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Abstract

We show that for an arbitrary Set-endofunctor T' the generalized
membership function given by a sub-cartesian transformation p from T’
to the filter functor F can be alternatively defined by the collection of
subcoalgebras of constant T-coalgebras. Sub-natural transformations
€ between any two functors S and T are shown to be sub-cartesian if
and only if they respect p. The class of T-coalgebras whose structure
map factors through ¢ is shown to be a covariety if € is a natural and
sub-cartesian mono-transformation.
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1. SET-FUNCTORS

Our interest in Set-Functors arises from their use as signatures of algebras
or coalgebras. A Set-functor T associates with each set X a set T'(X) and
with each map f: X — Y between sets a map T'f : T(X) — T(Y) so that
identities and function compositions are preserved, i.e. Tidx = idp(x) and
T(go f)=TgoTf whenever f: X Y andg:Y — Z.

In the context of universal algebra, the most important examples are
given by the so called polynomial functors. Starting with a sequence of
natural numbers A = (n;)ier (called a similarity type) define Ta(X) :=
Wier X" for each set X and put (Tf)(z1,...,zn,) = (f(x1),..., f(zn,)) for
each (z1,...,2n,) € X™. Then a universal algebra of signature A on a set



188 H.P. GuMmM

A is just a map f4 : T(A) — A, and a homomorphism to another algebra
fB:T(B) — Bis just amap ¢: A — B with po f4=Typo 5.

1.1. Coalgebraic type functors

In the dual context of coalgebras a wide range of functors is of interest in
order to model automata, transition systems, probabilistic and nondetermin-
istic systems, processes or even topological spaces. Much of the (co)algebraic
theory hinges on particular preservation properties of the Set-functors defin-
ing their signature. Examples of functors, acting on a set X and an arbitrary
map f: X — Y are:

e the power set functor P, where P(X) is the power set of X and (Pf)(U)
= f[U] = {f(w) |ue U},

e the filter functor F with F(X) the set of all filters on X and (Ff)(G) :=
{(vey | f-i(v)egy,

e the distribution functor, where D(X) is the set of all probability distri-
butions on X and (Df)(0)(y) = X ()= (@) ,

e the automaton functor A(X) = D x X¥ where E is a fixed input set, D
a fixed output set and X the set of all maps from F to X,

e the stream functor (—)°°, where X > is the set of all infinite lists (streams)
of elements of X,

e the binary-tree-functor where BinTree(X) is the set of all binary trees
with leafs from X, or, more general,

e the free-algebra-functor for a variety U, where Fy(X) is the free
U-algebra over X and Fyf is the homomorphic extension of f.

Subfunctors of some of the above functors are of interest, too, such as e.g.

o the list functor (—)* where X* is the set of all finite lists (words) of
elements of X,

e the bounded powerset functors P, for any cardinal k, yielding only the
subsets of cardinality below x,

e the (—)3 -functor, see [1], where (X)3:={(x1, 22, 73) € X3 | |21, 72, 73| <2}
and maps are extended componentwise.
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Regarding the coalgebraic theories in which these functors occur, certain
preservation properties play a fundamental role. In particular, much of the
early literature in coalgebra assumed that the type functor T should preserve
weak pullbacks, see [9]. Here a weak pullback is a weak limit of two arrows
with common target. It was then shown in [7] that a Set-functor T' weakly
preserves pullbacks iff it weakly preserves kernels and preimages. (Recall
that a kernel is the pullback of an arrow with itself and a preimage, also
known as inverse image, is a pullback along a mono, see [2].)

1.2. Container functors and their membership

In computer science, typical functors arise as container datatypes (arrays,
lists, trees, streams), where T(X) can be interpreted as the set of all con-
tainers of a certain type with elements from X. Given an item w in 7'(X),
it is legitimate to ask for the set of all elements that are present in the con-
tainer represented by u € T'(X). A natural way to formalize this would be
to ask for the smallest U C X such that v € T'(U). But one encounters two
difficulties:

e Firstly, 7'(U) need not be a subset of T'(X) even when U C X, unless
the functor is standard. However, we can replace T'(U) by (T C¥)[T(U)]
which is the image of T'(U) under the T-image of the inclusion map
Ci¥. Now (T C¥)[T(U)] is a subset of T(X) and it is equal to T(U),
whenever T is standard. The filter functor F provides an example of a
functor, which is not standard, and preserves weak pullbacks, but not
infinite intersections, see [4].

e Secondly, a smallest U with the required properties need not exist. Thus
the question for arbitrary elements u € T'(X) need not have a unique
answer, but rather a collection of possible answers. Fortunately, this
collection is closed under supersets and finite intersections, i.e. it is a

filter.

To be precise, the following was defined in [5] for an arbitrary Set-functor
T and an arbitrary element u € T'(X) :

px () :={UC X |ue (T )[TU)]}

and it was shown that p”, for an arbitrary Set-functor T', is a transformation
to the filter functor. x” is not a natural transformation in general, but it is
always sub-natural, even sub-cartesian, terms which are defined below. In
fact, it was proved there:
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Theorem 1.1. For any Set-endofunctor T

o 17 is the largest sub-cartesian transformation from T to the filter functor,

o u” is natural if and only if T (weakly) preserves preimages.

Here, a transformation o between two functors F' and G is just a collection
of maps ox : F(X) — G(X) for each set X. The transformation is natural,
if for each map f : X — Y the following diagram commutes:

F(X) 2> G(X)

| |es

F(Y) -2 G(Y)

o is called sub-natural, when this square is required to commute only for f
injective and is called sub-cartesian, if for each injective f the above diagram
is a preimage diagram, i.e. a pullback.

In the above sense then, u provides a generalized membership relation
for arbitrary functors T', assigning to each container u € T'(X) its filter of
elements.

The straightforward definition 0% (u) = u%(u) always yields the
largest sub-natural transformation from 7T to the powerset functor P. If
there exists any subcartesian transformation at all from T to P, then o itself
is sub-cartesian, and this is the case if and only if T" preserves intersections,
see [5].

1.3. Sub-cartesian means preservation of membership

We shall provide a criterion for determining, when a general sub-natural
transformation & between any two functors is actually sub-cartesian. For its
proof, we shall require the following easy lemma, see e.g. [§]:

Lemma 1.2. In any category, suppose that the following diagram commutes.

1. If (A) and (B) are pullbacks, then so is the perimeter (A,B).

2. If (A,B) is a pullback and f,g are jointly monic, then (A) is a pullback.
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O—>O—f>O
| @ oo |
O—0——0

With that we can prove the following characterization:

Theorem 1.3. Let S and T be Set-endofunctors. A sub-natural transfor-
mation € : S — T is sub-cartesian, if and only if it commutes with the
generalized membership :

Proof. Let ¢ be sub-natural, then for any U C X the following diagram
commutes.

) = T(X) —=F(X)

EX H/X

By assumption, ,ug oecy = ,ug and ,u§ oex = ,ui, so by Theorem 1.1, the
perimeter of the diagram is a pullback. Lemma 1.2, therefore guarantees
that the left square is a pullback, too, which means that ¢ is sub-cartesian.
For the converse assume that ¢ is sub-cartesian, we need to show p° =
u! oe. From the first assertion of Lemma 1.2 one obtains that u” o ¢ is a
sub-cartesian transformation from S to the filter functor IF. Therefore, from
the first item of Theorem 1.1, we obtain the inclusion % (ex(u)) C p3-(u).
For the reverse inclusion, let any U € ,ui (u) be given, then by definition
of p1 there exists v € S(U) with (S Ci¥)(v) = u. It follows that ex(u) =
ex o (S C¥)(v) = (T CF)oey(v) € (T CH)[T(U)], hence U € pk (ex (u)).
|
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2. COALGEBRAS

An important property true in the category of sets is that every epi-mono-
square has a (necessarily unique) diagonal. That is, given a square mo f =
goe, where e is epi and m mono, there is a unique d such that doe = f and
mod=g.

Let T : Set — Set be any functor. By a T-coalgebra we understand a
pair A = (A, a4) consisting of a set A and a map ay : A — T(A). A
homomorphism ¢ to another T-coalgebra B = (B, ) is just a map making
the obvious diagram commute:

The class of all T-coalgebras with homomorphisms as defined above forms
a category Setp, in which all colimits exist. In fact, the forgetful functor,
associating with a coalgebra A = (A, a4) its base set A, creates and reflects
colimits. Since in any category a morphism ¢ : A — B is epi if and only if
the pushout with itself is the identity ¢d g, this implies that ¢ is epi in Setr
if and only if it is epi in Set, i.e. surjective, see [9]. Monos in Setp, however,
need not be injective. Rather, they are injective iff they are regular in Setr,
see [7].

Given a homomorphism ¢ as above, the image factorization in Set of ¢
as ¢ = C oy’ yields an image factorization of ¢ in Setp. This is because any
Set-functor T preserves (nonempty) monos, so the factorization of ¢ in Set
becomes an epi-mono-square. Now, the structure map on the image ¢[A] of
A under ¢ is provided by the unique diagonal:
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!

T [ A€ B

A
|
v

T(4) 5 (p[4) T2~ T(B)

A coalgebra U = (U, ay) is called subcoalgebra of A = (A, «4), provided
that U C A and the structure map ayy is the restriction of a4 in the sense
that the embedding Qf} is a homomorphism:

<
U———A

|
oy | laA
\ TCA

T(U)=—=T(4)

Not every subset U of A supports a subcoalgebra structure, but if it does,
the structure map oy is uniquely determined. By abuse of notation, we
therefore shall call such a subset U a subcoalgebra of A.

Finally, the sum ), ; A; of a family (A;);cr of coalgebras has as carrier
set the sum (in Set) of the carriers of the A;, which is the disjoint union
WicrA; and as structure map the disjoint union of the o 4.

Given a class R of coalgebras, we denote by S(R), H(R), resp. X(R) the
classes of all subcoalgebras, homomorphic images, resp. sums, of members
from K. A class of T-coalgebras closed under the operators S,H, and X is
called a covariety, and it is well known that for any class K of coalgebras,
the smallest covariety containing £ is given by SH3(R) (see for instance[3],
where a Birkhoff-Theorem for covarieties is proved).

2.1. Membership through constant coalgebras

We now show that the membership transformation p : T'— F has an inter-
pretation in coalgebras. For an arbitrary set X and an arbitrary element
c € T(X), let k¢ : X — T(X) be the map with constant value ¢ and let
K% = (X, k%) be the constant coalgebra on X with value c. Let Sub(K%)
be the collection of subcoalgebras of K, then we have:

Proposition 2.1. px(c) = Sub(K%).
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Proof. For U C X we have:
U<KS <= Ja:U—T®U) Ua) <Kk
= EIa:U—>T(U)-<Tg)U()oa:mcog§
= KU] C (T cX >[TU]
= cc (T g{,f)[T(U)]

< U € ux(c). -

The collection of all subcoalgebras of a fixed coalgebra is known to be closed
under finite intersections, see [6]. In the case of constant coalgebras, it
is immediately checked that supersets of subcoalgebras are subcoalgebras,
hence this proposition immediately shows that u is indeed a transformation
to the filter functor.

2.2. e-crisp coalgebras

In [10], Smith defines a Q-iterated function system (Q-IFS) as a Q-indexed
family of stochastic linear maps on a vector space R(X). Since each linear
map is determined by its restriction as Set-map o : X — R(X), a stochas-
tic linear map is given by any mapping from X to the set of probability
distributions on X, that is as a coalgebra of type D(X). A Q-IFS is there-
fore a Q-indexed family of probabilistic transition systems, that is any map
p:Q — D(X)X. Equivalently, p can be encoded in a map o : X — D(X)%,
that is a single coalgebra of the )-th power of the distribution functor.
Smith calls such an « crisp, if for each ¢ € @) there is some y € X with

a(z)(q) = y(x), where

1 ifx=y

() =
0 otherwise,

so g is the trivial distribution giving y probability 1 and everything else
probability 0. He then proves that homomorphic images of crisp coalgebras
are crisp.

Here we show that the concept is meaningful for arbitrary functors
T serving as types of coalgebras, and that in a situation as above, crisp
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coalgebras even form a covariety. The key is observing that y — g is
a transformation between the (Q-th powers of) the identity functor I and
the functor D whose properties determine the closure properties of the class
of all crisp coalgebras. Thus, we shall define crispness with respect to a fixed
transformation e from some functor S to 7.

Definition 2.2. Let S and T be set-endofunctors and let £ : S — T be a
transformation, i.e. a collection of maps ex : S(X) — T'(X), one for each set
X. A T-coalgebra A = (A, a4) will be called e-crisp, provided its structure
map factors through €4. The structure of the class of all e-crisp coalgebras
then depends on the properties of ¢ :

Theorem 2.3. Let ¢ : S — T be a natural and subcartesian mono-
transformation. Then the class of all e-crisp coalgebras forms a covariety.

In fact, we shall give conditions on € so that the class of e-crisp coalgebras are
closed under sums, homomorphic images and subcoalgebras. The theorem
therefore follows from the following lemma:

Lemma 2.4. Let ¢ : S — T be a mono-transformation, and let K. be the
class of all e-crisp coalgebras.

1. Rc is closed under sums, if € is subnatural.

2. R. is closed under homomorphic images, if € is natural.

3. R. is closed under subcoalgebras, if € is sub-cartesian.
Proof. Let A= (> ,.; Ai,a) be the sum of the coalgebras A; = (A;, a;)icr
with the sum embeddings e; : A; — A. If all A; are e-crisp, we have for each
i € I the following diagram, where the perimeter commutes, since the e; are

homomorphisms and the lower square commutes since the e; are injective
and ¢ is assumed subnatural. We need to construct the indicated map o.

Ai

>4,
l

ail S(A) —=S(3_ Ai) |«
e
T(A;)
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Since ) ;.; A; with the embeddings e; is the sum of the sets A; in the
category Set, we obtain ¢ as the unique map making the upper rectangle
commute for each i € I. A diagram chase yields ey 0 0 0 e; = a0 e; for each
i, from which €5 0 0 = « follows, as the sum embeddings are jointly epi.

Given an e-crisp T-coalgebra A = (A, a4) and an epimorphism ¢ onto
a second T-coalgebra B = (B, az), we obtain the diagram.

I

©
Se
aa| S(A)—=S(B) |os

B
|
|
y

Again, the perimeter commutes, since ¢ is a homomorphism, and the lower
square does, since we now assume € to be natural. Notice that ap oy =
egoSpoa’ delineates an epi-mono-square, so o can be obtained as its unique
diagonal.

Finally, assume that A = (A,a4) is a subcoalgebra of the e-crisp
coalgebra B = (B,ap). In the diagram below, the lower square is a
preimage, and A with oy and ajzo gﬁ presents a competitor to this limit,
thus yielding the required structure map o : A — S(A).

A———B
|
!

v

g
aul S(A)—=S5(B) s

Now the case of [10] is captured easily, as ex : I? — D where ex(7)(q) =
7(q), which inherits from x +— & the property of being mono, natural, and
sub-cartesian.
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