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Abstract
We investigate the lattice of machine invariant classes. This is an
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1. Motivation

In different areas of mathematics, people consider a lot of hierarchies which
are typically used to classify some objects according to their complexity.
Here we formulate and discuss some hierarchies of machine invariant classes.

We are inspired by Yablonski’s result [10].

Theorem 1. Every initial Mealy machine transforms an ultimately periodic
word to an ultimately periodic word.

A cryptosystem [9] is a five–tuple 〈P, C,K, E ,D〉, where the following
conditions are satisfied:

• P is a finite set of possible plaintexts,

• C is a finite set of possible ciphertexts,
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• K, the keyspace, is a finite set of possible keys;

• for each K ∈ K, there is an encription rule eK ∈ E and

• a corresponding decryption rule dK ∈ D;

• each eK : P → C and dK : C → P are functions such that
∀x ∈ P dK(eK(x)) = x.

This leads to the concept of a ciphering machine [13]. A tuple
〈X, S, Y, K, z, f, g, h〉 is called a ciphering machine if:

• X is a finite alphabet of possible plaintexts,

• S is a finite set of states of the ciphering machine,

• Y is a finite alphabet of possible ciphertexts,

• K is a finite set of possible keys;

• z : K → S, f : S×K×X → K, g : S×K×X → S, h : S×K×X →
Y are functions.

Observe, it may be considered as a special kind of a Mealy machine [13].
Thus the Mealy machine appears in cryptography. This model, namely,
Mealy machine, is being investigated intensively since the nineteen fifties
(cf. [3, 6, 8, 11, 12]).

We shall describe one secret-key cryptosystem (Figure 1).
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Let S, V be devices represent respectively the bitwise addition (modulo
two) and a Mealy machine V = 〈Q, A, {0, 1}, ◦, ∗〉. All users have identical
devices.

The plaintext and cryptotext spaces are both equal to {0, 1}∗. First the
users choose a key, consisting of x ∈ Aω. Every session of communication
begins with the choice of a session key, namely, sender chooses n ∈ N,
q ∈ Q and then sends those securely to receiver. Now sender computes
y = q ∗ x[n, n + l], where l + 1 is the length of plaintext p. The encryption
works in a bit-by-bit fashion, that is, ci = pi + yi(mod2).

When this is done, the security of the scheme of course depends in a
crucial way on the quality of the x ∈ Aω and the machine V . It is worth
to mention at this stage of investigation this scheme serves only as extra
(but important) motivation for represented report, that is, why we examine
infinite words with Mealy machines.

On the other hand if we restrict ourselves with finite words then
we can state only: for every pair of words u, v ∈ An there exists Mealy
machine that transforms u to v. So we have not obtained the new interesting
partition of A∗.

2. Preliminaries

In this section we present most of the notations and terminology used in this
paper. Our terminology is more or less standard (cf. [7]) so that a specialist
reader may wish to consult this section only if need arise.

Let A be a finite non-empty set and A∗ the free monoid generated by
A. The set A is also called an alphabet, its elements letters and those of
A∗ finite words. The identity element of A∗ is called an empty word and
denoted by λ. We set A+ = A∗\{λ}.

A word w ∈ A+ can be written uniquely as a sequence of letters as w =
w1w2 . . . wl, with wi ∈ A, 1 ≤ i ≤ l, l > 0. The integer l is called the length
of w and denoted |w|. The length of λ is 0. We set w0 = λ ∧ ∀i wi+1 = wiw .

A word w′ ∈ A∗ is called a factor (or subword) of w ∈ A∗ if there exist
u, v ∈ A∗ such that w = uw′v. A word u (respectively v) is called a prefix
(respectively a suffix) of w. A pair (u, v) is called an occurrence of w′ in
w. A factor w′ is called proper if w 6= w′. We denote respectively by F(w),
Pref(w) and Suff(w) the sets of w factors, prefixes and suffixes.
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An (indexed) infinite word x on the alphabet A is any total map x : N→ A.
We set for any i ≥ 0, xi = x(i) and write

x = (xi) = x0x1 . . . xn . . .

The set of all the infinite words over A is denoted by Aω.
A word w′ ∈ A∗ is a factor of x ∈ Aω if there exist u ∈ A∗, y ∈ Aω such

that x = uw′y. A word u (respectively y) is called a prefix (respectively a
suffix) of x. We denote respectively by F(x), Pref(x) and Suff(x) the sets of
x factors, prefixes and suffixes. For any 0 ≤ m ≤ n, x[m,n] denotes a factor
xmxm+1 . . . xn. An indexed word x[m,n] is called an occurrence of w′ in x
if w′ = x[m, n]. The suffix xnxn+1 . . . xn+i . . . is denoted by x[n,∞].

If v ∈ A+ we denote by vω an infinite word

vω = vv . . . v . . .

This word vω is called a periodic word. The concatenation of u = u1u2 . . . uk

∈ A∗ and x ∈ Aω is the infinite word

ux = u1u2 . . . ukx0x1 . . . xn . . .

A word x is called ultimately periodic if there exist words u ∈ A∗, v ∈ A+

such that x = uvω. In this case, |u| and |v| are called, respectively, an
anti-period and a period.

A 3–sorted algebra V = 〈Q,A, B, q0, ◦, ∗〉 is called an initial Mealy
machine if Q,A, B are finite, nonempty sets, q0 ∈ Q; ◦ : Q×A→Q is a total
function and ∗ : Q × A→B is a total surjective function. The mappings ◦
and ∗ may be extended to Q×A∗ by defining

q ◦ λ = q, q ◦ (ua) = (q ◦ u) ◦ a

q ∗ λ = λ, q ∗ (ua) = (q ∗ u)((q ◦ u) ∗ a) ,

for all q ∈ Q, (u, a) ∈ A∗×A. Henceforth, we shall omit parentheses if there
is no danger of confusion. So, for example, we will write q ◦ u ∗ a instead of
(q ◦ u) ∗ a.

Let (x, y) ∈ Aω × Bω. We write y = q0 ∗ x or x
V
⇁ y if ∀n y[0, n] =

q0 ∗ x[0, n] and say machine V transforms x to y. We write x⇁y if there
exists such V that x

V
⇁ y; otherwise we write x6⇁y.
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3. The lattice of machine invariant sets

We say a word x ∈ Aω
1 is apt for V = 〈Q,A, B, q0, ◦, ∗〉 if A1 ⊆ A. Let K 6= ∅

be any class of infinite words. The class K is called machine invariant if
every initial machine transforms all apt words of K to words of K.

Remark. If we like to operate with sets instead of classes then we may
restrict ourselves with one fixed countable alphabet A={a0, a1, . . . , an, . . .}
and consider the set Fin(A) of all non-empty finite subsets of A. Now the set
K may be chosen as the subset of F = {x ∈ Aω |A ∈ Fin(A) }. Similarly, we
may restrict ourselves with one fixed countable set Q = {q1, q2, . . . , qn, . . .}
and consider only machines from the set

M = {〈Q,A, B, q0, ◦, ∗〉 |Q ∈ Fin(Q) ∧ A,B ∈ Fin(A)} .

There by, the set ∅ 6= K ⊆ F is called machine invariant if every initial
machine V ∈ M transforms all apt words of K to words of K.

We follow the well established approach (cf. [4]). For the reader’s con-
venience, we briefly recall some basic definitions in the form appropriate for
future use in the paper.

Let 〈P ;≤〉 be an ordered set.
Let S = {si | i ∈ I} ⊆ P and Su = {y | ∀s ∈ S s ≤ y}. An element

x ∈ P is called a join of S (we write x = ∪S or x = ∪i∈Isi) if x ∈ Su

and ∀s ∈ Su x ≤ s. We write x ∪ y instead of {x} ∪ {y}. Dually, let
Sl = {y | ∀s ∈ S y ≤ s} then an element x ∈ P is called a meet of S (we
write x = ∩S or x = ∩i∈Isi) if x ∈ Sl and ∀s ∈ Sl s ≤ x. We write x ∩ y
instead of {x} ∩ {y}.

• An element ⊥ ∈ P is called a bottom, if ∀x ∈ P ⊥ ≤ x. Dually, > ∈ P
is called a top, if ∀x ∈ P x ≤ >.

• If x ∪ y and x ∩ y exist for all x, y ∈ P then P is called a lattice.

• If ∪S and ∩S exist for all S ⊆ P then P is called a complete lattice.

A complete lattice L is said to be completely distributive, if for any doubly
indexed subset {xij | i ∈ I, j ∈ J } of L we have
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⋂

i∈I


 ⋃

j∈J
xij


 =

⋃

α : I→J

( ⋂

i∈I
xiα(i)

)
.

Let L be a lattice with ⊥ and >. For x ∈ L we say y ∈ L is a complement
of x if x ∩ y = ⊥ and x ∪ y = >. A lattice L is called a Boolean lattice if

• for all x, y, z ∈ L we have x ∩ (y ∪ z) = (x ∩ y) ∪ (x ∩ z),

• L has ⊥ and >, and each x ∈ L has a complement x′ ∈ L.

Corollary 2 [2] . Let L be the set that contains all machine invariant sets.
Then 〈L,∪,∩ 〉 is a completely distributive lattice, where ∪, ∩ are respec-
tively the set union and intersection. The bottom ⊥ is the set of all ultimately
periodic words, the top > = F.

An infinite word x ∈ Aω is called a recurrent word if any factor w of x has
an infinite number of occurrences in x. Any word x = uy, where u ∈ A∗,
y ∈ Aω is called an ultimately recurrent word if y is a recurrent word.

Theorem 3 [2]. Every initial Mealy machine transforms an ultimately
recurrent word to an ultimately recurrent word.

Example 4. Let x = (xi) = 101021031 . . . 0n1 . . . Then x is not an
ultimately recurrent word. Assume {a, b} ∩ {0, 1} = ∅. Let y ∈ {a, b}ω

be any ultimately recurrent but not ultimately periodic word. Define z′, z′′

as follows:

z′i =

{
1, if xi = 1 and yi = a,

yi, otherwise;
z′′i =

{
1, if xi = 1 and yi = b,

yi, otherwise.

One of the words z′, z′′ neither is ultimately periodic nor ultimately
recurrent. Consider the Mealy machines V1 and V2 shown in Figure 2.
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Then z′ V1⇁ y and z′′ V2⇁ y.

V1 V2q1 q1
ª ªb/b

1/a

a/a

b/b

1/b
a/au u

½¼

¾»

½¼

¾»

Figure 2.

So we have a method how to construct the infinite word that neither is
ultimately periodic nor ultimately recurrent from an ultimately recurrent
word if it is not ultimately periodic. We shall refer to this example in proof
of such proposition.

Proposition 5. L is not a Boolean lattice.

Proof. Let K = {x ∈ F |x is ultimately recurrent} then K ∈ L by
Theorem 3. Suppose K′ ∈ L is a complement of K then K ∩ K′ = ⊥ and
K ∪ K′ = F by Corollary 2. Let z be one of z′, z′′ of Example 4 such that
z /∈ K, and let y be as in Example 4. Since K′ ∈ L and z ⇁ y (see Example 4)
then y ∈ K′. Hence, y ∈ K ∩ K′ = ⊥. Contradiction.

4. The length

Let P be an ordered set. Then P is called a chain or totally ordered set,
if for all x, y ∈ P , either x ≤ y or y ≤ x (that is, if any two elements
of P are comparable). If C = {x0, x1, . . . , xn} is a finite chain in P with
card(C) = n+1, then we say the length of C is n. If C is infinite chain in P ,
then we say the length of C is card(C). The size (cardinality) of the longest
chain in P is called the length of P and is denoted by `(P ).

A machine V = 〈Q1×Q2, A1, B2, (q1, q2), ◦, ∗〉 is called a composition of
V1 = 〈Q1, A1, B1, q1, ◦′, ∗′〉 with V2 = 〈Q2, B1, B2, q2, ◦′′, ∗′′〉 if

(q′, q′′) ◦ a = (q′ ◦′ a, q′′ ◦′′ q′ ∗′ a),

(q′, q′′) ∗ a = q′′ ∗′′ q′ ∗′ a

for all (q′, q′′, a) ∈ Q1 ×Q2 ×A1.
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Lemma 6. If x ⇁ y and y ⇁ z then x ⇁ z.

Proof. Let x
V1⇁ y and y

V2⇁ z. We can choose machines V1 =
〈Q1, A1, B1, q1, ◦′, ∗′〉 and V2 = 〈Q2, A2, B2, q2, ◦′′, ∗′′〉 so that B1 = A2. Then
V the composition of V1 with V2 transforms x to z.

Corollary 7. A set V(x) = {y | ∃V ∈ M x
V
⇁ y}, where x ∈ Aω and

A ∈ Fin(A), is machine invariant.

Proof. Let y ∈ V(x) and y ⇁ z then x ⇁ z by Lemma 6. Therefore
z ∈ V(x).

Corollary 8. card(V(x)) = ℵ0, where ℵ0 is the first infinite cardinality.

Proof. Since card(M) = ℵ0 then card(V(x)) ≤ ℵ0. Note ⊥ ⊆ V(x) by
Corollary 2. Hence ℵ0 = card(⊥) ≤ card(V(x)). Therefore card(V(x)) = ℵ0.

An order on C is called a well-ordering on C if C is a chain and every subset
S ⊆ C has a minimal element, that is, ∃ ∩ S ∈ S.

Theorem 9 (Zermelo). For every non-empty set C there exists a well-
ordering on C.

Proposition 10. There is a chain C in L such that card(C) = c, where
c = card(R), R denotes the set of real numbers.

Proof. The proof is an application of Zermelo’s theorem.
Let A ∈ Fin(A) such that card(A) > 1 and ¹ be any well-ordering on

Aω, while x ≺ y means x ¹ y and x 6= y. Then define K(y) =
⋃

x¹y V(x)
and a chain I = {y | ∀x ≺ y K(x) 6= K(y)} in Aω. Since Aω is well-ordered
there is the minimal element x(1) in I.

Now suppose that x(1) ≺ x(2) ≺ . . . ≺ x(k) are the first k elements of
the chain I. Since ∀i card(V(x(i))) = ℵ0 and K(x(k)) =

⋃k
i=1 V(x(i)) then

card(K(x(k))) = ℵ0. Since card(Aω) > ℵ0 then ∃x ∈ Aω x /∈ K(x(k)). Hence,
the chain I has at least the k + 1-st element x(k+1). Therefore, we can say
proceeded by induction that card(I) ≥ ℵ0.⋃

x∈I V(x) ⊇ Aω it must follow that c = card(Aω) ≤ card(
⋃

x∈I V(x))
= card(I) ≤ c. Let C = {K(x) | x ∈ I} then C is a chain in L and card(C) =
card(I) = c.
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Corollary 11. `(L) = c .

Corollary 12. card(L) ≥ c .

5. The width

The ordered set P̄ is called an antichain if x ≤ y in P̄ only if x = y. Let P
be an ordered set. The width of P is defined to be the size (cardinality) of
the largest antichain in P and is denoted by w(P ).

Lemma 13. Let V = 〈Q,A, B, ◦, ∗〉 be any Mealy machine and q0 ∈ Q. If
exists s ≥ card(Q) such that q0 ∗ 0s = 0s then

∀n ∈ N q0 ∗ 0s+n = 0s+n.

Proof. Let qk = q0 ◦ 0k and Qs = {q0, q1, q2, . . . , qs−1}. Then ∀q′ ∈ Qs q′ ∗
0 = 0 and Qs ⊆ Q. Hence, by pigeon-hole principle, there exist 0 ≤ i < j ≤
s− 1 such that qi = qj ; otherwise Qs = Q.

(i) If Qs = Q then ∀q′ (q′ ∈ Q ⇒ q′ ∈ Qs). Hence ∀q′ ∈ Q q′ ∗ 0 = 0.
Therefore ∀n ∈ N q ∗ 0s+n = 0s+n.

(ii) If Qs 6= Q then qi = qj . Hence qj+1 = q0 ◦ 0j+1 = qj ◦ 0 = qi ◦
0 = qi+1 ∈ Qs. Now by induction we have ∀k qk ∈ Qs. Therefore
∀n ∈ N q ∗ 0s+n = 0s+n.

Proposition 14. There is an antichain C̄ in L such that card(C̄) = c.

Proof. Let c : N× N→ N be any bijection, for example,

cij =
1
2

((
i + j

)2 + 3i + j
)
.

Now define a map

T : {0, 1}ω → {0, 1}ω : x 7→ y = y0y1 . . . yn . . .

as follows

yn =





1, if ∃k ∈ N (
n = k2 ∧ cij = k ∧ xi ≡ j

(
mod 2

))
;

0, otherwise.
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We claim: if u 6= x then T (u) 6⇁ T (x) and T (x) 6⇁ T (u).
If u 6= x then there exists i such that ui 6= xi. Without restriction, we

assume that ui = 0 but xi = 1. Then T (u)(c2
ij) = 0 for every odd j and

T (u)
[(

cij − 1
)2 + 1, c2

ij

]
= 02cij−1

but T (x)(c2
ij) = 1 and

T (x)
[(

cij − 1
)2 + 1, c2

ij

]
= 02cij−21.

Let V = 〈Q, {0, 1}, {0, 1}, q0, ◦, ∗〉 be any initial Mealy machine that
transforms T (u) to T (x). We can choose odd j such that 2cij−2 ≥ card(Q).
Let q = q0 ◦ T (u)[0, (cij − 1)2] then

q ∗ 02cij−1 = q ∗ T (u)
[(

cij − 1
)2 + 1, c2

ij

]

= T (x)
[(

cij − 1
)2 + 1, c2

ij

]
= 02cij−21.

This is contradiction by Lemma 13.

Corollary 15. w(L) = c .

6. Subword complexity

Let A be an alphabet then for each n ≥ 0 we denote by An the set of all
words of length n. The function fx(n) = card(An ∩F(x)), where x ∈ Aω, is
called the subword complexity of the word x (cf. [1]). The growth function
of the word x is defined as gx(n) =

∑n
i=0 fx(i) .

Let f , g be total functions. We write g = O(f), if there exists such
c > 0 that ∀n ∈ N |g(n)| ≤ c |f(n)| . Let ∅ 6= K ⊆ F. We say the subword
complexity of the set K is f if ∀x ∈ K fx = O(f) . Similarly, we say the
growth function of the set K is f if ∀x ∈ K gx = O(f) .

Lemma 16. Let V = 〈Q,A, B, q0, ◦, ∗〉 be any Mealy machine. If x
V
⇁ y

then ∀n fy(n) ≤ |Q| fx(n) .
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Proof. Let x
V
⇁ y and u ∈ F (x) then there exist q ∈ Q and v ∈ F (y) such

that q ∗ u = v. Since q ∈ Q, it follows that machine V can transform the
word u to |Q| distinct words v at the very most.

Let v ∈ F (y) and |v| = n then there exist u ∈ F (x) and q ∈ Q such
that q ∗ u = v. Hence, u is transformed to v. Note |u| = |v|. Therefore,
fy(n) ≤ |Q| fx(n).

Proposition 17. Let f : N→ R be any total function.

(i) The set K1 = {x ∈ F | fx = O(f)} is machine invariant.

(ii) The set K2 = {x ∈ F | gx = O(f)} is machine invariant.

Proof.

(i) Let x ∈ K1 then ∀n ∈ N fx(n) ≤ c |f(n)| for some c > 0. Let x
V
⇁ y,

where V = 〈Q,A, B, q0, ◦, ∗〉, then by Lemma 16 fy(n) ≤ |Q| fx(n) ≤
c |Q| |f(n)|. Hence fy = O(f), that is, y ∈ K1.

(ii) Let x ∈ K2 then ∀n ∈ N gx(n) ≤ c |f(n)| for some c > 0. Let
x

V
⇁ y, where V = 〈Q, A,B, q0, ◦, ∗〉, then gy(n) =

∑n
i=0 fy(i) ≤∑n

i=0 |Q| fx(i) = |Q|∑n
i=0 fx(i) = |Q| gx(n) ≤ c |Q| |f(n)|. Hence

gy = O(f), that is, y ∈ K2.

7. Problem

What is the structure of lattice L? At this moment we have recognized a
few features of L.

8. Conclusion

We say a word x ∈ F is more complicated as y ∈ F if

∀K ∈ L (x ∈ K ⇒ y ∈ K) & ∃K ∈ L (x /∈ K & y ∈ K) .

So the lattice L gives classification of infinite words that covers some aspects
of complexity. It seems natural if we choose more complicate words as
ciphers. Proposition 17 comes up to our expectations that the lattice L

would serve as a measure of words cryptographic quality.
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It is worth to mention the idea that a lattice would serve as a measure of
quality comes from fuzzy mathematics [5].

References
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