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Abstract

It is known that (Zn,−n) are examples of entropic quasigroups
which are not groups. In this paper we describe the table of characters
for quasigroups (Zn,−n).
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1. Introduction

The theory of characters of finite quasigroup has been already considered
by J.D.H. Smith in [3].
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A quasigroup (Q, ·) is a setQ equipped with a binary multiplication operation
denoted by · or juxtaposition of the two arguments, in which specification
of any two of x, y, z in the equation x · y = z determines the third uniquely.

A quasigroup (Q, ·) is called entropic if

(x · y) · (z · t) = (x · z) · (y · t)

for all x, y, z, t ∈ Q.

Let (Q, ·) be a finite quasigroup. Now we describe how to obtain the
character table of Q (see [3], Chapter 5).

Let R : Q → Q!; x 7→ R(x) and L : Q → Q!; x 7→ L(x), where
R(x)(q) = q · x and L(x)(q) = x · q. Then the subgroup G = Mlt(Q, ·)
of Q! generated by the union R(Q)∪L(Q) is called the multiplication group

of the quasigroup (Q, ·).
The group G acts onto Q×Q in the following way:

g : Q×Q→ Q×Q; (x, y) 7→ (g(x), g(y)).

The orbits {C1, . . . , Cs} of G on Q × Q under this action are called the
conjugacy classess of Q.

We consider the incidence matrix ai of the conjugacy class Ci. This is
0 − 1-matrix having 1 as its xy-component if (x, y) ∈ Ci and 0 otherwise.

The space CQ can be decomposed as a direct sum of subspaces Ej such
that

(a) ∀1≤i≤s,∃ξij∈CEj(ai − ξijI) = {0};

(b) ∀j 6=k,∃iξij 6= ξik;

(c) E1 = C

( ∑

q∈Q

q
)
.

To get (a) and (b), decompose CQ into a1-eigenspaces, then decompose each
of these into a2-eigenspaces,and so on. In the case of quasigroup (Zn,−n)
it is enough to end this process with a2-eigenspaces. Let ej : CQ → Ej be
the projection onto Ej . Define (s× s)-matrix Ξ = (ξij) by ai =

∑s
j=1 ξijej .
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Finally the character table of the quasigroup Q is the complex (s×s) matrix
Ψ with components

ψil = (fi)
1

2 ξlin
−1
l ,

for i, l = 1, . . . , s, where fi = dimCEi and nl = |Cl|
|Q| .

For more details see [1, 3, 5].

In this paper we find the character tables of quasigroups (Zn,−n).

If i, j ∈ Zn then

i−n j =

{
i− j for i ≥ j

n+ i− j for i < j
.

Every quasigroup (Zn,−n) has the following conjugacy classes:

Ci = {(k, t) ∈ Z
2
n : |k − t| = i− 1 or |k − t| = n− i+ 1}

for i = 1, . . . ,
[

n
2

]
.

One can check that |Cj | = n if j = 1 or (j = n
2 + 1 and 2|n) and

|Cj | = 2n otherwise.

This is a ,,road map” through the lemmas in this paper:

L2

��

L4 // L6

��

L5oo L4

��

L7

��
L1 // L3 // L9 // T1 // L12 // T2

L8

==
{

{
{

{
{

{
{

{

L4 // L10 //

;;
x

x
x

x
x

x
x

x

L11

OO
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2. Notations

For n ∈ N, 0 ≤ m ≤
[

n
2

]
and m ∈ N let

xn,m =





2 cos 2mπ
n

if 2|n

(−1)m2 cos mπ
n

otherwise.

For n ∈ N define the function gn : Z → {0, 1, . . . ,
[

n
2

]
} in the following way

gn(x) = dist(x, nZ). Let ai be the incidence matrix of the conjugacy class
Ci. This is 0 − 1-matrix having 1 as its xy-component if (x, y) ∈ Ci and 0
otherwise. Let wn be the characteristic polynomial of a2.

3. Main theorem

In this section we prove a recursive formula for the characteristic polynomial
of the matrix a2. Before that we give and prove necessary lemmas.

Lemma 1. For every n ≥ 3 we have

wn+2(x) = −xwn+1(x) −wn(x) + (−1)n(2x− 4).

Proof. Let vn = (bij)1≤i,j≤n be the matrix such that

bij =





0 for |i− j| ≥ 2

1 for |i− j| = 1

−x for i = j .

By Laplace’s expansion of the determinant along 1 column we have

(1) vn(x) = −xvn−1 − vn−2(x) .

Using again Laplace’s formula to expand the determinant along 1 column
and 1 row we have
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(2)

wn(x)= −xvn−1(x) − (vn−2 + (−1)n) + (−1)n+1(1 + (−1)nvn−2(x))

= −xvn−1(x) − 2vn−2(x) + 2 · (−1)n+1 .

Now we obtain

wn+2(x)
(2)
= −xvn+1 − 2vn + 2 · (−1)n+1 (1)

= −x(−xvn(x) − vn−1(x))

−2vn(x) + 2 · (−1)n+1 = vn(x)(x2 − 2) + xvn−1(x) + 2 · (−1)n+1

= x2vn(x) + 2xvn−1 − 2x(−1)n

︸ ︷︷ ︸
=−xwn+1(x)

−2vn(x) − xvn−1(x) + 2x(−1)n

+2(−1)n+1 (2)
= −xwn+1(x) + xvn−1(x) + 2vn−2(x) − 2(−1)n+1

︸ ︷︷ ︸
=−wn(x)

−2xvn−1(x) − 2vn(x) − 2vn−2(x)︸ ︷︷ ︸
=0 by (1)

+4(−1)n+1 + 2x(−1)n

= −xwn+1(x) − wn(x) + (−1)n(2x− 4).

Let un(x) be a polynomial such that u2n+2(x) = u2n+1(x)−u2n(x), u2n+1(x)
= (x+ 2)u2n(x) − u2n−1(x) and u1(x) = u2(x) = 1.

Lemma 2. For every n ∈ N we have

(a) (x+ 2)u2n(x)u2n+1(x) = u2
2n+1(x) + (x+ 2)u2

2n(x) − 1,

(b) (x+ 2)u2n+2(x)u2n+1(x) = u2
2n+1(x) + (x+ 2)u2

2n+2(x) − 1.
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Proof. For n = 1 it is clear. Assume that lemma is true for n. We prove
this lemma for n+ 1.

u2
2n+3(x) + (x+ 2)u2

2n+2(x) − 1 = ((x+ 2)u2n+2(x) − u2n+1(x))u2n+3(x)+

(x+ 2)u2
2n+2(x) − 1 = (x+ 2)u2n+2(x)u2n+3(x) − u2n+1(x)((x+ 2)u2n+2(x)

−u2n+1(x)) + (x+ 2)u2
2n+2(x) − 1

by(b)
= (x+ 2)u2n+2(x)u2n+3(x)

−(u2
2n+1(x) + (x+ 2)u2

2n+2(x) − 1) + u2
2n+1(x) + (x+ 2)u2

2n+2(x) − 1

= (x+ 2)u2n+2(x)u2n+3(x),

hence (a) is true for n+ 1.

u2
2n+3(x) +(x+ 2)u2

2n+4(x) − 1 = u2
2n+3(x) + (x+ 2)u2n+4(x)(u2n+3(x)

−u2n+2(x)) − 1 = u2
2n+3(x) + (x+ 2)u2n+4(x)u2n+3(x)

−(x+ 2)u2n+4(x)u2n+2(x) − 1

= u2
2n+3(x) + (x+ 2)u2n+4(x)u2n+3(x)

−(x+ 2)(u2n+3(x) − u2n+2(x))u2n+2(x) − 1

= u2
2n+3(x) + (x+ 2)u2

2n+2(x) − 1 + (x+ 2)u2n+4(x)u2n+3(x)

−(x+ 2)u2n+3(x)u2n+2(x)
by (a) for n+1

= (x+ 2)u2n+2(x)u2n+3(x)

+(x+ 2)u2n+4(x)u2n+3(x) − (x+ 2)u2n+3(x)u2n+2(x)

= (x+ 2)u2n+4(x)u2n+3(x)

so we obtain (b) for n+ 1.
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Now we pass to the lemma expressing polynomial wn by un.

Lemma 3. For every n ≥ 1

(α) w2n+1(x) = (2 − x)u2
2n+1(x),

(β) w2n(x) = (x2 − 4)u2
2n(x).

Proof. For n = 2 it is obvious. Assume that lemma is true for n. We prove
lemma for n+ 1. Using Lemma 1 and Lemma 2 we have

w2n+2(x)
L1
= −xw2n+1(x) − w2n(x) + 2x− 4 = −x(2 − x)u2

2n+1(x)

− (x2 − 4)u2
2n(x) + 2x− 4

L2a
= (x2 − 2x)u2

2n+1(x) − (x2 − 4)u2
2n(x) + 2x− 4

+(2x−4)(u2
2n+1(x)−(x+ 2)u2n(x)u2n+1(x)−1 + u2

2n(x)(x+2))

= (x2 − 4)u2
2n+1(x)+(x2−4)u2

2n(x)−2(x2 − 4)u2n(x)u2n+1(x)

= (x2 − 4)(u2
2n+1(x)u

2
2n(x) − 2u2n(x)u2n+1(x))

= (x2 − 4)(u2n+1(x) − u2n(x))2 = (x2 − 4)u2
2n+2(x)

so we obtain (β) for n+ 1.

By Lemma 1 and 2 and (β) for n+ 1 we have

(2 − x)u2
2n+3(x) = (2 − x)((x+ 2)u2n+2(x) − u2n+1(x))

2

L2b
= (2 − x)((x+ 2)u2n+2(x) − u2n+1(x))

2

+ (2x− 4)((x + 2)u2
2n+2(x) + u2

2n+1(x)

− 1 − (x+ 2)u2n+2(x)u2n+1(x)) =
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= (x− 2)(−(x + 2)2u2
2n+2(x)

+ 2(x+ 2)u2n+1(x)u2n+2(x) − u2
2n+1(x)

+ 2(x+ 2)u2
2n+2(x) + 2u2

2n+1(x) − 2

− 2(x+ 2)u2n+2(x)u2n+1(x)

= (x− 2)(u2
2n+2(x)(−x2 − 2x) + u2

2n+1 − 2)

= −x(x2 − 4)u2
2n+2(x) − (2 − x)u2

2n+1(x) − 2x+ 4

(β)
= −xw2n+2(x) − w2n+1(x) − 2x+ 4

L1
= w2n+3(x)

hence (α) is true for n+ 1.

Lemma 4. Let n ∈ N and 0 ≤ j, k ≤
[

n
2

]
. Then

xn,j · xn,k = xn,|k−j| + xn,gn(k+j).

Proof. Consider the following cases:

1. n is odd and j + k ≤
[

n
2

]
. Then

xn,j · xn,k = 2 cos

(
2jπ

n

)
2 cos

(
2kπ

n

)

= 2

(
cos

(
2(j − k)π

n

)
+ cos

(
2(j + k)π

n

))

= xn,|k−j| + xn,gn(k+j).
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2. n is odd and j + k >
[

n
2

]
. Then gn(j + k) = n− (j + k) and

xn,j · xn,k = 2 cos

(
2jπ

n

)
2 cos

(
2kπ

n

)

= 2

(
cos

(
2(j − k)π

n

)
+ cos

(
2(j + k)π

n

))

= 2

(
cos

(
2(j − k)π

n

)
+ cos

(
2π − 2(j + k)π

n

))

= 2 cos

(
2(j − k)π

n

)
+ cos

(
2(n− (j + k))π

n

)
= xn,|k−j| + xn,gn(k+j).

3. n is even and j + k ≤
[

n
2

]
. Then

xn,j · xn,k = (−1)j2 cos

(
jπ

n

)
(−1)k2 cos

(
kπ

n

)

= (−1)j+k2

(
cos

(
(j − k)π

n

)
+ cos

(
(j + k)π

n

)
= xn,|k−j| + xn,gn(j+k) .

4. n is even and j + k >
[

n
2

]
. Then

xn,j · xn,k = (−1)j2 cos

(
jπ

n

)
(−1)k2 cos

(
kπ

n

)

= (−1)j+k2
(
cos

(
(j−k)π

n

)
+ cos

(
(j+k)π

n

))

= (−1)k−j2 cos
(

(j−k)π
n

)
+ (−1)j+k2(−1) cos

(
π − (j+k)π

n

)

= (−1)k−j2 cos

(
(j − k)π

n

)
+ (−1)n−(j+k)2 cos

(
π − (j + k)π

n

)

= xn,|k−j| + xn,gn(j+k).
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Lemma 5. Let n ∈ N, y ∈ Z and j ∈ {0, 1, . . . ,
[

n
2

]
}. Then

{gn(j + gn(y)), |gn(y) − j|} = {gn(y − j), gn(y + j)}.

Proof. There exists k ∈ Z such that kn ≤ y ≤ kn+ n. Let us consider the
following cases:

1. If y − kn ≤
[

n
2

]
then gn(y) = y − kn and

gn(y + j) = dist(y + j, nZ) = dist(y − kn+ j, nZ)

= dist(gn(y) + j, nZ) = gn(gn(y) + j)

and

gn(y − j) = dist(y − j, nZ) = dist(y − kn− j, nZ)

= dist(gn(y) − j, nZ) = |gn(y) − j|.

2. If kn+ n− y ≤
[

n
2

]
then gn(y) = kn+ n− x and

gn(y − j) = dist(y − j, nZ) = dist(j − y, nZ)

= dist(kn+ n− y + j, nZ) = dist(gn(y) + j, nZ) = gn(gn(y) + j)

and

gn(y + j) = dist(y + j, nZ) = dist(−y − j, nZ) =

dist(kn+ n− y − j, nZ) = dist(gn(y) − j, nZ) = |gn(y) − j|.

Now we find eigenvectors for the matrix a2.

Let n ∈ N and 0 ≤ j ≤
[

n
2

]
. Let

vn,j = [xn,gn(0), xn,gn(j), xn,gn(2j), . . . , xn,gn(kj), . . . , xn,gn((n−1)j))] ∈ C
n.
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Lemma 6. Let 0 ≤ j ≤
[

n
2

]
. Then vector vn,j is an eigenvector of the

matrix a2 corresponding to an eigenvalue xn,j.

Proof. We must show that

(∗) xn,j · xn,gn(kj) = xn,gn((k−1)j) + xn,gn((k+1)j)

for k = 1, 2, . . . , n− 1 and

(∗∗) xn,j · xn,gn(0) = xn,gn(j) + xn,gn((n−1)j)

and

(∗ ∗ ∗) xn,j · xn,gn((n−1)j) = xn,gn(0) + xn,gn((n−2)j).

By Lemma 4 we have

xn,j · xn,gn(kj) = xn,|j−gn(kj)| + xn,gn(j+gn(kj)).

Hence

xn,j · xn,gn(kj) = xn,gn((k−1)j) + xn,gn((k+1)j),

by Lemma 5 for y = kj and this ends the proof of (∗).
Obviously gn(0) = 0 and gn(j) = j. Moreover

gn((n− 1)j) = dist(nj − j, nZ) = dist(−j, nZ) = dist(j, nZ) = gn(j).

Therefore

xn,j · xn,gn(0) = xn,j · xn,0 = xn,j + xn,gn(j) = xn,gn(j) + xn,gn((n−1)j)

and (∗∗) was proved.

We have

xn,j · xn,gn((n−1)j) = xn,j · xn,gn(j) = xn,j · xn,j = xn,0 + xn,gn(2j)

= xn,gn(0) + xn,g(−2j) = xn,gn(0) + xn,gn((n−2)j)

and (∗ ∗ ∗) was shown.
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Notice that if the vector [y1, y2, . . . , yn] is an eigenvector for the matrix a2

then the vector [yn, y1, y2, . . . , yn−1] is also an eigenvector for the matrix a2.

Let n ∈ N and 0 ≤ j ≤
[

n
2

]
. Let

un,j =

[xn,gn((n−1)j)), xn,gn(0), xn,gn(j), xn,gn(2j), . . . , xn,gn(kj), . . . , xn,gn((n−2)j))]∈C
n.

Let En,j+1 = lin(vn,j, un,j) and en,j+1 be a matrix of the projection C
n onto

En,j+1.

Lemma 7.

dimEn,j =





1 for j = 1 or (j = n
2 + 1 and 2|n)

2 otherwise.

Proof. If j = 1 then En,1 = lin(vn,0, un,0) = lin([xn,0, . . . , xn,0], [xn,0,

. . . , xn,0]), so dimEn,1 = 1.

If 2|n and j = n
2 + 1 then vn,j−1 = [2,−2, 2, . . . , (−1)n+12] (since

xn, n
2

= −2, xn,0 = 2 and gn(nk
2 ) = 0 for k odd and gn(nk

2 ) = n
2 for

k even) and un,j−1 = (−1)n+1vn,j−1 hence dimEn,j = 1.

Otherwise

det

[
xn,gn(0) xn,gn(j−1)

xn,gn((n−1)(j−1)) xn,gn(0)

]
= x2

n,0 − x2
n,j−1 = 4 − x2

n,j−1 6= 0

hence vn,j−1 and un,j−1 are linear independent vectors.

Observe that dimEn,1+. . .+dimEn,[n
2 ]+1 = n and C

n = En,1⊕. . .⊕En,[n
2 ]+1.

Lemma 8. If n = 2r + 1 and r > 3 then

un(x) = xr + xr−1 + (1 − r)xr−2 + . . .

If n = 2r and r > 2 then

un(x) = xr−1 + 0 · xr−2 + (2 − r)xr−3 + . . .
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Proof. u5(x) = x2 + x − 1 and u6(x) = x2 − 1. Therefore lemma is true
for n = 5 and n = 6.

If lemma is true for n = 2r and n = 2r − 1 then

u2r+1(x) = (x+ 2)u2r − u2r−1(x)

= (x+ 2)(xr−1+(2 − r)xr−3+. . . ) − (xr−1+xr−2+(1−(r − 1))xr−3+. . . )

= xr + (2 − 1)xr−1 + ((2 − r) − 1)xr−2 + . . .

and

u2r+2(x) = u2r+1(x) − u2r(x)

= xr + xr−1 + (1 − r)xr−2 + . . . − (xr−1 + (2 − r)xr−3 + . . . )

= xr+(1−1)xr−1+(1 − r − 0)xr−2 + . . . = xr + 0 · xr−1+(1 − r)xr−2+ . . .

Hence lemma is true for n = 2r + 1 and n = 2r + 2.

Lemma 9.

x2
n,0 + . . .+ x2

n,[n
2 ] =

{
n+ 2 for n even

n+ 4 for n odd
.

Proof. Consider the following cases:

1. If n is even and n = 2k + 1. By Lemma 6 we know that xn,1, . . . , xn,k

are eigenvalues of the matrix a2. Hence they are roots of wn. Obviously
xni

6= 2 for i = 1, . . . , k, so by Lemma 3 they are roots of un. Therefore
we have

(∗) un(x) = (x− xn,1)(x− xn,2) . . . (x− xn,k).

Using Lemma 8 we obtain xn,1 + . . . + xn,k = −1 and
∑

1≤i<j≤k xn,ixn,j

= 1 − k.
Hence

x2
n,1 + . . . + x2

n,k = (xn,1 + . . .+ xn,k)
2 − 2

∑

1≤i<j≤k

xn,ixn,j

= 1 − 2(1 − k) = 2k − 1 = n− 2

and x2
n,0 + x2

n,1 + . . .+ x2
n,k = 4 + n− 2 = n+ 2.



160 G. Bińczak and J. Kaleta

2. Assume that n is odd and n = 2k. Then

(∗∗) un(x) = (x− xn,1)(x− xn,2) . . . (x− xn,k−1)

because xn,1, . . . , xn,k−1 are eigenvalues of the matrix a2 by Lemma 6,
hence they are roots of wn and by Lemma 3 they are also roots of un. So
by Lemma 8 we have (∗∗).

By Lemma 8 it turns out that xn,1+. . .+xn,k−1 = 0 and
∑

1≤i<j≤k−1

xn,ixn,j = 2 − k.
Hence

x2
n,1 + . . .+ x2

n,k−1 = (xn,1 + . . .+ xn,k−1)
2 − 2

∑

1≤i<j≤k−1

xn,ixn,j

= 0 − 2(2 − k) = 2k − 4 = n− 4

and x2
n,0 + x2

n,1 + . . .+ x2
n,k−1 + xn,k = 4 + (n− 4) + 4 = n+ 4.

Lemma 10. Let n, k ∈ N and gcd(n, k) = 1. Let A = {0, 1, . . . ,
[

n
2

]
} and

f : A→ A be a function such that f(x) = gn(kx). Then f is a bijection.

Proof. It is sufficient to show that f is 1 − 1. Suppose i, j ∈ A, i < j and
f(i) = f(j). Let x = dist(ik, nZ) = dist(jk, nZ). There exist p, q ∈ Z such
that |ik − pn| = |jk − qn|.

If ik − pn = jk − qn then (i − j)k = (p − q)n hence n|j − i (since
gcd(n, k) = 1) but j − i ∈ A and we have a contradiction.

If ik− pn = −jk+ qn then (i+ j)k = (p+ q)n hence n|i+ j but i, j ∈ A

so 0 < i+ j ≤
[

n
2

]
+

[
n
2

]
− 1 < n and we obtain a contradiction.

Lemma 11. Let n, k, p ∈ N and 0 ≤ k ≤
[

n
2

]
. Then |vpn,pk|2 = p|vn.k|2.

Proof. Let us note that gpn(px) = dist(px, pnZ) = p ·dist(x, nZ) = pgn(x)
for any x ∈ Z, vnp,kp = [(xpn,gpn((i−1)pk)))i=1,...,pn] = [(xpn,pgn((i−1)k))i=1,...,pn]
and gn((n+ i− 1)k) = gn((i− 1)k).

Consider the following cases:
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1. If 2|n then xpn,pj = 2 cos( 2pjπ
pn

) = 2 cos( 2jπ
n

) = xn,j. Hence vnp,nk =

[(xn,gn((i−1)k)))i=1,...,pn] and vpn,pk = [vn,k, vn,k, . . . , vn,k︸ ︷︷ ︸
p−times

] and |vn,k|2 =

p|vn,k|2.

2. If 2 6 |n and 2 6 |p then xpn,pj = (−1)pj2 cos(pjπ
pn

) = (−1)j2 cos( jπ
n

) = xn,j,

vpn,pk = [vn,k, vn,k, . . . , vn,k︸ ︷︷ ︸
p−times

] and |vn,k|2 = p|vn,k|2.

3. If 2 6 |n and 2|p then xpn,pj = 2 cos( 2pjπ
pn

) = 2 cos( 2jπ
n

) = 2(2 cos2( jπ
n

) −
1) = 4 cos2( jπ

n
) − 2 = x2

n,j − 2 and by Lemma 4 we have xpn,pj =
xn,0 +xn,gn(2j) −2 = xn,gn(2j). By Lemma 10 vpn,pk = [ṽn,k, ṽn,k, . . . , ṽn,k︸ ︷︷ ︸

p−times

]

(since gcd(2, n) = 1), where coordinates of ṽn,k arise as a result of the
permutation of coordinates of vn,k. Hence |vpn,pk|2 = p|vn.k|2.

Theorem 1. Let n ∈ N and 0 ≤ j ≤
[

n
2

]
. Then

|vn,j |2 =

{
4n for j = 0 or (j = n

2 and 2|n)

2n otherwise.

Proof. Assume that gcd(n, j) = 1.
Let n = 2r+1. According to the fact that gn((i−1)k) = gn((n−i+1)k)

and by Lemma 10 we have

|vn,j|2 = |[xn,0, xn,1, . . . , xn,r, xn,r, . . . , xn,1]|2 = 2(x2
n,0 + . . .+ x2

n,r) − x2
n,0

= 2(n+ 2) − 4 = 2n

using Lemma 9.
Let n = 2r. Then

|vn,j|2 = |[xn,0, xn,1, . . . , xn,r−1, xn,r, xn,r−1, . . . , xn,1]|2,

by Lemma 10. Hence

|vn,j|2 = 2(x2
n,0 + . . .+ x2

n,r) − x2
n,0 − x2

n,r = 2(n+ 4) − 4 − 4 = 2n,

by Lemma 9.
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Assume that gcd(n, j) 6= 1. Let p = gcd(n, j), n = pn′, j = pj′, where
gcd(n′, j′) = 1. By Lemma 11 we have |vn,j|2 = p|vn′,j′ |2.

One needs to consider the following cases:

1. If j = 0 then vn,j = [2, 2, . . . 2︸ ︷︷ ︸
n−times

] and |vn,j |2 = 4n.

2. If 2 6 |n and j 6= 0 then 2 6 |n′ and |vn,j|2 = p|vn′,j′|2 = p2n′ = 2n.

3. If 2|n, 26 |n′ and j 6= 0 then 2|p and j 6= n
2 (because if j = n

2 then
p
2n

′ = j = pj′ = p
22j′ and n′ = 2j′ but 26 |n′). Hence |vn,j|2 = p|vn′,j′|2 =

p2n′ = 2n.

4. If 2|n, 2|n′ and j′ = n′

2 then j = pj ′ = pn′

2 = n
2 and |vn,j|2 = p|vn′,j′ |2 =

p4n′ = 4n.

5. If 2|n, 2|n′, j 6= 0 and j ′ 6= n′

2 then j′ 6= 0, j 6= n
2 and |vn,j|2 = p|vn′,j′ |2 =

p2n′ = 2n.

Let b = (bij)1≤i,j≤n ∈ Mn(C) be a matrix. Then let b̄ = [b11, . . . , b1n].
Obviously¯is a linear operation.

For 1 ≤ i ≤
[

n
2

]
let ei be a matrix of the projection of C

n onto En,i. We
know (see [3]) that lin(a1, . . . , a[n

2 ]+1) = lin(e1, . . . , e[n
2 ]+1).

Let n ∈ N, 1 ≤ i ≤
[

n
2

]
and ai =

[n
2 ]+1∑
j=1

ξijej .

Lemma 12. Let n ∈ N and 1 ≤ i, j ≤
[

n
2

]
+ 1. Then

ξi,j =





1 for i = 1 or
(
i =

n

2
+ 1, (2|n) and j = 1

)

2 for j = 1 and i 6= 1 and
(
if 2|n then i 6= n

2
+ 1

)

1

2
xn,gn((i−1)(j−1)) for 2|n and i =

n

2
+ 1 and j 6= 1

xn,gn((i−1)(j−1)) otherwise.
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Proof. It is obvious that

āi =

[n
2 ]+1∑

j=1

ξij ēj and ēj =
[1, 0, . . . , 0] ◦ vn,j−1

|vn,j−1|2
vn,j−1 =

2vn,j−1

|vn,j−1|2
,

where ◦ means the scalar product of vectors. Using Theorem 1 we have

ēj =





1

2n
vn,j−1 for j = 1 or

(
j =

n

2
+ 1 and 2|n

)

1

n
vn,j−1 otherwise.

Hence ē1, . . . , ē[n
2 ]+1 are pairwise orthogonal. Therefore ξi,j =

āi ◦ ēj
|ēj |2

.

Consider the following cases:

1. If i = 1 and j = 1 or (j = n
2 + 1 and 2|n) then

ξ1,j =
ā1 ◦ ēj
|ēj |2

=
1
2n

2
1

4n2 |vn,j−1|
=

1
n

1
4n2 4n

= 1.

2. If i = 1 and j 6= 1 and (j 6= n
2 + 1 if 2|n) then

ξ1,j =
ā1 ◦ ēj
|ēj |2

=
1
n
2

1
n2 |vn,j−1|

=
2
n

1
n2 2n

= 1.

3. If i = n
2 + 1, 2|n and j = 1 then

ξi,1 =
āi ◦ ē1
|ē1|2

=
1
n

1
4n2 4n

= 1.

4. If j = 1 and i 6= 1 and (i 6= n
2 + 1 if 2|n) then

ξi,1 =
āi ◦ ē1
|ē1|2

=
2
n

1
4n2 4n

= 2.
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5. If 2|n and i = n
2 + 1, j 6= 1 and j 6= n

2 + 1 then

ξi,j =
āi ◦ ēj
|ēj |2

=

1
n
xn,gn( n

2
(j−1))

1
n2 |vn,j−1|2

=
1

2
xn,gn( n

2
(j−1)).

6. If 2|n and i = n
2 + 1 and j = n

2 + 1 then

ξi,j =
āi ◦ ēj
|ēj |2

=

1
2n
xn,gn( n

2

n
2
)

1
4n2 |vn,j−1|2

=
1

2
xn,gn( n

2

n
2
).

7. If 2|n and j = n
2 + 1, i 6= 1 and i 6= n

2 + 1 then āi = [b1, . . . , bn], where

bj =

{
1 for j = i or j = n− i+ 2

0 for j 6= i and j 6= n− i+ 2.

Moreover vn, n
2

= [2,−2, . . . 2(−1)n+1]. Hence

ξi,j =
1
2n

(2(−1)i+1 + 2(−1)n−i+1)
1

4n2 4n
= 2(−1)i+1 = xn,gn((i−1) n

2
).

8. If i 6= 1, j 6= 1, (i 6= n
2 + 1 and j 6= n

2 + 1 if 2|n) then

ξi,j =
1
n
(xn,gn((i−1)(j−1)) + xn,gn((n−i+1)(j−1)))

1
n2 2n

=
2
n
xn,gn((i−1)(j−1))

1
n2 2n

= xn,gn((i−1)(j−1)).

Let fi = dimCEn,i, nj =
|Cj |
n

and ϕi,j =
√
fiξj,in

−1
j for i, j ∈ {1, . . . ,

[
n
2

]
}.

Then (ϕi,j)1≤i,j≤[n
2 ] is the character table of the quasigroup (Zn,−n).

The next Theorem gives the description of the character table of the
quasigroup (Zn,−n).
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Theorem 2. Let n ∈ N and 1 ≤ i, j ≤
[

n
2

]
+ 1. Then

ϕi,j =





1 for i = 1 or (i = n
2 + 1, (2|n) and j = 1)

√
2 for j = 1 and i 6= 1 and

(
if 2|n then i 6= n

2
+ 1

)

(−1)j−1 for 2|n and i =
n

2
+ 1 and j 6= 1

√
2

2
xn,gn((i−1)(j−1)) otherwise.

Hence for n even we obtain

j = 1 j 6= 1

i = 1 ϕi,j = 1 ϕi,j = 1

i 6= 1 ϕi,j =
√

2 ϕi,j =
√

2
2 xn,gn((i−1)(j−1))

and for n odd we have

j = 1 j 6= 1, j 6= n
2 + 1 j = n

2 + 1

i = 1 ϕi,j = 1 ϕi,j = 1 ϕi,j = 1

i 6=1, i 6= n
2 +1 ϕi,j =

√
2 ϕi,j =

√
2

2 xn,gn((i−1)(j−1)) ϕi,j =
√

2
2 xn,gn((i−1)(j−1))

i = n
2 + 1 ϕi,j = 1 ϕi,j = (−1)j−1 ϕi,j = (−1)

n
2

Proof. We must consider the following cases (we use Lemma 7 to
calculate fi):

1. If i = 1 and (j = 1 or (j = n
2 + 1 and 2|n)) then

ϕi,j =
√

1ξj,i
n

n
= 1.
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2. If i = 1, j 6= 1 and (if 2|n then j 6= n
2 + 1) then

ϕi,j =
√

1ξj,i
n

2n
= 1.

3. If 2|n, i = n
2 + 1 and j = 1 then

ϕi,j =
√

1ξj,i
n

n
= 1.

4. If 2|n, i = n
2 + 1 and j = n

2 + 1 then

ϕi,j =
√

1ξj,i
n

n
=

1

2
xn,gn( n

2

n
2
) = (−1)

n
2 = (−1)j−1.

5. If 2|n, i = n
2 + 1 and j 6= 1 and j 6= n

2 + 1 then

ϕi,j =
√

1ξj,i
n

2n
=

1

2
xn,gn((j−1) n

2
) = (−1)j−1.

6. If i 6= 1 and j = 1 and (if 2|n then i 6= n
2 + 1)then

ϕi,j =
√

2ξj,i
n

n
=

√
2.

7. If i 6= 1 and i 6= n
2 + 1 and 2|n and j = n

2 + 1 then

ϕi,j =
√

2ξj,i
n

n
=

√
2
1

2
xn,gn( n

2
(i−1)) =

√
2(−1)

n
2 =

√
2
1

2
xn,gn((i−1)(j−1)).

8. If i 6= 1 and (if 2|n then i 6= n
2 + 1) and j 6= 1 and (if 2|n then j 6= n

2 + 1)
then

ϕi,j =
√

2ξj,i
n

2n
=

√
2

2
xn,gn((i−1)(j−1)).
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[4] J.D.H. Smith, Combinatorial characters of quasigroups, pp. 163–187 in: Cod-
ing Theory and Design Theory, Part I: Coding Theory, (ed. Ray-Chaudhuri),
Springer, New York, NY, 1990.

[5] J.D.H. Smith, Representation Theory of quasigroups, Sci. Math. Japonicae 60

(2004), 171–204.

Received 29 April 2006
Revised 18 July 2006

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

