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Abstract

For a monoid M of hypersubstitutions, the collection of all M -solid
varieties forms a complete sublattice of the lattice L(τ) of all varieties
of a given type τ . Therefore, by the study of monoids of hypersubsti-
tutions one can get more insight into the structure of the lattice L(τ).
In particular, monoids of hypersubstitutions were studied in [9] as well
as in [5]. We will give a complete characterization of all maximal sub-
monoids of the monoid Reg(n) of all regular hypersubstitutions of type
τ = (n) (introduced in [4]). The concept of a transformation hyper-
substitution, introduced in [1], gives a relationship between monoids
of hypersubstitutions and transformation semigroups. In the present
paper, we apply the recent results about transformation semigroups
by I. Guydzenov and I. Dimitrova ([11], [12]) to describe monoids of
transformation hypersubstitutions.
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1. Introduction

A number of fairly natural examples of submonoids of the monoid Hyp(τ)
of all hypersubstitutions of a given type τ is listed in [9]. In particular,
the monoid Reg(n) of all so-called regular hypersubstitutions of type (n),
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1 ≤ n ∈ N, is studied. This monoid was first introduced by K. Denecke and
J. Koppitz in [4] (see also [5], [6] and [9]). Properties of several monoids
of hypersubstitutions of type (n) are studied by Th. Changphas ([2], [3]).
For example, the monoid of all so-called full hypersubstitutions of type (n),
i.e. hypersubstitutions σ where σ(f) is a full term, is considered in [3]. The
concept of a full term was introduced in [7]. On the other hand one can
consider transformation hypersubstitutions ([1], [2]). A hypersubstitution
σ of type τ = (n) is called a transformation hypersubstitution if σ(f) =
f(xs(1), . . . , xs(n)) for some mapping s : n → n, where n := {1, . . . , n}
([1]). In the present paper, we will introduce particular submonoids of the
monoid TR(n) of all transformation hypersubstitutions of type τ = (n). K.
Denecke and M. Reichel established a Galois-connection between monoids of
hypersubstitutions of a given type τ and varieties of the same type, showing
that for any monoid M of hypersubstitutions of type τ , the collection of all
M -solid varieties of type τ forms a complete sublattice of the lattice of all
varieties of type τ ([8]). It is a general goal of research in this area to study
monoids of hypersubstitutions of a given type τ . In particular, it is of some
interest to know what a monoid of hypersubstitutions looks like. In the
present paper, we want to give a contribution to the research on monoids
of hypersubstitutions. We will describe the monoid Reg(n), 2 ≤ n ∈ N,
by characterization of its maximal submonoids. On the other hand we will
consider submonoids of TR(n) based on transformation semigroups. Using
the recent results about isotone transformations with defect ≥ 2 ([12]) and
monotone transformations ([13]), we are able to describe the appropriate
monoids of transformation hypersubstitutions by characterization of their
maximal submonoids.

In Section 2 we set out some notations concerning hypersubstitutions
and introduce our new definitions. Section 3 works out all maximal
submonoids of Reg(n), 2 ≤ n ∈ N. In Section 4 we describe particular
submonoids of TR(n) by characterization of their maximal submonoids.

2. Hypersubstitutions, terms and transformations

We fix a natural number n ≥ 1 and an n-ary operation symbol f . Let Wn(X)
be the set of all terms of type (n) over some fixed alphabet X = {x1, x2, . . .}.
Terms in Wn(Xk) with Xk = {x1, . . . , xk}, k ≥ 1, are called k-ary. For any
term s ∈ Wn(Xk) and t1, . . . , tk ∈ Wn(X), the term s(t1, . . . , tk) arises by
substitution of terms, i.e. in the term s one replaces the variables x1, . . . , xk

by the terms t1, . . . , tk, respectively. The concept of a hypersubstitution
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will be a crucial one. A mapping σ : {f} → Wn(Xn) which assigns to
the n-ary operation symbol f an n-ary term of type (n) will be called a
hypersubstitution of type τ = (n). Here we have only one n-ary operation
symbol f in our type and any hypersubstitution σ is completely determined
by the image σ(f). Thus we will denote a hypersubstitution σ by σt if
σ(f) = t. Any hypersubstitution σ can be uniquely extended to a mapping
σ̂ : Wn(X) → Wn(X), inductively as follows:

(i) σ̂[w] := w for w ∈ X;

(ii) σ̂[f(t1, . . . , tn)] := σ(f)(σ̂[t1], . . . , σ̂[tn]) for t1, . . . , tn ∈ Wn(X)
where σ̂[t1], . . . , σ̂[tn] will be assumed to be already defined.

We define a product ◦h of hypersubstitutions σ1, σ2 by σ1 ◦h σ2 := σ̂1 ◦ σ2,
where ◦ is the usual composition of functions. Then the set Hyp(n) of all
hypersubstitutions of type τ = (n) forms a monoid (Hyp(n); ◦h, σid), where
σid is the identity hypersubstitution, defined by

σid(f) := f(x1, . . . , xn).

Since Hyp(n) = {σt | t ∈ Wn(Xn)},

ϕn : Hyp(n) → Wn(Xn) with ϕn(σ) = σ(f)

is a bijection. Let us define a binary operation � on Wn(Xn) by setting

s � t := σ̂s[t].

Then one can verify that (Wn(Xn); �, σid(f)) forms a monoid which is
isomorphic to (Hyp(n); ◦h, σid). If ∅ 6= X ⊆ Wn(Xn) then the carry set
of the subsemigroup of (Wn(Xn); �) generated by X is denoted by 〈X〉.

Proposition 1. Let 1 ≤ n ∈ N. Then the monoid (Hyp(n); ◦h, σid) is

isomorphic to (Wn(Xn); �, σid(f)).

Proof. We want to show that the bijection ϕn is an isomorphism. Let us
mention that ϕn(σid) = σid(f) by definition of ϕn. Moreover, for σs, σt ∈
Hyp(n) it holds ϕn(σs ◦h σt) = (σs ◦h σt)(f) = σ̂s[σt(f)] = s � σt(f) =
σs(f) � σt(f) = ϕn(σs) � ϕn(σt).

Thus (Wn(Xn); �, σid(f)) forms a monoid, which is isomorphic to the monoid
of all hypersubstitutions of type τ = (n). This suggests the idea to study
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properties of the monoid Wn(Xn) and its submonoids. We will use the
following concepts and notation in the next statements and their proofs.
For a term t ∈ Wn(Xn) we put

vb(t) − the total number of occurrences of variables in t(including
multiplicities)

op(t) − the number of occurrence of the operation symbol f in t

vbi(t) − the number of occurrence of xi in t for i ∈ n

var(t) − the set of all variables occorring in t.

Notation 2. Let 1 ≤ n ∈ N. Then we put W reg
n := {t | t ∈ Wn(Xn) and

var(t) = Xn}.

The set W reg
n corresponds to the set Reg(n) = {σ | σ ∈ Hyp(n) and

σ(f) ∈ W reg
n } of all regular hypersubstitutions of type τ = (n) which forms a

monoid (see [5]). Clearly, σid(f) ∈ W reg
n and the monoid (Reg(n); ◦h, σid) is

isomorphic to (W reg
n ; �, σid(f)) by the isomorphism ϕn restricted to Reg(n),

i.e. W reg
n forms a monoid which is isomorphic to the monoid of all regular

hypersubstitutions of type τ = (n). Our first aim is to determine all maximal
submonoids of (W reg

n ; �, σid(f)). This will be done in the next section.
A second kind of terms is determined by transformations on the set n.

Let Tn be the set of all transformations on the set n, i.e. Tn is the set of
all mappings h : n → n. Then one gets a monoid (Tn; ◦, εn), where ◦ is
the usual composition of functions and εn is the identity mapping on n.
The natural number nh := n − |{h(a) | a ∈ n}| is called the defect of a
given transformation h. A transformation h is called isotone if the following
implication holds for all a, b ∈ n:

a ≤ b ⇒ h(a) ≤ h(b).

For 1 ≤ k < n let In,k be the set of all isotone transformations on n with
defect ≥ k. The set On := In,1 forms a semigroup and each of the set In,k,
2 ≤ k < n, forms an ideal of On ([14]). A transformation h is called antitone
if the following implication holds for all a, b ∈ n:

a ≤ b ⇒ h(a) ≥ h(b).

A transformation is called monotone if it is isotone or antitone. The
set Mn of all monotone transformations on n with defect ≥ 1 forms a
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semigroup, too ([11]). Moreover, it is well-known that the set Sn of all
bijective transformations on n, i.e. permutations on n, forms a subgroup
of Tn.

For any transformation h on n, we can consider the term f(xh(1), . . . ,
xh(n)). So we get terms defined by transformations and it is very natural
to define hypersubstitutions by transformations. For any transformation
h, we will denote the hypersubstitution σ with σ(f) = f(xh(1), . . . , xh(n))

by σh. For any set A ⊆ Tn, we put Ahyp := {σh | h ∈ A} and WA :=
{f(xh(1), . . . , xh(n)) | h ∈ A}. In particular, we put Pn := WSn . Clearly, the

mapping ρn : Tn → T hyp
n defined by

ρn(h) := σh

is a bijection. In particular, ρn is an anti-isomorphism (dual isomorphism).

Proposition 3. Let 1 ≤ n ∈ N. Then (Tn; ◦, εn) is anti-isomorphic to

(T hyp
n ; ◦h, σid).

Proof. We have to show that ρn(ϕ ◦ π) = ρn(π) ◦h ρn(ϕ) for all ϕ, π ∈ A.
Let ϕ, π ∈ A. Then we have ρn(π) ◦h ρn(ϕ) = σπ ◦h σϕ = σ̂π ◦ σϕ and
ρn(ϕ ◦ π) = σϕ◦π. Further we have

σϕ◦π(f) = f(x(ϕ◦π)(1), . . . , x(ϕ◦π)(n))

= f(xπ(1), . . . , xπ(n))(xϕ(1), . . . , xϕ(n))

= σ̂f(xπ(1),...,xπ(n))[f(xϕ(1), . . . , xϕ(n))]

= σ̂π[f(xϕ(1), . . . , xϕ(n))]

= σ̂π[σϕ(f)]

= (σ̂π ◦ σϕ)(f).

This shows that ρn(π) ◦h ρn(ϕ) = ρn(ϕ ◦ π).

In particular, then each of the sets Ohyp
n , Mhyp

n and Ihyp
n,2 forms a semigroup.

We will consider these semigroups in Section 4. Moreover, the mapping
γn : Tn → WTn defined by γn(h) := f(xh(1), . . . , xh(n)) is evidently an anti-
isomorphism by Proposition 1 and Proposition 3. This gives:
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Corollary 4. Let 1 ≤ n ∈ N. Then (Tn; ◦, εn) is anti-isomorphic to

(WTn ; �, σid(f)).

3. The maximal submonoids of Reg(n)

To characterize all maximal subsemigroups of (W reg
n ; �) for a given natural

number n ≥ 2, we need some technical lemmas. The following facts were
proved in [10]:

Lemma 5. Let s ∈ W reg
n and t, t1, . . . , tn ∈ Wn(Xn) with t = f(t1, . . . , tn).

Then

(a) vb(s � t) ≥ vb(t);

(b) vb(s � t) =
∑i=1

n vbi(s)vb(s � ti);

(c) vb(s(t1, . . . , tn)) =
∑n

i=1 vbi(s)vb(ti).

Corollary 6. For s, t ∈ W reg
n it holds:

(a) If s /∈ Pn then vb(t) < vb(s � t).

(b) If t /∈ Pn then vb(s) < vb(s � t).

Proof. We have vb(s � t) ≥
∑n

i=1 vbi(s)vb(ti) by Lemma 5 and vbi(s) 6= 0
for i ∈ n since var(s) = Xn.

(a) If s /∈ Pn then there is a j ∈ n with vbj(s) ≥ 2 and thus

n∑

i=1

vbi(s)vb(ti) ≥ vb(tj) +

n∑

i=1

vb(ti) >

n∑

i=1

vb(ti) = vb(t).

(b) If t /∈ Pn then there is a j ∈ n with vb(tj) ≥ 2 and thus

n∑

i=1

vbi(s)vb(ti) ≥ 1 +
n∑

i=1

vbi(s) >
n∑

i=1

vbi(s) = vb(s).
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Lemma 7. For s ∈ W reg
n and t ∈ Pn we have vb(s � t) = vb(t � s) = vb(s).

Proof. There is a π ∈ Sn such that t = f(xπ(1), . . . , xπ(n)). Further,
there are s1, . . . , sn ∈ Wn(Xn) such that s = f(s1, . . . , sn). Then we
have vb(s � t) = vb(σ̂s[t]) = vb(s(xπ(1), . . . , xπ(n))) =

∑n
i=1 vbi(s)vb(xπ(i)) =∑n

i=1 vbi(s) = vb(s) by Lemma 5c). We show now by induction that
vb(σ̂t[r]) = vb(r) for all r ∈ Wn(Xn). Clearly, σ̂t[r] = r for r ∈ Xn. Let
r = f(r1, . . . , rn), r1, . . . , rn ∈ Wn(Xn), and suppose that vb(σ̂t[ri]) = vb(ri)
for i ∈ n. Then

vb(σ̂t[r]) = vb(f(xπ(1), . . . , xπ(n))(σ̂t[r1], . . . , σ̂t[rn]))

= vb(f(σ̂t[rπ(1)], . . . , σ̂t[rπ(n)])) =
n∑

i=1

vb(σ̂t[ri]) =
n∑

i=1

vb(ri) = vb(r).

In particular, vb(t � s) = vb(σ̂t[s]) = vb(s).

Now we consider the Green‘s relation J on the semigroup (W reg
n ; �) which

is defined by sJ t if there are s1, s2, t1, t2 ∈ W reg
n such that s = t1 � t � t2 and

t = s1 � s � s2. For t ∈ W reg
n , we denote the J -class containing t by Jt, i.e.

Jt := {s | s ∈ W reg
n and sJ t}.

The relation J on W reg
n can be characterized as follows:

Lemma 8. Let s, t ∈ W reg
n . Then there holds sJ t iff there are s1, s2, t1, t2

∈ Pn such that s = t1 � t � t2 and t = s1 � s � s2.

Proof. One direction is clear. Conversely, let sJ t. Then there are s1, s2,
t1, t2 ∈ W reg

n such that s = t1 � t � t2 and t = s1 � s � s2. We will show
that s1, s2, t1, t2 ∈ Pn. We have s = (t1 � s1) � s � (s2 � t2). Assume that
(t1 � s1) /∈ Pn. Then vb(s) < vb((t1 � s1) � s) by Corollary 6. Further,
we have vb((t1 � s1) � s)) ≤ vb((t1 � s1) � s � (s2 � t2)) by Corollary 6 and
Lemma 7, respectively. This gives vb(s) < vb(s), a contradiction. Assume
that (s2 � t2) /∈ Pn. Then vb((t1 � s1) � s) < vb((t1 � s1) � s � (s2 � t2)) = vb(s)
by Corollary 6. But since (t1 � s1) ∈ Pn we have vb((t1 � s1) � s) = vb(s) by
Lemma 7. This gives vb(s) < vb(s), a contradiction. So, both terms (t1 �s1)
and (s2 � t2) belong to Pn. This provides vb(s1), vb(t1) ≥ vb(t1 � s1) = 1 and
vb(s2), vb(t2) ≥ vb(t2 � s2) = 1. But this is only possible if s1, s2, t1, t2 ∈ Pn,
by Corollary 6.



76 I. Dimitrova and J. Koppitz

Proposition 9. Let s, t ∈ W reg
n . Then there holds sJ t iff there are s1, s2 ∈

Pn such that t = s1 � s � s2.

Proof. One direction is clear by Lemma 8. Conversely, let s1, s2 ∈ Pn such
that t = s1 � s � s2. Then there are ρ, π ∈ Sn with s1 = f(xπ(1), . . . , xπ(n))
and s2 = f(xρ(1), . . . , xρ(n)). Then there are ρ−1, π−1 ∈ Sn with ρ−1 ◦ ρ =
π ◦π−1 = εn and we get f(xπ−1(1), . . . , xπ−1(n)) � t � f(xρ−1(1), . . . , xρ−1(n)) =
f(xπ−1(1), . . . , xπ−1(n))�f(xπ(1), . . . , xπ(n))�s�f(xρ(1), . . . , xρ(n))�f(xρ−1(1),
. . . , xρ−1(n)). Then Proposition 1 provides σπ−1 ◦h σt ◦h σρ−1 = σπ−1 ◦h σπ ◦h

σs◦hσρ◦hσρ−1 where σπ−1◦hσπ◦hσs◦hσρ◦hσρ−1 = σ(π◦π−1)◦hσs◦hσ(ρ−1
◦ρ) =

σεn ◦h σs ◦h σεn = σs by Proposition 3. This gives f(xπ−1(1), . . . , xπ−1(n)) �
t�f(xρ−1(1), . . . , xρ−1(n)) = s again by Proposition 1. Altogether, this shows
that sJ t using Lemma 8.

Notation 10. A term t ∈ W reg
n is called a proper �-product if there are

r, s ∈ W reg
n \ Pn such that t = r � s. Let W dec

n denote the set of all proper
�-products of W reg

n .

Now we are able to characterize all maximal subsemigroups of
(W reg

n ; �), i.e. all subsets W ⊆ W reg
n with 〈W ∪ {a}〉 = W reg

n for all
a ∈ W reg

n \ W .

Theorem 11. A set W ⊆ W reg
n forms a maximal subsemigroup of

(W reg
n ; �) iff one of the following statements is satisfied:

(i) There is a t ∈ W reg
n \ (W dec

n ∪ Pn) such that W = W reg
n \ Jt.

(ii) There is a maximal subgroup S of Sn such that W = (W reg
n \Pn)∪WS.

Proof. Suppose that (i) is satisfied, i.e. there is a t ∈ W reg
n \ (W dec

n ∪ Pn)
such that W = W reg

n \ Jt. We show that W forms a subsemigroup of
(W reg

n ; �). For this let a, b ∈ W reg
n \ Jt. Then a � b ∈ W reg

n . Assume that
a � b ∈ Jt. Then there are s1, s2 ∈ Pn such that t = (s1 � a) � (b � s2)
by Proposition 9. Since t /∈ W dec

n we have (s1 � a) ∈ Pn or (b � s2) ∈ Pn.
Without loss of generality let (s1 � a) ∈ Pn. Then we get b ∈ Jt by Propo-
sition 9, a contradiction. Thus a � b ∈ W reg

n \ Jt = W . This shows that
(W ; �) is a subsemigroup of (W reg

n ; �). Now we show that W is maximal.
First, we show that Pn ⊆ W . Assume that Pn 6⊆ W . Then there are an
s ∈ Pn ∩ Jt and s1, s2 ∈ Pn such that t = s1 � s � s2. Then Lemma 7
provides vb(t) = vb(s) = n, i.e. t ∈ Pn, a contradiction. Hence Pn ⊆ W .
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Let now s ∈ W reg
n \ W , i.e. s ∈ Jt. Then there are s1, s2 ∈ Pn such that

t = s1 � s � s2. Hence t ∈ 〈W ∪ {s}〉 and thus {s1 � t � s2 | s1, s2 ∈ Pn} ⊆
〈W ∪ {s}〉. Further, we have Jt = {s1 � t � s2 | s1, s2 ∈ Pn} by Proposition
9, hence Jt ⊆ 〈W ∪ {s}〉. This shows that W is maximal.

Suppose that (ii) is satisfied, i.e. there is a maximal subgroup S of Sn

such that W = (W reg
n \ Pn) ∪ WS . We show that W forms a subsemigroup

of (W reg
n ; �). For this let a, b ∈ W . If a /∈ Pn or b /∈ Pn then vb(b) < vb(a� b)

and vb(a) < vb(a � b), respectively, by Corollary 6. Thus vb(a � b) > 1.
This shows that a � b /∈ Pn, i.e. a � b ∈ W . We consider now the case that
a, b ∈ Pn, i.e. a, b ∈ WS . Since S is a subgroup of Sn, we have a � b ∈ WS by
Corollary 4. This shows that (W ; �) is a subsemigroup of (W reg

n ; �). Now
we conclude that (W reg

n \ Pn) ∪ WS is maximal since (WS ; �) is a maximal
subgroup of (Pn; �) by Corollary 4.

Conversely, let (W ; �) be a maximal subsemigroup of (W reg
n ; �). We put

M := W reg
n \ W . Then we have M ∩ Pn = ∅ or M ∩ Pn 6= ∅. Suppose that

M∩Pn 6= ∅. Let us consider the set S := {π ∈ Sn | f(xπ(1), . . . , xπ(n)) ∈ W}.
Then we have W ∩ Pn = WS . Since both sets W and Pn form semigroups,
W ∩ Pn = WS forms a subsemigroup of (Pn; �). Then S is a proper sub-
semigroup of Sn by Proposition 3. Since Sn is finite, each subsemigroup of
Sn is a group. Hence there is a maximal subgroup T of Sn containing S and
we have W ⊆ (W reg

n \ Pn) ∪ WT where (W reg
n \ Pn) ∪ WT forms a subsemi-

group of (W reg
n ; �) by the previous considerations. Since (W ; �) is a maximal

subsemigroup of (W reg
n ; �), we can conclude that W = (W reg

n \ Pn) ∪ WT .

Suppose that M ∩ Pn = ∅. Let t ∈ M . Then t /∈ Pn. Assume that
t ∈ W dec

n . Then there are t1, t2 ∈ W reg
n \ Pn such that t = t1 � t2. Since

t /∈ W , one of the terms t1 and t2 does not belong to W . Without loss of
generality let t1 /∈ W . Then Corollary 6 implies vb(t1) < vb(t1 � t2) = vb(t).
Let a1, . . . , ak ∈ W reg

n for some natural number k > 0 with aj = t for some
j ∈ {1, . . . , k}. Then vb(a1 � . . . � ak) ≥ vb(t) by Corollary 6 and Lemma 7.
Thus t1 /∈ 〈W ∪ {t}〉, i.e. 〈W ∪ {t}〉 6= W reg

n . Because of the maximality
of (W ; �) we get t ∈ W , a contradiction. Hence t /∈ W dec

n and altogether
t ∈ W reg

n \ (W dec
n ∪Pn). Now we show Jt ⊆ M . Otherwise there is an s ∈ Jt

with s ∈ W . Then there are s1, s2 ∈ Pn such that t = s1 � s � s2. Since
Pn ⊆ W we get t ∈ W , a contradiction. Now we have W ⊆ W reg

n \Jt, where
W reg

n \ Jt forms a semigroup (see the previous considerations). Since (W ; �)
is a maximal subsemigroup of (W reg

n ; �), we obtain W = W reg
n \ Jt.
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Remark 12. Clearly, each maximal submonoid of (W reg
n ; �) contains the

identity element σid(f). Therefore, Theorem 11 characterizes all maximal
submonoids of (W reg

n ; �, σid(f)).

Since the only maximal subgroup of S2 as well as the four maximal subgroups
of S3 are well known, we can formulate Theorem 11 for n = 2 and n = 3,
respectively, in the following way.

Proposition 13. A set W ⊆ W reg
2 forms a maximal subsemigroup of

(W reg
2 ; �) iff W = W reg

2 \ {f(x2, x1)} or W = W reg
2 \ Jt for some t ∈

W reg
2 \ (W dec

2 ∪ P2).

Proposition 14. A set W ⊆ W reg
3 forms a maximal subsemigroup of

(W reg
3 ; �) iff W = W reg

3 \ Jt for some t ∈ W reg
3 \ (W dec

3 ∪ P3) or W co-

incides with one of the following four sets:

(a) W reg
3 \ {f(x1, x3, x2), f(x3, x2, x1), f(x2, x1, x3)}

(b) W reg
3 \ {f(x1, x3, x2), f(x3, x2, x1), f(x2, x3, x1), f(x3, x1, x2)}

(c) W reg
3 \ {f(x1, x3, x2), f(x2, x1, x3), f(x2, x3, x1), f(x3, x1, x2)}

(d) W reg
3 \ {f(x2, x1, x3), f(x3, x2, x1), f(x2, x3, x1), f(x3, x1, x2)}.

To determine all maximal subsemigroups of W reg
n we need the knowledge of

all maximal subgroups of Sn and of all elements of the set W reg
n \(W dec

n ∪Pn).
The O‘Nan Scott-Theorem gives a classification of all maximal subgroups
of Sn (e.g. [15]). But the characterization of all proper �-products seems
to be a too complex problem. Therefore we restrict ourselves to study only
necessary or only sufficient properties of the elements of W dec

n . First, we
show that a term t ∈ W reg

n does not belong to W dec
n if op(t) is a prime

number.

Lemma 15. Let s ∈ W reg
n and t ∈ Wn(Xn). Then there is a natural number

k ≥ op(t) such that op(s � t) = k · op(s).

Proof. If t ∈ Xn then op(t) = 0 and thus op(s � t) = op(σ̂s[t]) = op(t) =
0 = 0 · op(s). Suppose that t = f(t1, . . . , tn) with t1, . . . , tn ∈ Wn(Xn) and
op(s � ti) = ki · op(s) with ki ≥ op(ti) for i ∈ n. We have op(s � t) =
op(s) +

∑n
i=1 vbi(s) · op(σ̂s[ti]) (see [10]). Further, it holds
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op(s) +
n∑

i=1

vbi(s) · op(σ̂s[ti])

= op(s) +

n∑

i=1

vbi(s) · ki · op(s)

= op(s) ·

(
1 +

n∑

i=1

vbi(s) · ki

)
.

Since vbi(s) 6= 0 (because of var(s) = Xn) and ki ≥ op(ti) for i ∈ n we
have

∑n
i=1 vbi(s) · ki ≥

∑n
i=1 vbi(s) · op(ti) ≥

∑n
i=1 op(ti) = op(t) − 1, i.e.

1 +
∑n

i=1 vbi(s) · ki ≥ op(t).

Proposition 16. If t ∈ W reg
n such that op(t) is a prime number then t /∈

W dec
n ∪ Pn.

Proof. Since op(t) is a prime number, op(t) ≥ 2. Thus t /∈ Pn. Assume
that t ∈ W dec

n . Then there are r, s ∈ W reg
n \ Pn such that t = r � s. This

provides op(t) = op(r � s) = k · op(r) for some k ≥ op(s) by Lemma 15.
Since r, s /∈ Pn we have op(r), op(s) ≥ 2 and thus k ≥ op(s) ≥ 2. Hence
op(t) = k · op(r) is not a prime number, a contradiction. This shows that
t /∈ W dec

n .

An element of W dec
n has the following structure:

Proposition 17. For any t ∈ W dec
n there are an s ∈ W reg

n \ Pn and

t1, . . . , tn ∈ Wn(Xn) with tj /∈ Xn for some j ∈ n such that t = s(s �
t1, . . . , s � tn).

Proof. Since t ∈ W dec
n there are r, s ∈ W reg

n \Pn such that t = r�s = σ̂r[s].
Further, there are s1, . . . , sn ∈ Wn(Xn) such that s = f(s1, . . . , sn) and we
obtain σ̂r[s] = r(σ̂r[s1], . . . , σ̂r[sn]) = r(r � s1, . . . , r � sn). Since s /∈ Pn there
is a j ∈ n with sj /∈ Xn.

Example 18. We consider the case n = (3) and the term

t = f(x1, f(x1, x1, x1), f(x1, x1, f(x1, x2, x3))).
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Although op(t) is not a prime number, t does not belong to W dec
3 . Indeed,

assume that there are an s ∈ W reg
3 \P3 and t1, t2, t3 ∈ W3(X3) with ti /∈ X3

for some i ∈ {1, 2, 3} such that t = s(s � t1, s � t2, s � t3). Then op(s) ≥ 2
and op(s � ti) ≥ 4 by Lemma 15. This provides that op(t) ≥ 4 + op(s) > 4,
a contradiction.

4. Transformation hypersubstitutions

A list of all maximal subsemigroups of the ideal On of all isotone transfor-
mations on n with defect ≥ 1 is given in [16]. I. Guydzenov and I. Dimitrova
have determined all maximal subsemigroups of Mn as well as of the ideal
In,2 of all isotone transformations on n with defect ≥ 2, see [12] and [13],
respectively. These results can be regarded as generalizations of the results
in [16] concerning On. We want to use the mentioned results to characterize
the maximal submonoids of particular monoids of transformation hypersub-
stitutions. It is easy to verify that each of the sets Ohyp

n ∪{σid}, Mhyp
n ∪{σid}

and Ihyp
n,2 ∪ {σid} forms a submonoid of TR(n). We can use Proposition 3 to

characterize the maximal submonoids of each of these monoids.

Lemma 19. Let 1 ≤ n ∈ N and let (A; ◦) be a transformation semigroup

on n with εn /∈ A. Then a set M ⊆ TR(n) forms a maximal submonoid of

(Ahyp ∪ {σid}; ◦h, σid) iff there is a maximal subsemigroup (B; ◦) of (A; ◦)
such that M = Bhyp ∪ {σid}.

Proof. Suppose that (M ; ◦h, σid) is a maximal submonoid of (Ahyp∪{σid};
◦h, σid). Then there is a set B ⊆ A such that Bhyp ∪ {σid} = M . Since
εn /∈ A, σid /∈ Ahyp and thus (Ahyp; ◦h) forms a semigroup. Hence M \ {σid}
forms a semigroup, in particular, (M \{σid}; ◦h) is a maximal subsemigroup
of (Ahyp; ◦h). This implies that (B; ◦) is a maximal subsemigroup of (A; ◦) by
Proposition 3. Conversely, suppose that (B; ◦) is a maximal subsemigroup
of (A; ◦) such that M = Bhyp∪{σid}. Then (Bhyp; ◦h) is a maximal subsemi-
group of (Ahyp; ◦h) by Proposition 3. Thus 〈M ∪{σ}〉 = 〈Bhyp ∪{σ, σid}〉 =
〈Bhyp ∪ {σ}〉 ∪ {σid} = Ahyp ∪ {σid} for all σ ∈ (Ahyp ∪ {σid}) \ M . This
shows that (M ; ◦h, σid) is a maximal submonoid of (Ahyp ∪ {σid}; ◦h, σid).

For the set TR2(n) := Ihyp
n,2 ∪ {σid} we have

Corollary 20. Let 1 ≤ n ∈ N. Then the following monoids are all maximal

submonoids of (TR2(n); ◦h, σid): (Ahyp ∪ {σid}; ◦h, σid), where (A; ◦) is a

maximal subsemigroup of (In,2; ◦).
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The maximal subsemigroups of (In,2; ◦) are listed in [12]. For example, let
us consider the case n = 4.

Example 21. Let n = 4. Then we have TR2(4) = {σf(xi,xi,xi,xi) | 1 ≤ i ≤
4} ∪ {σf(xi,xi,xi,xj) | 1 ≤ i < j ≤ 4} ∪ {σf(xi,xi,xj ,xj) | 1 ≤ i < j ≤ 4}
∪ {σf(xi,xj ,xj ,xj) | 1 ≤ i < j ≤ 4} ∪ {σid}. There are eleven maximal
submonoids of (TR2(4); ◦h, σid), namely

Ai,j = TR2(4)\{σf(xi ,xi,xi,xj), σf(xi,xi,xj ,xj), σf(xi,xj ,xj ,xj)} for 1≤ i < j≤ 4

A1 = TR2(4)\{σf(xi ,xj ,xj ,xj) | 1 ≤ i < j ≤ 4 and i + j 6= 3}

A2 = TR2(4)\{σf(xi ,xi,xi,xj) | 1 ≤ i < j ≤ 4 and i + j 6= 7}

A3 = TR2(4)\({σf(x1 ,x1,x1,xj) | 2 ≤ j ≤ 4} ∪ {σf(x1,x1,xj ,xj) | 2 ≤ j ≤ 4})

A4 = TR2(4)\({σf(xi ,xj ,xj ,xj) | 1 ≤ i < j ≤ 4 and i + j 6= 3, 7}) ∪

{σf(xi,xi,xi,xj) | 1 ≤ i < j ≤ 4 and i + j 6= 3, 7}

A5 = TR2(4)\{σf(xi ,xi,xj ,xj) | 1 ≤ i < j ≤ 4 and ij 6= 6}.

For the set TR1(n) := Ohyp
n ∪ {σid} we get

Corollary 22. Let 1 ≤ n ∈ N. Then the following monoids are the maximal

submonoids of (TR1(n); ◦h, σid): (Ahyp ∪ {σid}; ◦h, σid), where (A; ◦) is a

maximal subsemigroup of (On; ◦).

The maximal subsemigroups of (On; ◦) are listed in [16]. For example, let
us consider the case n = 4.

Example 23. Let n = 4. Then we have TR1(4) = TR2(4)∪ {σf(xi,xi,xj ,xl) |
1 ≤ i < j < l ≤ 4} ∪ {σf(xi ,xj ,xj ,xl) | 1 ≤ i < j < l ≤ 4} ∪ {σf(xi ,xj ,xl,xl) |
1 ≤ i < j < l ≤ 4}. There are ten maximal submonoids of (TR1(4); ◦h, σid),
namely
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Bi,j,l = TR1(4)\{σf(xi ,xi,xj ,xl), σf(xi,xj ,xj ,xl), σf(xi,xj ,xl,xl)} for

1 ≤ i < j < l ≤ 4

B1 = TR1(4)\{σf(xi ,xj ,xj ,xl) | 1 ≤ i < j < l ≤ 4}

B2 = TR1(4)\{σf(x1 ,x3,x3,x4), σf(x2,x3,x3,x4), σf(x1 ,x3,x4,x4), σf(x2,x3,x4,x4)}

B3 = TR1(4)\{σf(xi ,xj ,x4,x4) | 1 ≤ i < j ≤ 3}

B4 = TR1(4)\{σf(x1 ,x1,xi,xj) | 2 ≤ i < j ≤ 4}

B5 = TR1(4)\{σf(x1 ,x1,x2,x3), σf(x1,x1,x2,x4), σf(x1 ,x2,x2,x3), σf(x1,x2,x2,x4)}

B6 = TR1(4)\{σf(x1 ,x1,x2,x4), σf(x1,x1,x3,x4), σf(x1 ,x2,x4,x4), σf(x1,x3,x4,x4)}.

For the set TRmon(n) := Mhyp
n ∪ {σid} we have

Corollary 24. Let 1 ≤ n ∈ N. Then the following monoids are all maximal

submonoids of (TRmon(n); ◦h, σid): (Ahyp ∪ {σid}; ◦h, σid), where (A; ◦) is a

maximal subsemigroup of (Mn; ◦).

The maximal subsemigroups of (Mn; ◦) are listed in [13]. For example, let
us consider the case n = 4.

Example 25. Let n = 4. Then we have TRmon(4) = TR1(4) ∪
{σf(xi ,xi,xi,xj) | 1 ≤ j < i ≤ 4} ∪ {σf(xi,xi,xj ,xj) | 1 ≤ j < i ≤ 4} ∪
{σf(xi ,xj ,xj ,xj) | 1 ≤ j < i ≤ 4} ∪ {σf(xi,xi,xj ,xl) | 1 ≤ l < j < i ≤ 4} ∪
{σf(xi ,xj ,xj ,xl) | 1 ≤ l < j < i ≤ 4} ∪ {σf(xi ,xj ,xl,xl) | 1 ≤ l < j < i ≤ 4}.
There are eleven maximal submonoids of (TRmon(4); ◦h, σid), namely
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Ci,j,l = TRmon(4)\{σf(xi ,xi,xj ,xl), σf(xi,xj ,xj ,xl), σf(xi,xj ,xl,xl), σf(xl,xl,xj ,xi),

σf(xl,xj ,xj ,xi), σf(xl,xj ,xi,xi)} for 1 ≤ i < j < l ≤ 4

C1 = TRmon(4)\({σf(xl ,xl,xj ,xi) | 1 ≤ i < j < l ≤ 4}∪

{σf(xl,xj ,xj ,xi) | 1 ≤ i < j < l ≤ 4}∪

{σf(xl,xj ,xi,xi) | 1 ≤ i < j < l ≤ 4})

C2 = TRmon(4)\({σf(xi ,xj ,xj ,xl) | 1 ≤ i < j < l ≤ 4} ∪ {σf(xl,xj ,xj ,xi) |

1 ≤ i < j < l ≤ 4})

C3 = TRmon(4)\{σf(x1 ,x3,x3,x4), σf(x2,x3,x3,x4), σf(x1 ,x3,x4,x4), σf(x2,x3,x4,x4),

σf(x4,x3,x3,x1), σf(x4 ,x3,x3,x2), σf(x4,x3,x1,x1), σf(x4,x3,x2,x2)}

C4 = TRmon(4)\({σf(xi ,xj ,x4,x4) | 1 ≤ i < j ≤ 3} ∪ {σf(x4,xj ,xi,xi) |

1 ≤ i < j ≤ 3})

C5 = TRmon(4)\({σf(x1 ,x1,x1,xj) | 2 ≤ i < j ≤ 4} ∪ {σf(xj ,xj ,xi,x1) |

2 ≤ i < j ≤ 4})

C6 = TRmon(4)\{σf(x1 ,x1,x2,x3), σf(x1,x1,x2,x4), σf(x1 ,x2,x2,x3), σf(x1,x2,x2,x4),

σf(x3,x3,x2,x1), σf(x4 ,x4,x2,x1), σf(x3,x2,x2,x1), σf(x4,x2,x2,x1)}

C7 = TRmon(4)\{σf(x1 ,x1,x2,x4), σf(x1,x1,x3,x4), σf(x1 ,x2,x4,x4), σf(x1,x3,x4,x4),

σf(x4,x2,x1,x1), σf(x4 ,x3,x1,x1), σf(x4,x4,x2,x1), σf(x4,x4,x3,x1)}.
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