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Abstract

We consider general properties of lattices of relative colour-families
and antivarieties. Several results generalise the corresponding
assertions about colour-families of undirected loopless graphs, see [1].
Conditions are indicated under which relative colour-families form a
lattice. We prove that such a lattice is distributive. In the class of
lattices of antivarieties of relation structures of finite signature, we
distinguish the most complicated (universal) objects. Meet decom-
positions in lattices of colour-families are considered. A criterion is
found for existence of irredundant meet decompositions. A connection
is found between meet decompositions and bases for anti-identities.
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1. Preliminary facts

Throughout the article, by a structure we mean a relation structure of a
fixed signature σ = (rj)j∈J . A structure is said to be finite if its universe
is a finite set. A homomorphism from a structure A into a structure B is
a map ϕ : A → B such that (ϕ(a1), . . . , ϕ(an)) ∈ rB

j for all j ∈ J and
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a1, . . . , an ∈ A with (a1, . . . , an) ∈ rA
j . If there exists a homomorphism from

A into B then we write A → B; otherwise, we write A 9 B.

For every class K, let Kf denote the set of isomorphism types of finite
structures in K. On Kf , define an equivalence relation ≡ as follows: A ≡ B if
and only if A → B and B → A. The relation → induces a partial order ≤ on
the quotient set Kf/≡. Let Core(K) denote the resulting partially ordered
set.

In the sequel, it is convenient to consider an isomorphic partially ordered
set whose universe is the set of cores of finite structures in K. Recall [2,
Section 2] that a finite structure is a core if all its endomorphisms are auto-
morphisms. A structure A is a core of a structure B if A is a minimal retract
of B (with respect to set inclusion). Simple properties of cores can be found,
for example, in [2, Proposition 2.1]. It is easy to see that, in every coset
G/≡, there exists a unique (up to isomorphism) core. We denote this core by
Core(G). The map defined by the rule G/≡ 7→ Core(G) is an isomorphism.

Let K be a class of structures. For every A ∈ K, let

[K → A] = {B ∈ K : B → A}.

If there is no ambiguity or K is the class of all structures of a given signature
then we write [→ A] instead of [K → A]. For every set A ⊆ K, let [K →
A] =

⋃

A∈A
[K → A]. If A is a finite set of finite structures then [K → A]

is called a K-colour-family. If |A| = 1 then the K-colour-family [K → A]
is said to be principal. Let L0(K) denote the partially ordered set of all
K-colour-families with respect to set inclusion. (If L0(K) has no greatest
element then by L0(K) we mean the set of all K-colour-families with a new
greatest element 1K).

We recall the definition of operations with structures from [3]. Let A

and B be structures and let (Ai)i∈I be a family of structures.

On the disjoint union of the universes of A and B, define a structure
A + B of signature σ as follows: (a1, . . . , an) ∈ rA+B if and only if either
(a1, . . . , an) ∈ rA or (a1, . . . , an) ∈ rB. The resulting structure is called the
sum of A and B. We have

(1) A + B → C ⇐⇒ A → C and B → C

for every structure C. A structure A is said to be connected if it cannot be
represented in the form A1 + A2, where A 9 Ai, i = 1, 2.
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On the Cartesian product of the universes of Ai, i ∈ I, define a structure
∏

i∈I Ai of signature σ as follows: (a1, . . . , an) ∈ r
∏

i∈I Ai if and only if
(a1(i), . . . , an(i)) ∈ rAi for every i ∈ I. The resulting structure is called the
product of the family (Ai)i∈I . We have

(2) C →
∏

i∈I

Ai ⇐⇒ C → Ai for all i ∈ I

for every structure C.

On the set AB of all functions from B into A, define a structure AB of
signature σ as follows: (f1, . . . , fn) ∈ r

AB

if and only if (f1(b1), . . . , fn(bn)) ∈
rA for all b1, . . . , bn ∈ B with (b1, . . . , bn) ∈ rB. The resulting structure is
called the exponent of A by B. We have

(3) C → AB ⇐⇒ B × C → A

for every structure C.

2. Lattices of colour-families

In this section, we show that partially ordered sets of K-colour-families are
usually lattices and study their lattice-theoretical properties.

Lemma 1. If K is a class satisfying the condition

(4) A × B ∈ K for all finite A,B ∈ K

then L0(K) is a distributive lattice with respect to the set-theoretical

operations.

Proof. Let K1 = [K → (Ai)i<n], K2 = [K → (Bj)j<m]. It is clear that
K1 ∪K2 is a K-colour-family, i.e., K1 ∨K2 = K1 ∪K2.

Let A ∈ K1 ∩ K2. Then A ∈ K and there exist i < n and j < m
such that A → Ai and A → Bj . Hence, A → Ai × Bj , cf. (2). By (4),
we have Ai × Bj ∈ K. Conversely, if A → Ai × Bj, where A ∈ K, i < n,
and j < m, then we have A → Ai and A → Bj. Hence, K1 ∩ K2 =
[

K → (Ai × Bj)i<n,
j<m

]

. In view of (4), we have Ai × Bj ∈ K for all i < n

and j < m.
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Remark 2. Another lattice of (principal) colour-families was considered
in [4, 5]. In fact, the universe of that lattice is the set of cores, the meet op-
eration coincides with the meet operation in L0(K), while the join operation
corresponds to the sum of relation structures. That lattice is distributive
too.

Let L be a lattice and let a, b ∈ L. By a relative pseudocomplement of a
with respect to b we mean an element a ∗ b such that

a ∧ x 6 b ⇐⇒ x 6 a ∗ b

for all x ∈ L. If a relative pseudocomplement exists for every pair of elements
of L then L is said to be a relatively pseudocomplemented lattice.

Lemma 3. If K is a class satisfying (4) and the condition

(5) AB ∈ K for all finite A,B ∈ K with B 9 A

then L0(K) is a relatively pseudocomplemented lattice.

Proof. Let K1 = [K → (Ai)i<n] and let K2 = [K → (Bj)j<m]. We in-

troduce the notation Ki =
[

K → (BAi

j )j<m

]

. By (5), we have B
Ai

j ∈ K

provided Ai 9 Bj. If Ai → Bj then Ai × C → Bj for every C ∈ K. By (3),

we obtain C → B
Ai

j , i.e.,
[

K → B
Ai

j

]

= K is the greatest element of L0(K).

Therefore,
[

K → B
Ai

j

]

∈ L0(K) for all i < n and j < m.

By Lemma 1, we have [K → Ai] ∩ Ki =
[

K → (BAi

j × Ai)j<m

]

. It is

immediate from (3) that B
Ai

j ×Ai → Bj . Hence, [K → Ai]∩Ki ⊆ K2. Let
K3 = [K → (Ck)k<l] be a K-colour-family such that [K → Ai] ∩ K3 ⊆ K2.
By Lemma 1, we have [K → Ai]∩K3 = [K → (Ai × Ck)k<l]. Therefore, for
every k < l, there exists a j < m such that Ai × Ck → Bj . By definition,

Ck → B
Ai

j . Thus, K3 ⊆ Ki.

We have proven that Ki is a pseudocomplement of [K → Ai] with
respect to K2. For every distributive lattice L and elements a, b, c ∈ L, if
a ∗ c and b ∗ c exist then so does (a ∨ b) ∗ c and (a ∨ b) ∗ c = (a ∗ c) ∧ (b ∗ c),
cf. [6, Theorem 9.2.3]. Hence, K1 ∗ K2 =

⋂

i<nKi.
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3. Lattices of antivarieties

Recall [2] that a K-antivariety is a class defined in K by some (possibly,
empty) set of anti-identities, i.e., sentences of the form

∀x1 . . . ∀xn(
¬R1(x) ∨ · · · ∨ ¬Rm(x)),

where each Ri(x) is an atomic formula. By [2, Theorem 1.2], for every
universal Horn class K, a subclass K′ is a K-antivariety if and only if
K′ = K ∩ H−1SP∗

u(K′), where H−1, S, and P∗
u are operators for tak-

ing homomorphic pre-images, substructures, and nontrivial ultraproducts.
In particular, each K-colour-family is a K-antivariety. Let L(K) denote the
partially ordered set of all K-antivarieties with respect to set inclusion.

Lemma 4. For every universal Horn class K, the partially ordered set L(K)
is a distributive lattice with respect to the set-theoretical operations.

Proof. It is clear that K1 ∧ K2 = K1 ∩ K2 and K1 ∪ K2 ⊆ K1 ∨ K2

for all K1,K2 ∈ L(K). Since K1 and K2 are elementary classes, the class
K1 ∪K2 is elementary too. In particular, P∗

u(K1 ∪K2) ⊆ K1 ∪K2. By [2,
Theorem 1.2], we have K1∨K2 = K∩H−1SP∗

u(K1∪K2). Hence, for every
A ∈ K1 ∨K2, there exists a B ∈ K1 ∪K2 such that A → B. Since K1 and
K2 are closed under H−1S in K, we obtain A ∈ K1∪K2 and, consequently,
K1 ∨K2 = K1 ∪K2.

The proof of the following lemma is similar to that of [1, Lemma 3.4]

Lemma 5. For every universal Horn class K and K-antivariety X, we have

X = H−1SP∗
u(Core(X)) ∩K.

If σ is a finite signature then the partially ordered set Core(K) and the
lattices L0(K) and L(K) are related as follows.

Lemma 6. For every universal Horn class K of finite signature, the lattice

L(K) is isomorphic to the ideal lattice I(L0(K)) of the lattice L0(K) and to

the lattice Io(Core(K)) of order ideals of the partially ordered set Core(K).

This lemma generalises [1, Theorem 3.6] to the case of arbitrary relation
structures of finite signature. The proof follows the lines of the proof in [1].
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Proof. Put ϕ(K′) = {A ∈ L0(K) : A ⊆ K′} for every K′ ∈ L(K) and put
ψ(J) =

∨

{A ∈ L0(K) : A ∈ J} for every ideal J of L0(K). It is easy to
see that ϕ is a map from L(K) into I(L0(K)) and ψ is a map from I(L0(K))
into L(K); moreover, both maps are monotone. We prove that ϕ = ψ−1,
which implies that ϕ and ψ are isomorphisms.

It is clear that ϕψ(J) ⊇ J and ψϕ(K′) ⊆ K′ for all J ∈ I(L0(K)) and
K′ ∈ L(K).

Let A ∈ K′ be a finite structure. Then [K → A] ⊆ K′ because K′ is a
K-antivariety. We have A ∈ [K → A] ⊆

⋃

{A ∈ L0(K) : A ⊆ K′}. Since
the K-antivariety ψϕ(K′) is generated by its finite structures, we obtain
ψϕ(K′) = K′.

Let A ∈ ϕψ(J), i.e., A ∈ L0(K) and A ⊆
∨

B∈J B. Then A =
[K → (Ai)i<n], where each finite structure Ai belongs to

∨

B∈J B. By [2,
Theorem 1.2], for every i < n, there exist a family (Bij)j∈Ji

⊆
⋃

B∈J B

and an ultrafilter Ui over Ji such that Ai →
∏

j∈Ji
Bij . Since Ai is a fi-

nite structure of finite signature, from [1, Lemma 3.2] it follows that there
exists a j(i) ∈ Ji such that Ai → Bj(i). Hence, A ⊆

[

K → (Bj(i))i<n
]

.
Since Bj(i) ∈

⋃

B∈J B, we obtain
[

K → Bj(i)

]

∈ J . Since J is an ideal,
we conclude that

∨

i<n

[

K → Bj(i)

]

∈ J . Thus, A ∈ J and, consequently,
ϕψ(J) = J .

For proving the fact that L(K) and Io(Core(K)) are isomorphic put

ϕ0(K
′) = {Core(A) : A ∈ K′}, ψ0(J) = H−1SP∗

u(J) ∩K.

By Lemma 5 and [1, Lemma 3.2], we have ϕ−1
0 = ψ0. It is clear that ϕ0

and ψ0 are monotone. Therefore, the lattices L(K) and Io(Core(K)) are
isomorphic.

Corollary 7. For every universal Horn class K of finite signature, the

lattice L(K) is relatively pseudocomplemented. For all K1,K2 ∈ L(K), the

following equality holds: K1 ∗K2 = H−1SP∗
u{A ∈ Kf : A×B ∈ K2 for all

B ∈ (K1)f} ∩K.

Proof. By [7, Corollary II.1.4], we have I ∗ J = {a ∈ L : a ∧ i ∈ J for all
i ∈ I} for every distributive lattice L and ideals I and J of L. This equality,
together with Lemma 6, yields the required assertion.
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4. Complexity of lattices of antivarieties

In this section, we introduce the notion of a universal (the most compli-
cated) lattice among the lattices of antivarieties of relation structures of
finite signature and give examples of universal lattices.

Let K be a class of structures. By the category K we mean the category
whose objects are structures in K and morphisms are homomorphisms. A
one-to-one functor Φ from a category K1 into a category K2 is called a full

embedding if, for every morphism α : Φ(A) → Φ(B) in K2, there exists a
morphism β : A → B in K1 such that Φ(β) = α. For more information
about categories, the reader is referred to [8]. By G we denote the class
(and the category) of undirected loopless graphs.

Lemma 8. Let K be a class of structures and let there exist a full embedding

Φ : G → K such that, for every finite graph G, the structure Φ(G) if finite.

Then there exists an embedding ϕ : Core(G) → Core(K).

Proof. Put ϕ(G) = Core(Φ(G)) for every G ∈ Core(G). It is clear that ϕ
is a map from Core(G) into Core(K). We show that ϕ is an embedding.

Let G ≤ H, where G,H ∈ Core(G), and let ψ be the corresponding
homomorphism. Then the composition

ϕ(G) = Core(Φ(G))
e
→ Φ(G)

Φ(ψ)
−−−→ Φ(H)

r
→ Core(Φ(H)) = ϕ(H)

is a homomorphism from ϕ(G) into ϕ(H). Hence, ϕ(G) ≤ ϕ(H).
Let ϕ(G) ≤ ϕ(H) for some G,H ∈ Core(G) and let ψ be the correspond-

ing homomorphism. Then the composition

Φ(G)
r
→ Core(Φ(G)) = ϕ(G)

ψ
→ ϕ(H) = Core(Φ(H))

e
→ Φ(H)

is a homomorphism from Φ(G) into Φ(H). Denote this homomorphism by α.
Since Φ is a full embedding, we have α = Φ(β) for some homomorphism
β : G → H. Hence, G ≤ H.

It remains to show that ϕ is a one-to-one map. If ϕ(G) = ϕ(H) then
ϕ(G) ≤ ϕ(H) and ϕ(H) ≤ ϕ(G). By the above, G ≤ H and H ≤ G. Hence,
G = H.

A category K satisfying the conditions of Lemma 8 is said to be finite-to-

finite universal. As is known [9] (see also [10, Theorem 2.10]), the partially
ordered set Core(G) is ω-universal, i.e., each countable partially ordered set
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is embeddable into Core(G). By Lemma 8, for every finite-to-finite universal
category K, the partially ordered set Core(K) is ω-universal.

Recall that a lattice L is called a factor of a lattice K if L is a homomor-
phic image of a suitable sublattice of K. We say that L(K) is a universal

lattice if, for every universal Horn class K′ of relation structures of finite
signature, the lattice L(K′) is a factor of the lattice L(K).

Theorem 9. Let K be a universal Horn class of relation structures of

finite signature. If K is a finite-to-finite universal category then L(K) is

a universal lattice.

Proof. By Lemma 8, for every universal Horn class K′ of relation structures
of finite signature, there exists an embedding ϕ : Core(K′) → Core(K).

By Lemma 6, we may consider the lattice of order ideals of the partially
ordered set of cores instead of the lattice of antivarieties. For every I ∈
Io(Core(K′)), put

ψ(I) = {H ∈ Core(K) : H ≤ ϕ(G) for some G ∈ I}.

It is easy to verify that, for every order ideal I of Core(K′), the set ψ(I) is
an order ideal of Core(K).

We prove that ψ is one-to-one. Let ψ(I) = ψ(J). For every H ∈ I,
we have ϕ(H) ∈ ψ(I) = ψ(J), i.e., there exists an element G ∈ J such that
ϕ(H) ≤ ϕ(G). Since ϕ is an embedding, we have H ≤ G, i.e., H ∈ J . We
have proven that I ⊆ J . The proof of the converse inclusion is similar.

We prove that ψ is a join homomorphism. Consequently, the join semi-
lattice of Io(Core(K′)) is embeddable into the join semilattice of Io(Core(K)).
The inclusion ψ(I)∨ψ(J) ⊆ ψ(I∨J) is obvious. Conversely, let H ∈ ψ(I∨J).
Then there exists a G ∈ I ∨ J such that H ≤ ϕ(G). Since I ∨ J = I ∪ J , we
obtain H ∈ ψ(I) ∪ ψ(J) = ψ(I) ∨ ψ(J).

Let L be the sublattice of Io(K) generated by the set {ψ(I) : I ∈
Io(Core(K′))}. Then, for every X ∈ L, there exist a lattice term
t(v0, . . . , vn−1) and order ideals J0, . . . , Jn−1 of Core(K′) such that X =
t(ψ(J0), . . . , ψ(Jn−1)).

We prove that, for every lattice term t(v0, . . . , vn−1) and order ideals
J0, . . . , Jn−1 of Core(K′), the equality

(6) t(ψ(J0), . . . , ψ(Jn−1)) ∩ ϕ(Core(K′)) = ϕ(t(J0, . . . , Jn−1))

holds, where ϕ(M) = {ϕ(m) : m ∈M} for every set M .
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We use induction on the length of the term. Let t(v0, . . . , vn−1) = vi. Then
the right-hand side of (6) is ϕ(Ji) and the left-hand side of (6) is ψ(Ji) ∩
ϕ(Core(K′)). It is clear that ϕ(Ji) ⊆ ψ(Ji) ∩ ϕ(Core(K′)). Conversely, let
H ∈ ψ(Ji) ∩ ϕ(Core(K′)). Then H = ϕ(G) for some G ∈ Core(K′). Let
J be the least ideal of Core(K′) containing Ji ∪ {G}. We have ψ(J) =
ψ(Ji) ∪ {A ∈ Core(K′) : A ≤ ϕ(G)}. Since ϕ(G) = H ∈ ψ(Ji), we obtain
ψ(J) = ψ(Ji). Since ψ is a one-to-one map, we have J = Ji, i.e., G ∈ Ji.
Therefore, H ∈ ϕ(Ji) ⊆ ψ(Ji).

Assume that t = t1 ∧ t2 or t = t1 ∨ t2 for some terms t1 and t2. We
introduce the notation

Yi = ti(ψ(J0), . . . , ψ(Jn−1)), Xi = ti(J0, . . . , Jn−1),

where i = 1, 2. By induction, Yi ∩ Core(K′) = ϕ(Xi), i = 1, 2.

If t = t1 ∧ t2 then t(ψ(J0), . . . , ψ(Jn−1)) = Y1 ∩ Y2, t(J0, . . . , Jn−1) =
X1∩X2. By induction, Y1∩Y2∩ϕ(Core(K′)) = ϕ(X1)∩ϕ(X2) ⊇ ϕ(X1∩X2).
For every A ∈ ϕ(X1) ∩ ϕ(X2), there exist Ai ∈ Xi, i = 1, 2, such that A =
ϕ(A1) = ϕ(A2). Since ϕ is a one-to-one map, we obtain A1 = A2 ∈ X1∩X2.

It t = t1 ∨ t2 then t(ψ(J0), . . . , ψ(Jn−1)) = Y1 ∪ Y2, t(J0, . . . , Jn−1) =
X1∪X2. By induction, (Y1∪Y2)∩ϕ(Core(K′)) = (Y1∩ϕ(Core(K′)))∪(Y2∩
ϕ(Core(K′))) = ϕ(X1)∪ϕ(X2) ⊆ ϕ(X1 ∨X2). The converse inclusion is an
easy consequence of the equality X1 ∨X2 = X1 ∪X2.

Since the operations of the lattice of order ideals are the set-theoretical
operations, the union and the intersection, from (6) we obtain

(7) ϕ−1(t(ψ(J0), . . . , ψ(Jn−1)) ∩ ϕ(Core(K′))) = t(J0, . . . , Jn−1).

Let X = t(ψ(J0), . . . , ψ(Jn−1)) ∈ L. Put α(X) = ϕ−1(X ∩ ϕ(Core(K′))).
It is immediate from (7) that α is a map from L onto Io(Core(K′)). By (6),
α is a homomorphism.

We present an example showing that the converse to Theorem 9
is not true. Namely, we indicate a quasivariety K of loopless digraphs such
that K is not a finite-to-finite universal category but L(K) is a universal
lattice.

Example 10. Let σ consist of one binary relation symbol r. Denote
by K the quasivariety of structures of the signature σ defined by the
quasi-identities
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∀x∀y
(

r(x, x) → x ≈ y
)

,

∀x∀y∀z
(

r(x, y)& r(x, z) → y ≈ z
)

,

∀x∀y∀z
(

r(y, x)& r(z, x) → y ≈ z
)

.

Let Cn, n > 2, denote the cycle of length n, i.e., the structure whose universe
is Cn = {0, 1, . . . , n− 1} and (i, j) ∈ rCn if and only if i+ 1 ≡ j (mod n). It
is easy to see that, for every n > 2, we have Cn ∈ K.

Let P denote the set of prime numbers. Denote by ap, p ∈ P, the
K-colour-family [K → Cp]. Let L be the sublattice of L0(K) generated
by the elements (ap)p∈P.

We show that the distributive lattice L is freely generated by the set
(ap)p∈P. Since |P| = ω, this means that the free distributive lattice FD(ω)
of countable rank is embedded into L0(K). We use [7, Theorem II.2.3].
It suffices to verify that, for all finite nonempty subsets I, J ⊆ P, from
∧

i∈I ai 6
∨

j∈J aj it follows that I ∩ J 6= ∅.

Let I and J be finite and nonempty. Assume that
∧

i∈I ai 6
∨

j∈J aj. By

Lemma 1, we have
∧

i∈I ai =
[

K →
∏

i∈I Ci
]

and
∨

j∈J aj = [K → (Cj)j∈J ].
Let k =

∏

i∈I i. It is easy to see that
∏

i∈I Ci ' Ck (cf., for example, [11]).
Since

∧

i∈I ai 6
∨

j∈J aj , there exists a prime j ∈ J with Ck ∈ [K → Cj ].
We have Ck → Cj if and only if j divides k (cf., for example, [12]). Since j is
prime and k is a product of distinct primes, we conclude that j ∈ I. Thus,
I ∩ J 6= ∅.

We show that the ideal lattice I(FD(ω)) of the free distributive lattice
of countable rank is embeddable into L(K). Let L and K be distributive
lattices and let ϕ : L→ K be an embedding. Define a map ψ : I(L) → I(K)
by the following rule: ψ(I) is the ideal of K generated by ϕ(I). Using
the definition of an ideal generated by a set, we easily find that ψ is an
embedding. In particular, I(FD(ω)) is embeddable into I(L0(K)). The latter
lattice is isomorphic to L(K) in view of Lemma 6.

We show that the lattice L(G) of antivarieties of undirected loopless
graphs is a homomorphic image of the lattice I(FD(ω)). Since L0(G) is a
countable distributive lattice, there exists a homomorphism from FD(ω) onto
L0(G). As above, this homomorphism induces a homomorphism between
the corresponding ideal lattices. It remains to use Lemma 6.
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Therefore, L(G) is a factor of L(K). We conclude that L(K) is a
universal lattice. The class of rigid objects in the category K consists
of trivial structures and finite directed chains only (cf. [8, Exercise IV.1.6]).
Therefore, the category K is not universal and, consequently, is not
finite-to-finite universal.

5. Irredundant meet decompositions in lattices of

colour-families

Recall that G denotes the universal Horn class and the category of undi-
rected loopless graphs. The study of the lattice L0(G) was initiated in [1].
It was proven that this lattice possesses neither completely join irreducible
nor completely meet irreducible nonzero elements. A simple description for
join irreducible colour-families was found. The question on meet irreducible
elements turned to be closely connected with a well-known problem in the
graph theory, Hedetniemi’s conjecture [13].

Here, we consider meet decompositions of K-colour-families with the
help of Lemma 3, which says that the lattice of K-colour-families is relatively
pseudocomplemented. A similar approach was first used in [4].

We present necessary definitions. By a meet decomposition of an element
x ∈ L, where L is an arbitrary lattice, we mean a representation

(8) x =
∧

i∈I

mi,

where (mi)i∈I is a family of meet irreducible elements, i.e., for each i ∈ I,
we have mi 6= 1 and from mi = a∧ b it follows that either mi = a or mi = b.
A meet decomposition (8) is irredundant if x <

∧

i∈J mi for every proper
subset J ( I. For distributive relatively pseudocomplemented lattices, the
following criterion for meet irreducibility of elements is known [14].

Proposition 11. Let L be a distributive relatively pseudocomplemented

lattice and let m ∈ L. The element m is meet irreducible if and only

if x ∗m = m for every x ∈ L with x 
 m.

Throughout this section, we assume that L is an arbitrary distributive rel-
atively pseudocomplemented lattice. Let ∨, ∧, and ∗ denote the operations
of L. For every x ∈ L, let Reg(x) = {y∗x : y ∈ L}, i.e., let Reg(x) denote the
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set of regular elements of the principal filter [x) of L. For all u, v ∈ Reg(x),
put

u+ v = ((u ∨ v) ∗ x) ∗ x, u · v = u ∧ v, 0 = x, 1 = 1L, u′ = u ∗ x.

The set Reg(x) with the operations +, ·, and ′ and constants 1 and 0
is a Boolean algebra; moreover, the map r from L to Reg(x) defined
by the rule r(y) = (y ∗ x) ∗ x is a homomorphism between Heyting algebras
[6, Theorem 8.4.3].

We mention the following relationship between meet irreducible
elements of L and dual atoms of Reg(x) [4, Theorem 6].

Proposition 12. Let x, y ∈ L and let x < y. The element y is a dual

atom of the Boolean algebra Reg(x) if and only if y ∗ x > x and y is meet

irreducible in L.

Recall [15] that a Boolean algebra A is atomic if, for every nonzero element
a ∈ A, there exists an atom b such that b 6 a. An element a is said to be
atomless if a 6= 0 and there is no atom b such that b 6 a.

Theorem 13. Let L be a distributive pseudocomplemented lattice and let

a ∈ L. The element a admits an irredundant meet decomposition in L if

and only if the Boolean algebra Reg(a) is atomic.

Proof. Let a =
∧

i∈I mi be an irredundant meet decomposition. We prove
that mi ∗ a > a for every i ∈ I. In view of Proposition 12, this means
that each mi, i ∈ I, is a dual atom of Reg(a). Since a =

∧

i∈I mi, we have
mi ∗a = mi ∗

(
∧

i∈I mi

)

=
∧

mj
mi
mj =

∧

j 6=imj (cf. [16, IV.7.2 (8)]). Since

the meet decomposition is irredundant, we have mi ∗ a =
∧

j 6=imj > a.
Assume that there exists an atomless element b ∈ Reg(a). Since the

complement of a dual atom is an atom, we conclude that mi ∗ a 
 b for all
i ∈ I. Hence, b ∧ (mi ∗ a) = a for all i ∈ I. By the definition of a relative
pseudocomplement, we have b 6 (mi ∗ a) ∗ a = mi for all i ∈ I. Therefore,
b 6

∧

i∈I mi = a. This proves that Reg(a) possesses no atomless element,
i.e., Reg(a) is an atomic Boolean algebra.

Conversely, assume that Reg(a) is an atomic Boolean algebra. Let
(ai)i∈I be the set of atoms. If |Reg(a)| = 2 then the element a is meet irre-
ducible in view of Proposition 11. In the sequel, we assume that |Reg(a)| >
2. We denote mi = ai ∗ a, i ∈ I. For every i ∈ I, the element mi is a
dual atom of Reg(a); moreover, each dual atom is of the form mi, i ∈ I.
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By Proposition 12, we have mi ∗ a > a and mi is meet irreducible for every
i ∈ I. It remains to show that a =

∧

i∈I mi (in the lattice L). It is clear
that a is a lower bound for (mi)i∈I . If a is not the greatest lower bound
then there exists a lower bound b0 ∈ L for (mi)i∈I such that b0 
 a. Con-
sider the element (b0 ∗ a) ∗ a ∈ Reg(a). Since b0 6 mi, we conclude that
(b0 ∗ a) ∗ a 6 (mi ∗ a) ∗ a = mi, i ∈ I. Hence, b = (b0 ∗ a) ∗ a ∈ Reg(a) is
a lower bound for (mi)i∈I . Since b0 
 a and b0 6 b, we find that b 6= a,
i.e., b > a. Since Reg(a) is an atomic Boolean algebra, there exists an atom
aj such that aj 6 b. Passing to the complements, we find that b′ 6 mj.
Since b 6 mi for all i ∈ I, we obtain b + b′ = 1 6 mj + mj = mj < 1, a
contradiction.

Similar questions for undirected loopless graphs were considered in [17],
where the notion of the level of nonmultiplicativity of a graph was intro-
duced. In our terminology, the level of nonmultiplicativity of a graph G is
the number of dual atoms of the Boolean algebra Reg([G → G]). In [17], the
following conjecture is stated: The level of nonmultiplicativity of each finite

graph is finite. In connection with Theorem 13, we formulate the following

Problem 14. Let K be a universal Horn class of relation structures of
finite signature. Is this true that, for every K-colour-family A, the following
conditions are equivalent:

(1) there exists an irredundant meet decomposition A =
∧

i∈I Mi,

(2) there exists a finite meet decomposition A =
∧

i<nMi, n < ω,

(3) the Boolean algebra Reg(A) is finite?

In the next section, we find a connection between this problem and existence
of independent bases for anti-identities.

6. Anti-identities of finite structures

Recall that a set Σ of anti-identities is a basis for anti-identities of a class
K if K is the class of structures in which all anti-identities of Σ are valid,
i.e., K = Mod(Σ). By a basis for anti-identities of a structure A we mean
a basis for anti-identities of the antivariety generated by A. A basis Σ is
said to be independent if, for every ϕ ∈ Σ, the proper inclusion Mod(Σ) (
Mod(Σ \ {ϕ}) holds.
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A structure A is said to be weakly atomic compact if every locally consistent
in A set of atomic formulas is consistent in A.

We reduce the question on existence of an independent basis for anti-
identities of a finite relation structure of finite signature to Problem 14.

Let A be a finite relation structure of finite signature and let Σ = (ϕi)i∈I
be an independent basis for anti-identities of A. With each anti-identity ϕi,
i ∈ I, we associate a finitely presented structure Bi as follows:

Let ϕi � ∀x(¬ψ1(x)∨ · · · ∨ ¬ψn(x)); then Bi is the structure defined by
generators x and relations ψ1(x), . . . , ψn(x).

It is easy to see that the antivariety defined by Σ coincides with the
class

⋂

i∈I

[Bi 9] = {B : Bi 9 B for all i ∈ I}.

Since Σ is an independent basis, we have Bi → Bj if and only if i = j.

Lemma 15. The following two conditions are equivalent:

(1) [→ A] =
⋂

i∈I [Bi 9],

(2) there exists a family of finite structures (Ai)i∈I such that [Bi 9] =
[→ Ai] for all i ∈ I and [→ A] = [→

∏

i∈I Ai].

Proof. It is clear that (2) implies (1). Indeed, if such a family exists then,
for every structure C, we have

C ∈ [→ A] =

[

→
∏

i∈I

Ai

]

⇐⇒ C → Ai for all i ∈ I ⇐⇒

⇐⇒ C ∈ [Bi 9] for all i ∈ I ⇐⇒

⇐⇒ C ∈
⋂

i∈I

[Bi 9] .

We prove that (1) implies (2).

Notice that each structure Bi, i ∈ I, is connected. Assume the contrary,
i.e., let there exist an element i ∈ I such that Bi is not connected. Then
Bi = B1

i +B2
i for some structures Bk

i with Bi 9 Bk
i , k = 1, 2. Since Bj 9 Bi

provided j 6= i, we have Bk
i ∈ [Bj 9] for all j 6= i and k = 1, 2. Therefore,

Bk
i ∈

⋂

i∈I [Bi 9] = [→ A], k = 1, 2. Thus, Bi ∈ [→ A] ⊆ [Bi 9], which is
a contradiction.



Lattices of relative colour-families and antivarieties 137

For an arbitrary i ∈ I, consider the interval [A,A + Bi] of the partially
ordered set of cores. If there exists a core C such that A → C → A+Bi and
Bi 9 C 9 A then, by (1), we obtain C /∈

⋂

i∈I [Bi 9]. Hence, there exists a
j ∈ I such that Bj → C. It is easy to see that i 6= j. Since Bj → C → A+Bi

and Bj is connected, we conclude that Bj → Bi, where i 6= j. Since Σ is an
independent basis, we arrive at a contradiction. Thus, A + Bi covers A in
the partially ordered set of cores (in symbols: A ≺ A + Bi). Since this is a
distributive lattice (cf. Remark 2), we conclude that A×Bi ≺ Bi. We denote
Ci = A × Bi, i ∈ I. By (2) and (3), we obtain Ci → A → C

Bi

i for all i ∈ I.

By [5, Lemma 2.5], for every i ∈ I, the equality
[

→ C
Bi

i

]

= [Bi 9] holds.

Put Ai = C
Bi

i . We prove that
⋂

i∈I [Bi 9] =
[

→
∏

i∈I Ai

]

. We deduce

D ∈
⋂

i∈I

[Bi 9] ⇐⇒ D ∈ [Bi 9] for all i ∈ I ⇐⇒

⇐⇒ D ∈ [→ Ai] for all i ∈ I ⇐⇒

⇐⇒ D ∈

[

→
∏

i∈I

Ai

]

.

Since
⋂

i∈I [Bi 9] = [→ A], we obtain [→ A] =
[

→
∏

i∈I Ai

]

. Moreover, if
the structure A has no trivial substructure then the structure

∏

i∈I Ai has
no trivial substructure either.

In the sequel, we assume that (equivalent) conditions (1) and (2) of Lemma
15 are satisfied. Without loss of generality, we may assume that A is a core.
Since A is finite, the class [→ A] is elementary. By [2, Proposition 2.2],
the structure

∏

i∈I Ai is weakly atomic compact and
[

→
∏

i∈I Ai

]

is the
antivariety generated by

∏

i∈I Ai. In view of [2, Corollary 2.6], there exists
a unique (up to isomorphism) core A∗ of

∏

i∈I Ai; moreover, the antivarieties
generated by A∗ and

∏

i∈I Ai coincide. Therefore, the antivarieties generated
by A and A∗ coincide. By [2, Corollary 2.5], the structures A and A∗ are
isomorphic.

Since A∗ is a finite structure of finite signature, there exists a finite
subset F ⊆ I such that A∗ is embeddable into

∏

i∈F Ai.

We suggest the following
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Conjecture 16. The equality [→ A] =
[

→
∏

i∈F ′ Ai

]

holds for some finite
subset F ′ ⊆ I with F ⊆ F ′.

If this conjecture is true then Σ is a finite basis, which means that
every finite relation structure of finite signature having no finite basis for its
anti-identities possesses no independent basis for its anti-identities.

We return to Problem 14. Let Ki be the principal colour-family
generated by Ai, i ∈ I. Then

[→ A] =
∧

i∈I

Ki

is an irredundant meet decomposition of [→ A] (in the lattice of colour-
families). Therefore, if the answer to the question in Problem 14 is positive
then Conjecture 16 is true.

The author thanks the referee for a series of valuable comments which
helped to improve the text.
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