists c ∈ G such that

ΠL
(
an−1

1

)
= ΠL

(
(n−2)
a , c

)
= π(c).

Then π(a) = idV and

π(x) ◦ π(y) = ΠL

(
(n−2)
a , x

)
◦ ΠL

(
(n−2)
a , y

)
= ΠL

(
f

(
(n−2)
a , x, a

)
,
(n−3)
a , y

)

= ΠL

(
(n−2)
a , f

(
x,

(n−2)
a , y

))
= ΠL

(
(n−2)
a , x� y

)
= π(x� y),

which proves that π is a representation of (G;�).

For ternary groups also the converse statement is true: every representation
of reta(G; f) induces a left bi-element representation of (G; f) (cf. [4]). All
such bi-element representations are invertible.

Definition 28. A right bi-element representation of an n-ary group (G; f)
in V is a map ΠR : Gn−1 → End V such that
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ΠR
(
an−1

1

)
◦ ΠR

(
bn−1
1

)
= ΠR

(
an−2

1 , f
(
an−1, b

n−1
1

))
,

ΠR

(
(n−2)
a , a

)
= idV

for all a, a1, . . . , an−1, b1, . . . , bn−1 ∈ G.

It is clear that left and right bi-element representations are dual.

Example 2. Let (G; f) be an n-ary group and CG denote a vector space
spanned by G. It means that any element u of CG can be uniquely presented
in the form u =

∑m
i=1 kiyi, with ki ∈ C, yi ∈ G, m ∈ N (we do not assume

that G has finite rank). Moreover, CG is an n-ary (group) algebra (for details
see [61] or [62]). Then left and right bi-element regular representations can
be immediately defined by means of this structure

ΠL
reg

(
an−1

1

)
u =

m∑

i=1

kif
(
an−1

1 , yi

)
,(14)

ΠR
reg

(
an−1

1

)
u =

m∑

i=1

kif
(
yi, a

n−1
1

)
.(15)

Left (right) regular bi-element representations of a ternary group are unitary
[4].

Example 3. Consider an n-ary group (G; f), where n is odd, G = Z3 =
{0, 1, 2} and f(xn

1 ) =
∑n

i=1(−1)i+1xi(mod 3). It is clear that

ΠL
(
xn−1

1

)
= ΠR(xn−1, xn−2, . . . , x2, x1).

From the proof of Lemma 24 it follows that it is sufficient to consider the

representations of the form ΠL
( (n−2)

a , b
)
. By Corollary 25 in our case

ΠL

(
(n−2)
a , b

)
= ΠL

(
(n−2)
c , d

)
⇐⇒ (a− b) = (c− d)(mod 3).

Straightforward calculations give the left regular representation in the

manifest matrix form, where ΠL(a, b) means ΠL
( (n−2)

a , b
)
.
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ΠL
reg (0, 0) = ΠL

reg (2, 2) = ΠL
reg (1, 1) =




1 0 0

0 1 0

0 0 1


 = [1] ⊕ [1] ⊕ [1],

ΠL
reg (2, 0) = ΠL

reg (1, 2) = ΠL
reg (0, 1) =




0 1 0

0 0 1

1 0 0




= [1] ⊕




−1

2
−
√

3

2
√

3

2
−1

2


 = [1] ⊕

[
−1

2
+

1

2
i
√

3

]
⊕
[
−1

2
− 1

2
i
√

3

]
,

ΠL
reg (2, 1) = ΠL

reg (1, 0) = ΠL
reg (0, 2) =




0 0 1

1 0 0

0 1 0




= [1] ⊕




−1

2

√
3

2

−
√

3

2
−1

2


 = [1] ⊕

[
−1

2
− 1

2
i
√

3

]
⊕
[
−1

2
+

1

2
i
√

3

]
.

Observe that for an n-ary (group) algebra CG from Example 2 we can
consider additionally middle representations of the form

ΠM
reg

(
an−1

1

)
u =

m∑

i=1

kif
(
aj−1

1 , yi, a
n−1
j

)
,

where j = 2, 3, . . . , n− 1 is fixed.
Since in this case we obtain complicated formulas we restrict our

attention to middle bi-element representations of ternary groups described
in [3] and [4].

Definition 29. A middle bi-element representation of a ternary group (G; f)
in V is a map ΠM : G×G→ End V such that
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ΠM (a3, b3) ◦ ΠM (a2, b2) ◦ ΠM (a1, b1) = ΠM (f(a3, a2, a1), f(b1, b2, b3)) ,

ΠM (a, b) ◦ ΠM
(
a, b
)

= ΠM
(
a, b
)
◦ ΠM (a, b) = idV

for all a, a1, a2, a3, b, b1, b2, b3 ∈ G.

The composition of two middle bi-element representations is not a middle
representation, but in some cases described in [4] it is a left bi-element
representation. Obviously, ΠM (a, b) = ΠM (c, d) if and only if f(a, y, b) =
f(c, y, d) for every y ∈ G.

Example 4. Let G = Z3 and f(x, y, z) = (x − y + z)(mod 3). Then (G; f)
is a ternary group in which

ΠM (a, b) = ΠM (c, d) ⇐⇒ (a + b) = (c+ d)(mod 3).

So,

ΠM
reg (0, 0) = ΠM

reg (1, 2) = ΠM
reg (2, 1) =




1 0 0

0 0 1

0 1 0


 = [1] ⊕

[
−1 0

0 1

]
,

ΠM
reg (0, 1) = ΠM

reg (1, 0) = ΠM
reg (2, 2) =




0 1 0

1 0 0

0 0 1


 = [1] ⊕




1

2
−
√

3

2

−
√

3

2
−1

2


 ,

ΠM
reg (0, 2) = ΠM

reg (2, 0) = ΠM
reg (1, 1) =




0 0 1

0 1 0

1 0 0


 = [1] ⊕




1

2

√
3

2
√

3

2
−1

2


 .

This representation ΠM
reg is equivalent to the orthogonal direct sum of two ir-

reducible representations, i.e., one-dimensional trivial and two-dimensional.
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In this example for all x we have ΠM (x, x) = ΠM (x, x) 6= idV , but
ΠM (x, y) ◦ ΠM (x, y) = idV for all x, y.

Putting in the above example γM
k+l = ΠM

reg(k, l) for k, l ∈ Z3, we obtain
the identity

γM
i ◦ γM

j ◦ γM
k = γM

f(i,j,k), i, j, k ∈ Z3,

which in some sense can be treated as a ternary analog of Clifford
algebra [3]. Any matrix representation of this identity gives rise to the
middle representation ΠM (k, l) = γk+l.

Different connections between middle bi-element representations of a
ternary group (G; f) and representations of its retract and covering group
are described in [4]. For example, any middle bi-element representation of
a ternary group (G; f) derived from a group (G; ·) has the form ΠM (a, b) =
π(a) ◦ ρ(b−1), where π(x) = ΠM (x, e) and ρ(x) = ΠM (e, x) are pairwise
commuting representations of (G; ·).

8. Q-independent sets in HG-algebras

Let A = (A; F) be an algebra ∅ 6= X ⊆ A. The set X is said to be M-
independent if

(∀n ∈ N, n 6 card(X))
(
∀f, g ∈ T

(n)(A)
)

(∀a1, . . . , an︸ ︷︷ ︸
6=

∈ X)

[
f(an

1 ) = g(an
1 ) =⇒ f = g

]
.

This condition is equivalent to each of the following ones:

(a) (∀n∈N, n 6 card(X))(∀f, g ∈ T
(n)(A))(∀p : X→A)(∀a1, . . . , an∈X)

[
f(an

1 ) = g(an
1 ) =⇒ f(p(a1), . . . , p(an)) = g(p(a1), . . . , p(an))

]
,

(b) (∀p ∈ AX) (∃p̄ ∈ Hom(〈X〉A,A)) p̄|X = p, where 〈X〉A is a subalgebra
of A generated by X.

The notion of M-independence is stronger than that of independence with
respect to the closure operator of such a kind X 7→ 〈X〉A (for X ⊆ A).
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Let ∅ 6= X ⊆ A and

QX ⊆ AX = MX = {p | p : X → A},

Q(A) = Q =
⋃

{QX | X ⊆ A},

M(A) = M =
⋃

{AX | X ⊆ A}.

For an algebra A = (A; F), a mapping p : X → A belongs to HX(A) if and
only if there exists a homomorphism p̄ : 〈X〉A → A such that p̄|X = p.

The set X is said to be Q-independent if QX ⊆ HX(A) or, equivalently,

(∀p ∈ QX) (∀ finite n 6 card(X))
(
∀f, g ∈ T

(n)(A)
)

(∀a1, . . . , an ∈ X)

[
f(an

1 ) = g(an
1 ) =⇒ f(p(a1), . . . , p(an)) = g(p(a1), . . . , p(an))

]
.

In the case when Q =
⋃{p|X | p ∈ AA, X ⊆ A} and

(
∀f, g ∈ T

(1)(A)
)

(∀a ∈ A)
[
f(a) = g(a) =⇒ f(p(a)) = g(p(a))

]
,

the set X is said to be G-independent.
For commutative groups, the notion of G-independence gives us the well-

known linear independence.
For HG-algebras of type H = (G; +, ϕ, b), where (G; +) is a commutative

group, the equality

F1(x1, . . . , xm) = F2(x1, . . . , xm)

(for two term operations of the form (10) in H) is equivalent to the equality

H(x1, . . . , xm) = 0,

where H ∈ T
(m)(H), i.e., H(x1, . . . , xm) =

∑m
i=1 gi(xi) + k

H
b, and 0 denotes

the zero of the group (G; +).
Consider a subset X of G. Let for a1, . . . , am ∈ X the equality

H(a1, . . . , am) = 0

hold. Taking into account the mapping p : X → 〈X〉A defined by
p(ai) = 0 and p(x) = x for x ∈ X \ {a1, . . . , am}, we get k

H
b = 0.
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Therefore
m∑

i=1

gi(ai) = 0.

Consider the mapping qj : X → 〈X〉A defined for fixed j ∈ {1, . . . ,m} as
follows:

qj(x) =

{
aj if x = aj ,

0 if x 6= aj .

We obtain gj(aj) = 0 for all j = 1, 2, . . . ,m. (In the considered case all qj

belong to M and G .)
In particular, we can easily observe, by similar considerations, that the

following result holds:

Theorem 30. (W.A. Dudek, K. G lazek, 2006). Let X ⊆ G be a subset
of the HG-algebra H = (G; +, ϕ, b). Then X is G-independent if and only
if for any m 6 card(X) for all a1, . . . , am ∈ X and every term operation
H(x1, . . . , xm) =

∑m
i=1 gi(xi) + k

H
b the equality

(16)

m∑

i=1

gi(ai) + k
H
b = 0

is equivalent with

(∀i ∈ {1, . . . ,m}) (gi(a) = 0 & k
H
b = 0) .

Moreover, X is M-independent in this HG-algebra if and only if for all
pairwise different elements a1, . . . , am from X equality (16) implies gi(x) = 0
for all i = 1, 2, . . . ,m and kHb = 0.
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Matematički Bilten (Skopje) 3/4 (29/30) (1979–1980), 35–44.

[19] W.A. Dudek and J.Michalski, On a generalization of Hosszú Theorem,
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