MAXIMAL SUBMONOIDS OF MONOIDS OF HYPERSUBSTITUTIONS

Ilinka Dimitrova and Jörg Koppitz
University of Potsdam
Institute of Mathematics
Am Neuen Palais, 14415 Potsdam, Germany
e-mail: ilinkad@abv.bg; koppitz@rz.uni-potsdam.de

Abstract

For a monoid M of hypersubstitutions, the collection of all M-solid varieties forms a complete sublattice of the lattice $\mathcal{L}(\tau)$ of all varieties of a given type τ. Therefore, by the study of monoids of hypersubstitutions one can get more insight into the structure of the lattice $\mathcal{L}(\tau)$. In particular, monoids of hypersubstitutions were studied in [9] as well as in [5]. We will give a complete characterization of all maximal submonoids of the monoid $\operatorname{Reg}(n)$ of all regular hypersubstitutions of type $\tau=(n)$ (introduced in [4]). The concept of a transformation hypersubstitution, introduced in [1], gives a relationship between monoids of hypersubstitutions and transformation semigroups. In the present paper, we apply the recent results about transformation semigroups by I. Guydzenov and I. Dimitrova ([11], [12]) to describe monoids of transformation hypersubstitutions.

Keywords: regular hypersubstitutions, maximal monoids of hypersubstitutions, transformation semigroups.

2000 Mathematics Subject Classification: 08B05, 08B15, 20M07, 16Y60.

1. Introduction

A number of fairly natural examples of submonoids of the monoid $\operatorname{Hyp}(\tau)$ of all hypersubstitutions of a given type τ is listed in [9]. In particular, the monoid $\operatorname{Reg}(n)$ of all so-called regular hypersubstitutions of type (n),
$1 \leq n \in \mathbb{N}$, is studied. This monoid was first introduced by K. Denecke and J. Koppitz in [4] (see also [5], [6] and [9]). Properties of several monoids of hypersubstitutions of type (n) are studied by Th. Changphas ([2], [3]). For example, the monoid of all so-called full hypersubstitutions of type (n), i.e. hypersubstitutions σ where $\sigma(f)$ is a full term, is considered in [3]. The concept of a full term was introduced in [7]. On the other hand one can consider transformation hypersubstitutions ([1], [2]). A hypersubstitution σ of type $\tau=(n)$ is called a transformation hypersubstitution if $\sigma(f)=$ $f\left(x_{s(1)}, \ldots, x_{s(n)}\right)$ for some mapping $s: \bar{n} \rightarrow \bar{n}$, where $\bar{n}:=\{1, \ldots, n\}$ ([1]). In the present paper, we will introduce particular submonoids of the monoid $T R(n)$ of all transformation hypersubstitutions of type $\tau=(n)$. K. Denecke and M. Reichel established a Galois-connection between monoids of hypersubstitutions of a given type τ and varieties of the same type, showing that for any monoid M of hypersubstitutions of type τ, the collection of all M-solid varieties of type τ forms a complete sublattice of the lattice of all varieties of type $\tau([8])$. It is a general goal of research in this area to study monoids of hypersubstitutions of a given type τ. In particular, it is of some interest to know what a monoid of hypersubstitutions looks like. In the present paper, we want to give a contribution to the research on monoids of hypersubstitutions. We will describe the monoid $\operatorname{Reg}(n), 2 \leq n \in \mathbb{N}$, by characterization of its maximal submonoids. On the other hand we will consider submonoids of $T R(n)$ based on transformation semigroups. Using the recent results about isotone transformations with defect ≥ 2 ([12]) and monotone transformations ([13]), we are able to describe the appropriate monoids of transformation hypersubstitutions by characterization of their maximal submonoids.

In Section 2 we set out some notations concerning hypersubstitutions and introduce our new definitions. Section 3 works out all maximal submonoids of $\operatorname{Reg}(n), 2 \leq n \in \mathbb{N}$. In Section 4 we describe particular submonoids of $T R(n)$ by characterization of their maximal submonoids.

2. Hypersubstitutions, terms and transformations

We fix a natural number $n \geq 1$ and an n-ary operation symbol f. Let $W_{n}(X)$ be the set of all terms of type (n) over some fixed alphabet $X=\left\{x_{1}, x_{2}, \ldots\right\}$. Terms in $W_{n}\left(X_{k}\right)$ with $X_{k}=\left\{x_{1}, \ldots, x_{k}\right\}, k \geq 1$, are called k-ary. For any term $s \in W_{n}\left(X_{k}\right)$ and $t_{1}, \ldots, t_{k} \in W_{n}(X)$, the term $s\left(t_{1}, \ldots, t_{k}\right)$ arises by substitution of terms, i.e. in the term s one replaces the variables x_{1}, \ldots, x_{k} by the terms t_{1}, \ldots, t_{k}, respectively. The concept of a hypersubstitution
will be a crucial one. A mapping $\sigma:\{f\} \rightarrow W_{n}\left(X_{n}\right)$ which assigns to the n-ary operation symbol f an n-ary term of type (n) will be called a hypersubstitution of type $\tau=(n)$. Here we have only one n-ary operation symbol f in our type and any hypersubstitution σ is completely determined by the image $\sigma(f)$. Thus we will denote a hypersubstitution σ by σ_{t} if $\sigma(f)=t$. Any hypersubstitution σ can be uniquely extended to a mapping $\widehat{\sigma}: W_{n}(X) \rightarrow W_{n}(X)$, inductively as follows:
(i) $\widehat{\sigma}[w]:=w$ for $w \in X$;
(ii) $\widehat{\sigma}\left[f\left(t_{1}, \ldots, t_{n}\right)\right]:=\sigma(f)\left(\widehat{\sigma}\left[t_{1}\right], \ldots, \widehat{\sigma}\left[t_{n}\right]\right)$ for $t_{1}, \ldots, t_{n} \in W_{n}(X)$ where $\widehat{\sigma}\left[t_{1}\right], \ldots, \widehat{\sigma}\left[t_{n}\right]$ will be assumed to be already defined.

We define a product \circ_{h} of hypersubstitutions σ_{1}, σ_{2} by $\sigma_{1} \circ_{h} \sigma_{2}:=\widehat{\sigma}_{1} \circ \sigma_{2}$, where \circ is the usual composition of functions. Then the set $\operatorname{Hyp}(n)$ of all hypersubstitutions of type $\tau=(n)$ forms a monoid ($\left.\operatorname{Hyp}(n) ; \circ_{h}, \sigma_{i d}\right)$, where $\sigma_{i d}$ is the identity hypersubstitution, defined by

$$
\sigma_{i d}(f):=f\left(x_{1}, \ldots, x_{n}\right)
$$

Since $\operatorname{Hyp}(n)=\left\{\sigma_{t} \mid t \in W_{n}\left(X_{n}\right)\right\}$,

$$
\varphi_{n}: H y p(n) \rightarrow W_{n}\left(X_{n}\right) \text { with } \varphi_{n}(\sigma)=\sigma(f)
$$

is a bijection. Let us define a binary operation \diamond on $W_{n}\left(X_{n}\right)$ by setting

$$
s \diamond t:=\widehat{\sigma}_{s}[t] .
$$

Then one can verify that $\left(W_{n}\left(X_{n}\right) ; \diamond, \sigma_{i d}(f)\right)$ forms a monoid which is isomorphic to $\left(\operatorname{Hyp}(n) ; \circ_{h}, \sigma_{i d}\right)$. If $\emptyset \neq X \subseteq W_{n}\left(X_{n}\right)$ then the carry set of the subsemigroup of $\left(W_{n}\left(X_{n}\right) ; \diamond\right)$ generated by X is denoted by $\langle X\rangle$.

Proposition 1. Let $1 \leq n \in \mathbb{N}$. Then the monoid $\left(\operatorname{Hyp}(n) ; \circ_{h}, \sigma_{i d}\right)$ is isomorphic to $\left(W_{n}\left(X_{n}\right) ; \diamond, \sigma_{i d}(f)\right)$.

Proof. We want to show that the bijection φ_{n} is an isomorphism. Let us mention that $\varphi_{n}\left(\sigma_{i d}\right)=\sigma_{i d}(f)$ by definition of φ_{n}. Moreover, for $\sigma_{s}, \sigma_{t} \in$ $H y p(n)$ it holds $\varphi_{n}\left(\sigma_{s} \circ_{h} \sigma_{t}\right)=\left(\sigma_{s} \circ_{h} \sigma_{t}\right)(f)=\widehat{\sigma}_{s}\left[\sigma_{t}(f)\right]=s \diamond \sigma_{t}(f)=$ $\sigma_{s}(f) \diamond \sigma_{t}(f)=\varphi_{n}\left(\sigma_{s}\right) \diamond \varphi_{n}\left(\sigma_{t}\right)$.

Thus $\left(W_{n}\left(X_{n}\right) ; \diamond, \sigma_{i d}(f)\right)$ forms a monoid, which is isomorphic to the monoid of all hypersubstitutions of type $\tau=(n)$. This suggests the idea to study
properties of the monoid $W_{n}\left(X_{n}\right)$ and its submonoids. We will use the following concepts and notation in the next statements and their proofs. For a term $t \in W_{n}\left(X_{n}\right)$ we put
$v b(t)-\begin{aligned} & \text { the total number of occurrences of variables in } t \text { (including } \\ & \text { multiplicities) }\end{aligned}$
$o p(t)$ - the number of occurrence of the operation symbol f in t
$v b_{i}(t)$ - the number of occurrence of x_{i} in t for $i \in \bar{n}$
$v a r(t)$ - the set of all variables occorring in t.

Notation 2. Let $1 \leq n \in \mathbb{N}$. Then we put $W_{n}^{\text {reg }}:=\left\{t \mid t \in W_{n}\left(X_{n}\right)\right.$ and $\left.\operatorname{var}(t)=X_{n}\right\}$.
The set $W_{n}^{\text {reg }}$ corresponds to the set $\operatorname{Reg}(n)=\{\sigma \mid \sigma \in \operatorname{Hyp}(n)$ and $\left.\sigma(f) \in W_{n}^{\text {reg }}\right\}$ of all regular hypersubstitutions of type $\tau=(n)$ which forms a monoid (see [5]). Clearly, $\sigma_{i d}(f) \in W_{n}^{\text {reg }}$ and the monoid $\left(\operatorname{Reg}(n) ; \circ_{h}, \sigma_{i d}\right)$ is isomorphic to $\left(W_{n}^{r e g} ; \diamond, \sigma_{i d}(f)\right)$ by the isomorphism φ_{n} restricted to $\operatorname{Reg}(n)$, i.e. $W_{n}^{\text {reg }}$ forms a monoid which is isomorphic to the monoid of all regular hypersubstitutions of type $\tau=(n)$. Our first aim is to determine all maximal submonoids of ($\left.W_{n}^{r e g} ; \diamond, \sigma_{i d}(f)\right)$. This will be done in the next section.

A second kind of terms is determined by transformations on the set \bar{n}. Let T_{n} be the set of all transformations on the set \bar{n}, i.e. T_{n} is the set of all mappings $h: \bar{n} \rightarrow \bar{n}$. Then one gets a monoid $\left(T_{n} ; \circ, \varepsilon_{n}\right)$, where \circ is the usual composition of functions and ε_{n} is the identity mapping on \bar{n}. The natural number $n_{h}:=n-|\{h(a) \mid a \in \bar{n}\}|$ is called the defect of a given transformation h. A transformation h is called isotone if the following implication holds for all $a, b \in \bar{n}$:

$$
a \leq b \Rightarrow h(a) \leq h(b) .
$$

For $1 \leq k<n$ let $I_{n, k}$ be the set of all isotone transformations on \bar{n} with defect $\geq k$. The set $O_{n}:=I_{n, 1}$ forms a semigroup and each of the set $I_{n, k}$, $2 \leq k<n$, forms an ideal of $O_{n}([14])$. A transformation h is called antitone if the following implication holds for all $a, b \in \bar{n}$:

$$
a \leq b \Rightarrow h(a) \geq h(b) .
$$

A transformation is called monotone if it is isotone or antitone. The set M_{n} of all monotone transformations on \bar{n} with defect ≥ 1 forms a
semigroup, too ([11]). Moreover, it is well-known that the set S_{n} of all bijective transformations on \bar{n}, i.e. permutations on \bar{n}, forms a subgroup of T_{n}.

For any transformation h on \bar{n}, we can consider the term $f\left(x_{h(1)}, \ldots\right.$, $\left.x_{h(n)}\right)$. So we get terms defined by transformations and it is very natural to define hypersubstitutions by transformations. For any transformation h, we will denote the hypersubstitution σ with $\sigma(f)=f\left(x_{h(1)}, \ldots, x_{h(n)}\right)$ by σ_{h}. For any set $A \subseteq T_{n}$, we put $A^{h y p}:=\left\{\sigma_{h} \mid h \in A\right\}$ and $W_{A}:=$ $\left\{f\left(x_{h(1)}, \ldots, x_{h(n)}\right) \mid h \in A\right\}$. In particular, we put $P_{n}:=W_{S_{n}}$. Clearly, the mapping $\rho_{n}: T_{n} \rightarrow T_{n}^{h y p}$ defined by

$$
\rho_{n}(h):=\sigma_{h}
$$

is a bijection. In particular, ρ_{n} is an anti-isomorphism (dual isomorphism).
Proposition 3. Let $1 \leq n \in \mathbb{N}$. Then $\left(T_{n} ; \circ, \varepsilon_{n}\right)$ is anti-isomorphic to $\left(T_{n}^{h y p} ; \circ_{h}, \sigma_{i d}\right)$.

Proof. We have to show that $\rho_{n}(\varphi \circ \pi)=\rho_{n}(\pi) \circ_{h} \rho_{n}(\varphi)$ for all $\varphi, \pi \in A$. Let $\varphi, \pi \in A$. Then we have $\rho_{n}(\pi) \circ_{h} \rho_{n}(\varphi)=\sigma_{\pi} \circ_{h} \sigma_{\varphi}=\widehat{\sigma}_{\pi} \circ \sigma_{\varphi}$ and $\rho_{n}(\varphi \circ \pi)=\sigma_{\varphi \circ \pi}$. Further we have

$$
\begin{aligned}
\sigma_{\varphi \circ \pi}(f) & =f\left(x_{(\varphi \circ \pi)(1)}, \ldots, x_{(\varphi \circ \pi)(n)}\right) \\
& =f\left(x_{\pi(1)}, \ldots, x_{\pi(n)}\right)\left(x_{\varphi(1)}, \ldots, x_{\varphi(n)}\right) \\
& =\widehat{\sigma}_{f\left(x_{\pi(1)}, \ldots, x_{\pi(n)}\right)}\left[f\left(x_{\varphi(1)}, \ldots, x_{\varphi(n)}\right)\right] \\
& =\widehat{\sigma}_{\pi}\left[f\left(x_{\varphi(1)}, \ldots, x_{\varphi(n)}\right)\right] \\
& =\widehat{\sigma}_{\pi}\left[\sigma_{\varphi}(f)\right] \\
& =\left(\widehat{\sigma}_{\pi} \circ \sigma_{\varphi}\right)(f) .
\end{aligned}
$$

This shows that $\rho_{n}(\pi) \circ{ }_{h} \rho_{n}(\varphi)=\rho_{n}(\varphi \circ \pi)$.
In particular, then each of the sets $O_{n}^{h y p}, M_{n}^{h y p}$ and $I_{n, 2}^{\text {hyp }}$ forms a semigroup. We will consider these semigroups in Section 4. Moreover, the mapping $\gamma_{n}: T_{n} \rightarrow W_{T_{n}}$ defined by $\gamma_{n}(h):=f\left(x_{h(1)}, \ldots, x_{h(n)}\right)$ is evidently an antiisomorphism by Proposition 1 and Proposition 3. This gives:

Corollary 4. Let $1 \leq n \in \mathbb{N}$. Then $\left(T_{n} ; \circ, \varepsilon_{n}\right)$ is anti-isomorphic to $\left(W_{T_{n}} ; \diamond, \sigma_{i d}(f)\right)$.

3. The maximal submonoids of $\operatorname{Reg}(n)$

To characterize all maximal subsemigroups of $\left(W_{n}^{r e g} ; \diamond\right)$ for a given natural number $n \geq 2$, we need some technical lemmas. The following facts were proved in [10]:

Lemma 5. Let $s \in W_{n}^{r e g}$ and $t, t_{1}, \ldots, t_{n} \in W_{n}\left(X_{n}\right)$ with $t=f\left(t_{1}, \ldots, t_{n}\right)$. Then
(a) $v b(s \diamond t) \geq v b(t)$;
(b) $v b(s \diamond t)=\sum_{n}^{i=1} v b_{i}(s) v b\left(s \diamond t_{i}\right)$;
(c) $v b\left(s\left(t_{1}, \ldots, t_{n}\right)\right)=\sum_{i=1}^{n} v b_{i}(s) v b\left(t_{i}\right)$.

Corollary 6. For $s, t \in W_{n}^{\text {reg }}$ it holds:
(a) If $s \notin P_{n}$ then $v b(t)<v b(s \diamond t)$.
(b) If $t \notin P_{n}$ then $v b(s)<v b(s \diamond t)$.

Proof. We have $v b(s \diamond t) \geq \sum_{i=1}^{n} v b_{i}(s) v b\left(t_{i}\right)$ by Lemma 5 and $v b_{i}(s) \neq 0$ for $i \in \bar{n}$ since $\operatorname{var}(s)=X_{n}$.
(a) If $s \notin P_{n}$ then there is a $j \in \bar{n}$ with $v b_{j}(s) \geq 2$ and thus

$$
\sum_{i=1}^{n} v b_{i}(s) v b\left(t_{i}\right) \geq v b\left(t_{j}\right)+\sum_{i=1}^{n} v b\left(t_{i}\right)>\sum_{i=1}^{n} v b\left(t_{i}\right)=v b(t)
$$

(b) If $t \notin P_{n}$ then there is a $j \in \bar{n}$ with $v b\left(t_{j}\right) \geq 2$ and thus

$$
\sum_{i=1}^{n} v b_{i}(s) v b\left(t_{i}\right) \geq 1+\sum_{i=1}^{n} v b_{i}(s)>\sum_{i=1}^{n} v b_{i}(s)=v b(s)
$$

Lemma 7. For $s \in W_{n}^{\text {reg }}$ and $t \in P_{n}$ we have $v b(s \diamond t)=v b(t \diamond s)=v b(s)$.
Proof. There is a $\pi \in S_{n}$ such that $t=f\left(x_{\pi(1)}, \ldots, x_{\pi(n)}\right)$. Further, there are $s_{1}, \ldots, s_{n} \in W_{n}\left(X_{n}\right)$ such that $s=f\left(s_{1}, \ldots, s_{n}\right)$. Then we have $v b(s \diamond t)=v b\left(\widehat{\sigma}_{s}[t]\right)=v b\left(s\left(x_{\pi(1)}, \ldots, x_{\pi(n)}\right)\right)=\sum_{i=1}^{n} v b_{i}(s) v b\left(x_{\pi(i)}\right)=$ $\sum_{i=1}^{n} v b_{i}(s)=v b(s)$ by Lemma 5 c$)$. We show now by induction that $v b\left(\widehat{\sigma}_{t}[r]\right)=v b(r)$ for all $r \in W_{n}\left(X_{n}\right)$. Clearly, $\widehat{\sigma}_{t}[r]=r$ for $r \in X_{n}$. Let $r=f\left(r_{1}, \ldots, r_{n}\right), r_{1}, \ldots, r_{n} \in W_{n}\left(X_{n}\right)$, and suppose that $v b\left(\widehat{\sigma}_{t}\left[r_{i}\right]\right)=v b\left(r_{i}\right)$ for $i \in \bar{n}$. Then

$$
\begin{aligned}
v b\left(\widehat{\sigma}_{t}[r]\right) & =v b\left(f\left(x_{\pi(1)}, \ldots, x_{\pi(n)}\right)\left(\widehat{\sigma}_{t}\left[r_{1}\right], \ldots, \widehat{\sigma}_{t}\left[r_{n}\right]\right)\right) \\
& =v b\left(f\left(\widehat{\sigma}_{t}\left[r_{\pi(1)}\right], \ldots, \widehat{\sigma}_{t}\left[r_{\pi(n)}\right]\right)\right)=\sum_{i=1}^{n} v b\left(\widehat{\sigma}_{t}\left[r_{i}\right]\right)=\sum_{i=1}^{n} v b\left(r_{i}\right)=v b(r) .
\end{aligned}
$$

In particular, $v b(t \diamond s)=v b\left(\widehat{\sigma}_{t}[s]\right)=v b(s)$.
Now we consider the Green's relation \mathcal{J} on the semigroup ($W_{n}^{r e g} ; \diamond$) which is defined by $s \mathcal{J} t$ if there are $s_{1}, s_{2}, t_{1}, t_{2} \in W_{n}^{r e g}$ such that $s=t_{1} \diamond t \diamond t_{2}$ and $t=s_{1} \diamond s \diamond s_{2}$. For $t \in W_{n}^{r e g}$, we denote the J-class containing t by J_{t}, i.e.

$$
J_{t}:=\left\{s \mid s \in W_{n}^{\text {reg }} \text { and } s \mathcal{J} t\right\} .
$$

The relation \mathcal{J} on $W_{n}^{\text {reg }}$ can be characterized as follows:

Lemma 8. Let $s, t \in W_{n}^{\text {reg }}$. Then there holds $s \mathcal{J} t$ iff there are $s_{1}, s_{2}, t_{1}, t_{2}$ $\in P_{n}$ such that $s=t_{1} \diamond t \diamond t_{2}$ and $t=s_{1} \diamond s \diamond s_{2}$.

Proof. One direction is clear. Conversely, let $s \mathcal{J} t$. Then there are s_{1}, s_{2}, $t_{1}, t_{2} \in W_{n}^{r e g}$ such that $s=t_{1} \diamond t \diamond t_{2}$ and $t=s_{1} \diamond s \diamond s_{2}$. We will show that $s_{1}, s_{2}, t_{1}, t_{2} \in P_{n}$. We have $s=\left(t_{1} \diamond s_{1}\right) \diamond s \diamond\left(s_{2} \diamond t_{2}\right)$. Assume that $\left(t_{1} \diamond s_{1}\right) \notin P_{n}$. Then $v b(s)<v b\left(\left(t_{1} \diamond s_{1}\right) \diamond s\right)$ by Corollary 6. Further, we have $\left.v b\left(\left(t_{1} \diamond s_{1}\right) \diamond s\right)\right) \leq v b\left(\left(t_{1} \diamond s_{1}\right) \diamond s \diamond\left(s_{2} \diamond t_{2}\right)\right)$ by Corollary 6 and Lemma 7, respectively. This gives $v b(s)<v b(s)$, a contradiction. Assume that $\left(s_{2} \diamond t_{2}\right) \notin P_{n}$. Then $v b\left(\left(t_{1} \diamond s_{1}\right) \diamond s\right)<v b\left(\left(t_{1} \diamond s_{1}\right) \diamond s \diamond\left(s_{2} \diamond t_{2}\right)\right)=v b(s)$ by Corollary 6. But since $\left(t_{1} \diamond s_{1}\right) \in P_{n}$ we have $v b\left(\left(t_{1} \diamond s_{1}\right) \diamond s\right)=v b(s)$ by Lemma 7. This gives $v b(s)<v b(s)$, a contradiction. So, both terms $\left(t_{1} \diamond s_{1}\right)$ and $\left(s_{2} \diamond t_{2}\right)$ belong to P_{n}. This provides $v b\left(s_{1}\right), v b\left(t_{1}\right) \geq v b\left(t_{1} \diamond s_{1}\right)=1$ and $v b\left(s_{2}\right), v b\left(t_{2}\right) \geq v b\left(t_{2} \diamond s_{2}\right)=1$. But this is only possible if $s_{1}, s_{2}, t_{1}, t_{2} \in P_{n}$, by Corollary 6 .

Proposition 9. Let $s, t \in W_{n}^{\text {reg }}$. Then there holds $s \mathcal{J} t$ iff there are $s_{1}, s_{2} \in$ P_{n} such that $t=s_{1} \diamond s \diamond s_{2}$.

Proof. One direction is clear by Lemma 8. Conversely, let $s_{1}, s_{2} \in P_{n}$ such that $t=s_{1} \diamond s \diamond s_{2}$. Then there are $\rho, \pi \in S_{n}$ with $s_{1}=f\left(x_{\pi(1)}, \ldots, x_{\pi(n)}\right)$ and $s_{2}=f\left(x_{\rho(1)}, \ldots, x_{\rho(n)}\right)$. Then there are $\rho^{-1}, \pi^{-1} \in S_{n}$ with $\rho^{-1} \circ \rho=$ $\pi \circ \pi^{-1}=\varepsilon_{n}$ and we get $f\left(x_{\pi^{-1}(1)}, \ldots, x_{\pi^{-1}(n)}\right) \diamond t \diamond f\left(x_{\rho^{-1}(1)}, \ldots, x_{\rho^{-1}(n)}\right)=$ $f\left(x_{\pi^{-1}(1)}, \ldots, x_{\pi^{-1}(n)}\right) \diamond f\left(x_{\pi(1)}, \ldots, x_{\pi(n)}\right) \diamond s \diamond f\left(x_{\rho(1)}, \ldots, x_{\rho(n)}\right) \diamond f\left(x_{\rho^{-1}(1)}\right.$, $\left.\ldots, x_{\rho^{-1}(n)}\right)$. Then Proposition 1 provides $\sigma_{\pi^{-1} \circ_{h}} \sigma_{t} \circ_{h} \sigma_{\rho^{-1}}=\sigma_{\pi^{-1} \circ_{h}} \sigma_{\pi} \circ_{h}$ $\sigma_{s} \circ_{h} \sigma_{\rho} \circ_{h} \sigma_{\rho^{-1}}$ where $\sigma_{\pi^{-1} \circ_{h}} \sigma_{\pi} \circ_{h} \sigma_{s} \circ_{h} \sigma_{\rho} \circ_{h} \sigma_{\rho^{-1}}=\sigma_{\left(\pi \circ \pi^{-1}\right)} \circ_{h} \sigma_{s} \circ_{h} \sigma_{\left(\rho^{-1} \circ \rho\right)}=$ $\sigma_{\varepsilon_{n}} \circ_{h} \sigma_{s} \circ_{h} \sigma_{\varepsilon_{n}}=\sigma_{s}$ by Proposition 3. This gives $f\left(x_{\pi^{-1}(1)}, \ldots, x_{\pi^{-1}(n)}\right) \diamond$ $t \diamond f\left(x_{\rho^{-1}(1)}, \ldots, x_{\rho^{-1}(n)}\right)=s$ again by Proposition 1. Altogether, this shows that $s \mathcal{J} t$ using Lemma 8.

Notation 10. A term $t \in W_{n}^{\text {reg }}$ is called a proper \diamond-product if there are $r, s \in W_{n}^{r e g} \backslash P_{n}$ such that $t=r \diamond s$. Let $W_{n}^{\text {dec }}$ denote the set of all proper \diamond-products of $W_{n}^{\text {reg }}$.

Now we are able to characterize all maximal subsemigroups of $\left(W_{n}^{r e g} ; \diamond\right)$, i.e. all subsets $W \subseteq W_{n}^{r e g}$ with $\langle W \cup\{a\}\rangle=W_{n}^{\text {reg }}$ for all $a \in W_{n}^{r e g} \backslash W$.

Theorem 11. A set $W \subseteq W_{n}^{\text {reg }}$ forms a maximal subsemigroup of $\left(W_{n}^{\text {reg }} ; \diamond\right)$ iff one of the following statements is satisfied:
(i) There is a $t \in W_{n}^{r e g} \backslash\left(W_{n}^{d e c} \cup P_{n}\right)$ such that $W=W_{n}^{r e g} \backslash J_{t}$.
(ii) There is a maximal subgroup S of S_{n} such that $W=\left(W_{n}^{\text {reg }} \backslash P_{n}\right) \cup W_{S}$.
$\boldsymbol{P r o o f}$. Suppose that (i) is satisfied, i.e. there is a $t \in W_{n}^{r e g} \backslash\left(W_{n}^{d e c} \cup P_{n}\right)$ such that $W=W_{n}^{\text {reg }} \backslash J_{t}$. We show that W forms a subsemigroup of $\left(W_{n}^{r e g} ; \diamond\right)$. For this let $a, b \in W_{n}^{r e g} \backslash J_{t}$. Then $a \diamond b \in W_{n}^{r e g}$. Assume that $a \diamond b \in J_{t}$. Then there are $s_{1}, s_{2} \in P_{n}$ such that $t=\left(s_{1} \diamond a\right) \diamond\left(b \diamond s_{2}\right)$ by Proposition 9. Since $t \notin W_{n}^{\text {dec }}$ we have $\left(s_{1} \diamond a\right) \in P_{n}$ or $\left(b \diamond s_{2}\right) \in P_{n}$. Without loss of generality let $\left(s_{1} \diamond a\right) \in P_{n}$. Then we get $b \in J_{t}$ by Proposition 9 , a contradiction. Thus $a \diamond b \in W_{n}^{r e g} \backslash J_{t}=W$. This shows that $(W ; \diamond)$ is a subsemigroup of $\left(W_{n}^{r e g} ; \diamond\right)$. Now we show that W is maximal. First, we show that $P_{n} \subseteq W$. Assume that $P_{n} \nsubseteq W$. Then there are an $s \in P_{n} \cap J_{t}$ and $s_{1}, s_{2} \in P_{n}$ such that $t=s_{1} \diamond s \diamond s_{2}$. Then Lemma 7 provides $v b(t)=v b(s)=n$, i.e. $t \in P_{n}$, a contradiction. Hence $P_{n} \subseteq W$.

Let now $s \in W_{n}^{r e g} \backslash W$, i.e. $s \in J_{t}$. Then there are $s_{1}, s_{2} \in P_{n}$ such that $t=s_{1} \diamond s \diamond s_{2}$. Hence $t \in\langle W \cup\{s\}\rangle$ and thus $\left\{s_{1} \diamond t \diamond s_{2} \mid s_{1}, s_{2} \in P_{n}\right\} \subseteq$ $\langle W \cup\{s\}\rangle$. Further, we have $J_{t}=\left\{s_{1} \diamond t \diamond s_{2} \mid s_{1}, s_{2} \in P_{n}\right\}$ by Proposition 9 , hence $J_{t} \subseteq\langle W \cup\{s\}\rangle$. This shows that W is maximal.

Suppose that (ii) is satisfied, i.e. there is a maximal subgroup S of S_{n} such that $W=\left(W_{n}^{\text {reg }} \backslash P_{n}\right) \cup W_{S}$. We show that W forms a subsemigroup of $\left(W_{n}^{r e g} ; \diamond\right)$. For this let $a, b \in W$. If $a \notin P_{n}$ or $b \notin P_{n}$ then $v b(b)<v b(a \diamond b)$ and $v b(a)<v b(a \diamond b)$, respectively, by Corollary 6. Thus $v b(a \diamond b)>1$. This shows that $a \diamond b \notin P_{n}$, i.e. $a \diamond b \in W$. We consider now the case that $a, b \in P_{n}$, i.e. $a, b \in W_{S}$. Since S is a subgroup of S_{n}, we have $a \diamond b \in W_{S}$ by Corollary 4. This shows that $(W ; \diamond)$ is a subsemigroup of $\left(W_{n}^{r e g} ; \diamond\right)$. Now we conclude that $\left(W_{n}^{r e g} \backslash P_{n}\right) \cup W_{S}$ is maximal since $\left(W_{S} ; \diamond\right)$ is a maximal subgroup of $\left(P_{n} ; \diamond\right)$ by Corollary 4.

Conversely, let $(W ; \diamond)$ be a maximal subsemigroup of $\left(W_{n}^{r e g} ; \diamond\right)$. We put $M:=W_{n}^{\text {reg }} \backslash W$. Then we have $M \cap P_{n}=\emptyset$ or $M \cap P_{n} \neq \emptyset$. Suppose that $M \cap P_{n} \neq \emptyset$. Let us consider the set $S:=\left\{\pi \in S_{n} \mid f\left(x_{\pi(1)}, \ldots, x_{\pi(n)}\right) \in W\right\}$. Then we have $W \cap P_{n}=W_{S}$. Since both sets W and P_{n} form semigroups, $W \cap P_{n}=W_{S}$ forms a subsemigroup of $\left(P_{n} ; \diamond\right)$. Then S is a proper subsemigroup of S_{n} by Proposition 3. Since S_{n} is finite, each subsemigroup of S_{n} is a group. Hence there is a maximal subgroup T of S_{n} containing S and we have $W \subseteq\left(W_{n}^{r e g} \backslash P_{n}\right) \cup W_{T}$ where $\left(W_{n}^{r e g} \backslash P_{n}\right) \cup W_{T}$ forms a subsemigroup of $\left(W_{n}^{r e g} ; \diamond\right)$ by the previous considerations. Since $(W ; \diamond)$ is a maximal subsemigroup of $\left(W_{n}^{r e g} ; \diamond\right)$, we can conclude that $W=\left(W_{n}^{r e g} \backslash P_{n}\right) \cup W_{T}$.

Suppose that $M \cap P_{n}=\emptyset$. Let $t \in M$. Then $t \notin P_{n}$. Assume that $t \in W_{n}^{\text {dec }}$. Then there are $t_{1}, t_{2} \in W_{n}^{r e g} \backslash P_{n}$ such that $t=t_{1} \diamond t_{2}$. Since $t \notin W$, one of the terms t_{1} and t_{2} does not belong to W. Without loss of generality let $t_{1} \notin W$. Then Corollary 6 implies $v b\left(t_{1}\right)<v b\left(t_{1} \diamond t_{2}\right)=v b(t)$. Let $a_{1}, \ldots, a_{k} \in W_{n}^{r e g}$ for some natural number $k>0$ with $a_{j}=t$ for some $j \in\{1, \ldots, k\}$. Then $v b\left(a_{1} \diamond \ldots \diamond a_{k}\right) \geq v b(t)$ by Corollary 6 and Lemma 7 . Thus $t_{1} \notin\langle W \cup\{t\}\rangle$, i.e. $\langle W \cup\{t\}\rangle \neq W_{n}^{r e g}$. Because of the maximality of $(W ; \diamond)$ we get $t \in W$, a contradiction. Hence $t \notin W_{n}^{\text {dec }}$ and altogether $t \in W_{n}^{r e g} \backslash\left(W_{n}^{\text {dec }} \cup P_{n}\right)$. Now we show $J_{t} \subseteq M$. Otherwise there is an $s \in J_{t}$ with $s \in W$. Then there are $s_{1}, s_{2} \in P_{n}$ such that $t=s_{1} \diamond s \diamond s_{2}$. Since $P_{n} \subseteq W$ we get $t \in W$, a contradiction. Now we have $W \subseteq W_{n}^{r e g} \backslash J_{t}$, where $W_{n}^{r e g} \backslash J_{t}$ forms a semigroup (see the previous considerations). Since ($W ; \diamond$) is a maximal subsemigroup of $\left(W_{n}^{r e g} ; \diamond\right)$, we obtain $W=W_{n}^{r e g} \backslash J_{t}$.

Remark 12. Clearly, each maximal submonoid of ($W_{n}^{\text {reg }} ; \diamond$) contains the identity element $\sigma_{i d}(f)$. Therefore, Theorem 11 characterizes all maximal submonoids of $\left(W_{n}^{r e g} ; \diamond, \sigma_{i d}(f)\right)$.

Since the only maximal subgroup of S_{2} as well as the four maximal subgroups of S_{3} are well known, we can formulate Theorem 11 for $n=2$ and $n=3$, respectively, in the following way.

Proposition 13. A set $W \subseteq W_{2}^{\text {reg }}$ forms a maximal subsemigroup of $\left(W_{2}^{\text {reg }} ; \diamond\right)$ iff $W=W_{2}^{\text {reg }} \backslash\left\{f\left(x_{2}, x_{1}\right)\right\}$ or $W=W_{2}^{\text {reg }} \backslash J_{t}$ for some $t \in$ $W_{2}^{r e g} \backslash\left(W_{2}^{d e c} \cup P_{2}\right)$.

Proposition 14. A set $W \subseteq W_{3}^{\text {reg }}$ forms a maximal subsemigroup of $\left(W_{3}^{\text {reg }} ; \diamond\right)$ iff $W=W_{3}^{\text {reg }} \backslash J_{t}$ for some $t \in W_{3}^{\text {reg }} \backslash\left(W_{3}^{\text {dec }} \cup P_{3}\right)$ or W coincides with one of the following four sets:
(a) $W_{3}^{r e g} \backslash\left\{f\left(x_{1}, x_{3}, x_{2}\right), f\left(x_{3}, x_{2}, x_{1}\right), f\left(x_{2}, x_{1}, x_{3}\right)\right\}$
(b) $W_{3}^{\text {reg }} \backslash\left\{f\left(x_{1}, x_{3}, x_{2}\right), f\left(x_{3}, x_{2}, x_{1}\right), f\left(x_{2}, x_{3}, x_{1}\right), f\left(x_{3}, x_{1}, x_{2}\right)\right\}$
(c) $W_{3}^{r e g} \backslash\left\{f\left(x_{1}, x_{3}, x_{2}\right), f\left(x_{2}, x_{1}, x_{3}\right), f\left(x_{2}, x_{3}, x_{1}\right), f\left(x_{3}, x_{1}, x_{2}\right)\right\}$
(d) $W_{3}^{r e g} \backslash\left\{f\left(x_{2}, x_{1}, x_{3}\right), f\left(x_{3}, x_{2}, x_{1}\right), f\left(x_{2}, x_{3}, x_{1}\right), f\left(x_{3}, x_{1}, x_{2}\right)\right\}$.

To determine all maximal subsemigroups of $W_{n}^{\text {reg }}$ we need the knowledge of all maximal subgroups of S_{n} and of all elements of the set $W_{n}^{\text {reg }} \backslash\left(W_{n}^{\text {dec }} \cup P_{n}\right)$. The O'Nan Scott-Theorem gives a classification of all maximal subgroups of S_{n} (e.g. [15]). But the characterization of all proper \diamond-products seems to be a too complex problem. Therefore we restrict ourselves to study only necessary or only sufficient properties of the elements of $W_{n}^{\text {dec }}$. First, we show that a term $t \in W_{n}^{\text {reg }}$ does not belong to $W_{n}^{\text {dec }}$ if $o p(t)$ is a prime number.

Lemma 15. Let $s \in W_{n}^{\text {reg }}$ and $t \in W_{n}\left(X_{n}\right)$. Then there is a natural number $k \geq o p(t)$ such that $o p(s \diamond t)=k \cdot o p(s)$.

Proof. If $t \in X_{n}$ then $o p(t)=0$ and thus $o p(s \diamond t)=o p\left(\hat{\sigma}_{s}[t]\right)=o p(t)=$ $0=0 \cdot o p(s)$. Suppose that $t=f\left(t_{1}, \ldots, t_{n}\right)$ with $t_{1}, \ldots, t_{n} \in W_{n}\left(X_{n}\right)$ and $o p\left(s \diamond t_{i}\right)=k_{i} \cdot o p(s)$ with $k_{i} \geq o p\left(t_{i}\right)$ for $i \in \bar{n}$. We have $o p(s \diamond t)=$ $o p(s)+\sum_{i=1}^{n} v b_{i}(s) \cdot o p\left(\widehat{\sigma}_{s}\left[t_{i}\right]\right)$ (see [10]). Further, it holds

$$
\begin{aligned}
& o p(s)+\sum_{i=1}^{n} v b_{i}(s) \cdot o p\left(\widehat{\sigma}_{s}\left[t_{i}\right]\right) \\
& =o p(s)+\sum_{i=1}^{n} v b_{i}(s) \cdot k_{i} \cdot o p(s) \\
& =o p(s) \cdot\left(1+\sum_{i=1}^{n} v b_{i}(s) \cdot k_{i}\right) .
\end{aligned}
$$

Since $v b_{i}(s) \neq 0$ (because of $\left.\operatorname{var}(s)=X_{n}\right)$ and $k_{i} \geq o p\left(t_{i}\right)$ for $i \in \bar{n}$ we have $\sum_{i=1}^{n} v b_{i}(s) \cdot k_{i} \geq \sum_{i=1}^{n} v b_{i}(s) \cdot o p\left(t_{i}\right) \geq \sum_{i=1}^{n} o p\left(t_{i}\right)=o p(t)-1$, i.e. $1+\sum_{i=1}^{n} v b_{i}(s) \cdot k_{i} \geq o p(t)$.

Proposition 16. If $t \in W_{n}^{\text {reg }}$ such that $o p(t)$ is a prime number then $t \notin$ $W_{n}^{\text {dec }} \cup P_{n}$.

Proof. Since $o p(t)$ is a prime number, $o p(t) \geq 2$. Thus $t \notin P_{n}$. Assume that $t \in W_{n}^{\text {dec }}$. Then there are $r, s \in W_{n}^{\text {reg }} \backslash P_{n}$ such that $t=r \diamond s$. This provides $o p(t)=o p(r \diamond s)=k \cdot o p(r)$ for some $k \geq o p(s)$ by Lemma 15 . Since $r, s \notin P_{n}$ we have $o p(r), o p(s) \geq 2$ and thus $k \geq o p(s) \geq 2$. Hence $o p(t)=k \cdot o p(r)$ is not a prime number, a contradiction. This shows that $t \notin W_{n}^{d e c}$.

An element of $W_{n}^{\text {dec }}$ has the following structure:
Proposition 17. For any $t \in W_{n}^{\text {dec }}$ there are an $s \in W_{n}^{\text {reg }} \backslash P_{n}$ and $t_{1}, \ldots, t_{n} \in W_{n}\left(X_{n}\right)$ with $t_{j} \notin X_{n}$ for some $j \in \bar{n}$ such that $t=s(s \diamond$ $\left.t_{1}, \ldots, s \diamond t_{n}\right)$.

Proof. Since $t \in W_{n}^{\text {dec }}$ there are $r, s \in W_{n}^{r e g} \backslash P_{n}$ such that $t=r \diamond s=\widehat{\sigma}_{r}[s]$. Further, there are $s_{1}, \ldots, s_{n} \in W_{n}\left(X_{n}\right)$ such that $s=f\left(s_{1}, \ldots, s_{n}\right)$ and we obtain $\widehat{\sigma}_{r}[s]=r\left(\widehat{\sigma}_{r}\left[s_{1}\right], \ldots, \widehat{\sigma}_{r}\left[s_{n}\right]\right)=r\left(r \diamond s_{1}, \ldots, r \diamond s_{n}\right)$. Since $s \notin P_{n}$ there is a $j \in \bar{n}$ with $s_{j} \notin X_{n}$.

Example 18. We consider the case $n=(3)$ and the term

$$
t=f\left(x_{1}, f\left(x_{1}, x_{1}, x_{1}\right), f\left(x_{1}, x_{1}, f\left(x_{1}, x_{2}, x_{3}\right)\right)\right) .
$$

Although $o p(t)$ is not a prime number, t does not belong to $W_{3}^{\text {dec }}$. Indeed, assume that there are an $s \in W_{3}^{\text {reg }} \backslash P_{3}$ and $t_{1}, t_{2}, t_{3} \in W_{3}\left(X_{3}\right)$ with $t_{i} \notin X_{3}$ for some $i \in\{1,2,3\}$ such that $t=s\left(s \diamond t_{1}, s \diamond t_{2}, s \diamond t_{3}\right)$. Then $o p(s) \geq 2$ and $o p\left(s \diamond t_{i}\right) \geq 4$ by Lemma 15. This provides that $o p(t) \geq 4+o p(s)>4$, a contradiction.

4. Transformation hypersubstitutions

A list of all maximal subsemigroups of the ideal O_{n} of all isotone transformations on \bar{n} with defect ≥ 1 is given in [16]. I. Guydzenov and I. Dimitrova have determined all maximal subsemigroups of M_{n} as well as of the ideal $I_{n, 2}$ of all isotone transformations on \bar{n} with defect ≥ 2, see [12] and [13], respectively. These results can be regarded as generalizations of the results in [16] concerning O_{n}. We want to use the mentioned results to characterize the maximal submonoids of particular monoids of transformation hypersubstitutions. It is easy to verify that each of the sets $O_{n}^{h y p} \cup\left\{\sigma_{i d}\right\}, M_{n}^{h y p} \cup\left\{\sigma_{i d}\right\}$ and $I_{n, 2}^{h y p} \cup\left\{\sigma_{i d}\right\}$ forms a submonoid of $T R(n)$. We can use Proposition 3 to characterize the maximal submonoids of each of these monoids.

Lemma 19. Let $1 \leq n \in \mathbb{N}$ and let $(A ; \circ)$ be a transformation semigroup on \bar{n} with $\varepsilon_{n} \notin A$. Then a set $M \subseteq T R(n)$ forms a maximal submonoid of ($\left.A^{\text {hyp }} \cup\left\{\sigma_{i d}\right\} ; \circ_{h}, \sigma_{i d}\right)$ iff there is a maximal subsemigroup $(B ; \circ)$ of $(A ; \circ)$ such that $M=B^{h y p} \cup\left\{\sigma_{i d}\right\}$.

Proof. Suppose that $\left(M ; \circ_{h}, \sigma_{i d}\right)$ is a maximal submonoid of ($A^{h y p} \cup\left\{\sigma_{i d}\right\}$; $\left.\circ_{h}, \sigma_{i d}\right)$. Then there is a set $B \subseteq A$ such that $B^{h y p} \cup\left\{\sigma_{i d}\right\}=M$. Since $\varepsilon_{n} \notin A, \sigma_{i d} \notin A^{h y p}$ and thus ($A^{h y p} ; o_{h}$) forms a semigroup. Hence $M \backslash\left\{\sigma_{i d}\right\}$ forms a semigroup, in particular, $\left(M \backslash\left\{\sigma_{i d}\right\} ; \circ_{h}\right)$ is a maximal subsemigroup of $\left(A^{h y p} ; \circ_{h}\right)$. This implies that $(B ; \circ)$ is a maximal subsemigroup of $(A ; \circ)$ by Proposition 3. Conversely, suppose that $(B ; \circ)$ is a maximal subsemigroup of $(A ; \circ)$ such that $M=B^{h y p} \cup\left\{\sigma_{i d}\right\}$. Then $\left(B^{h y p} ; \circ_{h}\right)$ is a maximal subsemigroup of $\left(A^{h y p} ; \circ_{h}\right)$ by Proposition 3. Thus $\langle M \cup\{\sigma\}\rangle=\left\langle B^{h y p} \cup\left\{\sigma, \sigma_{i d}\right\}\right\rangle=$ $\left\langle B^{h y p} \cup\{\sigma\}\right\rangle \cup\left\{\sigma_{i d}\right\}=A^{h y p} \cup\left\{\sigma_{i d}\right\}$ for all $\sigma \in\left(A^{h y p} \cup\left\{\sigma_{i d}\right\}\right) \backslash M$. This shows that $\left(M ; \circ_{h}, \sigma_{i d}\right)$ is a maximal submonoid of $\left(A^{h y p} \cup\left\{\sigma_{i d}\right\} ; \circ_{h}, \sigma_{i d}\right)$.
For the set $T R_{2}(n):=I_{n, 2}^{h y p} \cup\left\{\sigma_{i d}\right\}$ we have
Corollary 20. Let $1 \leq n \in \mathbb{N}$. Then the following monoids are all maximal submonoids of $\left(T R_{2}(n) ; \circ_{h}, \sigma_{i d}\right)$: ($\left.A^{\text {hyp }} \cup\left\{\sigma_{i d}\right\} ; \circ_{h}, \sigma_{i d}\right)$, where $(A ; \circ)$ is a maximal subsemigroup of ($I_{n, 2} ; \circ$).

The maximal subsemigroups of $\left(I_{n, 2} ;\right.$ o) are listed in [12]. For example, let us consider the case $n=4$.

Example 21. Let $n=4$. Then we have $T R_{2}(4)=\left\{\sigma_{f\left(x_{i}, x_{i}, x_{i}, x_{i}\right)} \mid 1 \leq i \leq\right.$ $4\} \cup\left\{\sigma_{f\left(x_{i}, x_{i}, x_{i}, x_{j}\right)} \mid 1 \leq i<j \leq 4\right\} \cup\left\{\sigma_{f\left(x_{i}, x_{i}, x_{j}, x_{j}\right)} \mid 1 \leq i<j \leq 4\right\}$ $\cup\left\{\sigma_{f\left(x_{i}, x_{j}, x_{j}, x_{j}\right)} \mid 1 \leq i<j \leq 4\right\} \cup\left\{\sigma_{i d}\right\}$. There are eleven maximal submonoids of ($T R_{2}(4)$; $\left.\circ_{h}, \sigma_{i d}\right)$, namely

$$
\begin{aligned}
& A_{i, j}=T R_{2}(4) \backslash\left\{\sigma_{f\left(x_{i}, x_{i}, x_{i}, x_{j}\right)}, \sigma_{f\left(x_{i}, x_{i}, x_{j}, x_{j}\right)}, \sigma_{f\left(x_{i}, x_{j}, x_{j}, x_{j}\right)}\right\} \text { for } 1 \leq i<j \leq 4 \\
& A_{1}=T R_{2}(4) \backslash\left\{\sigma_{f\left(x_{i}, x_{j}, x_{j}, x_{j}\right)} \mid 1 \leq i<j \leq 4 \text { and } i+j \neq 3\right\} \\
& A_{2}=T R_{2}(4) \backslash\left\{\sigma_{f\left(x_{i}, x_{i}, x_{i}, x_{j}\right)} \mid 1 \leq i<j \leq 4 \text { and } i+j \neq 7\right\} \\
& A_{3}=T R_{2}(4) \backslash\left(\left\{\sigma_{f\left(x_{1}, x_{1}, x_{1}, x_{j}\right)} \mid 2 \leq j \leq 4\right\} \cup\left\{\sigma_{f\left(x_{1}, x_{1}, x_{j}, x_{j}\right)} \mid 2 \leq j \leq 4\right\}\right) \\
& A_{4}=T R_{2}(4) \backslash\left(\left\{\sigma_{f\left(x_{i}, x_{j}, x_{j}, x_{j}\right)} \mid 1 \leq i<j \leq 4 \text { and } i+j \neq 3,7\right\}\right) \cup \\
& \qquad\left\{\sigma_{f\left(x_{i}, x_{i}, x_{i}, x_{j}\right)} \mid 1 \leq i<j \leq 4 \text { and } i+j \neq 3,7\right\} \\
& A_{5}=T R_{2}(4) \backslash\left\{\sigma_{f\left(x_{i}, x_{i}, x_{j}, x_{j}\right)} \mid 1 \leq i<j \leq 4 \text { and } i j \neq 6\right\} .
\end{aligned}
$$

For the set $T R_{1}(n):=O_{n}^{\text {hyp }} \cup\left\{\sigma_{i d}\right\}$ we get
Corollary 22. Let $1 \leq n \in \mathbb{N}$. Then the following monoids are the maximal submonoids of $\left(T R_{1}(n) ; \circ_{h}, \sigma_{i d}\right):\left(A^{h y p} \cup\left\{\sigma_{i d}\right\} ; \circ_{h}, \sigma_{i d}\right)$, where $(A ; \circ)$ is a maximal subsemigroup of ($O_{n} ; \circ$).

The maximal subsemigroups of $\left(O_{n} ; \circ\right)$ are listed in [16]. For example, let us consider the case $n=4$.

Example 23. Let $n=4$. Then we have $T R_{1}(4)=T R_{2}(4) \cup\left\{\sigma_{f\left(x_{i}, x_{i}, x_{j}, x_{l}\right)} \mid\right.$ $1 \leq i<j<l \leq 4\} \cup\left\{\sigma_{f\left(x_{i}, x_{j}, x_{j}, x_{l}\right)} \mid 1 \leq i<j<l \leq 4\right\} \cup\left\{\sigma_{f\left(x_{i}, x_{j}, x_{l}, x_{l}\right)} \mid\right.$ $1 \leq i<j<l \leq 4\}$. There are ten maximal submonoids of $\left(T R_{1}(4) ; \circ_{h}, \sigma_{i d}\right)$, namely

$$
\begin{aligned}
B_{i, j, l}= & T R_{1}(4) \backslash\left\{\sigma_{f\left(x_{i}, x_{i}, x_{j}, x_{l}\right)}, \sigma_{f\left(x_{i}, x_{j}, x_{j}, x_{l}\right)}, \sigma_{f\left(x_{i}, x_{j}, x_{l}, x_{l}\right)}\right\} \text { for } \\
& 1 \leq i<j<l \leq 4 \\
B_{1}= & T R_{1}(4) \backslash\left\{\sigma_{f\left(x_{i}, x_{j}, x_{j}, x_{l}\right)} \mid 1 \leq i<j<l \leq 4\right\} \\
B_{2}= & T R_{1}(4) \backslash\left\{\sigma_{f\left(x_{1}, x_{3}, x_{3}, x_{4}\right)}, \sigma_{f\left(x_{2}, x_{3}, x_{3}, x_{4}\right)}, \sigma_{f\left(x_{1}, x_{3}, x_{4}, x_{4}\right)}, \sigma_{f\left(x_{2}, x_{3}, x_{4}, x_{4}\right)}\right\} \\
B_{3}= & T R_{1}(4) \backslash\left\{\sigma_{f\left(x_{i}, x_{j}, x_{4}, x_{4}\right)} \mid 1 \leq i<j \leq 3\right\} \\
B_{4}= & T R_{1}(4) \backslash\left\{\sigma_{f\left(x_{1}, x_{1}, x_{i}, x_{j}\right)} \mid 2 \leq i<j \leq 4\right\} \\
B_{5}= & T R_{1}(4) \backslash\left\{\sigma_{f\left(x_{1}, x_{1}, x_{2}, x_{3}\right)}, \sigma_{f\left(x_{1}, x_{1}, x_{2}, x_{4}\right)}, \sigma_{f\left(x_{1}, x_{2}, x_{2}, x_{3}\right)}, \sigma_{f\left(x_{1}, x_{2}, x_{2}, x_{4}\right)}\right\} \\
B_{6}= & T R_{1}(4) \backslash\left\{\sigma_{f\left(x_{1}, x_{1}, x_{2}, x_{4}\right)}, \sigma_{f\left(x_{1}, x_{1}, x_{3}, x_{4}\right)}, \sigma_{f\left(x_{1}, x_{2}, x_{4}, x_{4}\right)}, \sigma_{f\left(x_{1}, x_{3}, x_{4}, x_{4}\right)}\right\} .
\end{aligned}
$$

For the set $T R_{\text {mon }}(n):=M_{n}^{h y p} \cup\left\{\sigma_{i d}\right\}$ we have

Corollary 24. Let $1 \leq n \in \mathbb{N}$. Then the following monoids are all maximal submonoids of $\left(T R_{\text {mon }}(n) ; \circ_{h}, \sigma_{i d}\right):\left(A^{h y p} \cup\left\{\sigma_{i d}\right\} ; \circ_{h}, \sigma_{i d}\right)$, where $(A ; \circ)$ is a maximal subsemigroup of $\left(M_{n} ; \circ\right)$.

The maximal subsemigroups of $\left(M_{n} ; \circ\right)$ are listed in [13]. For example, let us consider the case $n=4$.

Example 25. Let $n=4$. Then we have $T R_{m o n}(4)=T R_{1}(4) \cup$ $\left\{\sigma_{f\left(x_{i}, x_{i}, x_{i}, x_{j}\right)} \mid 1 \leq j<i \leq 4\right\} \cup\left\{\sigma_{f\left(x_{i}, x_{i}, x_{j}, x_{j}\right)} \mid 1 \leq j<i \leq 4\right\} \cup$ $\left\{\sigma_{f\left(x_{i}, x_{j}, x_{j}, x_{j}\right)} \mid 1 \leq j<i \leq 4\right\} \cup\left\{\sigma_{f\left(x_{i}, x_{i}, x_{j}, x_{l}\right)} \mid 1 \leq l<j<i \leq 4\right\} \cup$ $\left\{\sigma_{f\left(x_{i}, x_{j}, x_{j}, x_{l}\right)} \mid 1 \leq l<j<i \leq 4\right\} \cup\left\{\sigma_{f\left(x_{i}, x_{j}, x_{l}, x_{l}\right)} \mid 1 \leq l<j<i \leq 4\right\}$. There are eleven maximal submonoids of $\left(T R_{m o n}(4) ; \circ_{h}, \sigma_{i d}\right)$, namely

$$
\begin{aligned}
& C_{i, j, l}=T R_{\text {mon }}(4) \backslash\left\{\sigma_{f\left(x_{i}, x_{i}, x_{j}, x_{l}\right)}, \sigma_{f\left(x_{i}, x_{j}, x_{j}, x_{l}\right)}, \sigma_{f\left(x_{i}, x_{j}, x_{l}, x_{l}\right)}, \sigma_{f\left(x_{l}, x_{l}, x_{j}, x_{i}\right)},\right. \\
& \left.\sigma_{f\left(x_{l}, x_{j}, x_{j}, x_{i}\right)}, \sigma_{f\left(x_{l}, x_{j}, x_{i}, x_{i}\right)}\right\} \text { for } 1 \leq i<j<l \leq 4 \\
& C_{1}=T R_{\text {mon }}(4) \backslash\left(\left\{\sigma_{f\left(x_{l}, x_{l}, x_{j}, x_{i}\right)} \mid 1 \leq i<j<l \leq 4\right\} \cup\right. \\
& \left\{\sigma_{f\left(x_{l}, x_{j}, x_{j}, x_{i}\right)} \mid 1 \leq i<j<l \leq 4\right\} \cup \\
& \left.\left\{\sigma_{f\left(x_{l}, x_{j}, x_{i}, x_{i}\right)} \mid 1 \leq i<j<l \leq 4\right\}\right) \\
& C_{2}=T R_{\text {mon }}(4) \backslash\left(\{ \sigma _ { f (x _ { i } , x _ { j } , x _ { j } , x _ { l }) } | 1 \leq i < j < l \leq 4 \} \cup \left\{\sigma_{f\left(x_{l}, x_{j}, x_{j}, x_{i}\right)} \mid\right.\right. \\
& 1 \leq i<j<l \leq 4\}) \\
& C_{3}=T R_{m o n}(4) \backslash\left\{\sigma_{f\left(x_{1}, x_{3}, x_{3}, x_{4}\right)}, \sigma_{f\left(x_{2}, x_{3}, x_{3}, x_{4}\right)}, \sigma_{f\left(x_{1}, x_{3}, x_{4}, x_{4}\right)}, \sigma_{f\left(x_{2}, x_{3}, x_{4}, x_{4}\right)},\right. \\
& \left.\sigma_{f\left(x_{4}, x_{3}, x_{3}, x_{1}\right)}, \sigma_{f\left(x_{4}, x_{3}, x_{3}, x_{2}\right)}, \sigma_{f\left(x_{4}, x_{3}, x_{1}, x_{1}\right)}, \sigma_{f\left(x_{4}, x_{3}, x_{2}, x_{2}\right)}\right\} \\
& C_{4}=T R_{\text {mon }}(4) \backslash\left(\{ \sigma _ { f (x _ { i } , x _ { j } , x _ { 4 } , x _ { 4 }) } | 1 \leq i < j \leq 3 \} \cup \left\{\sigma_{f\left(x_{4}, x_{j}, x_{i}, x_{i}\right)} \mid\right.\right. \\
& 1 \leq i<j \leq 3\}) \\
& C_{5}=T R_{\text {mon }}(4) \backslash\left(\{ \sigma _ { f (x _ { 1 } , x _ { 1 } , x _ { 1 } , x _ { j }) } | 2 \leq i < j \leq 4 \} \cup \left\{\sigma_{f\left(x_{j}, x_{j}, x_{i}, x_{1}\right)} \mid\right.\right. \\
& 2 \leq i<j \leq 4\}) \\
& C_{6}=T R_{\text {mon }}(4) \backslash\left\{\sigma_{f\left(x_{1}, x_{1}, x_{2}, x_{3}\right)}, \sigma_{f\left(x_{1}, x_{1}, x_{2}, x_{4}\right)}, \sigma_{f\left(x_{1}, x_{2}, x_{2}, x_{3}\right)}, \sigma_{f\left(x_{1}, x_{2}, x_{2}, x_{4}\right)},\right. \\
& \left.\sigma_{f\left(x_{3}, x_{3}, x_{2}, x_{1}\right)}, \sigma_{f\left(x_{4}, x_{4}, x_{2}, x_{1}\right)}, \sigma_{f\left(x_{3}, x_{2}, x_{2}, x_{1}\right)}, \sigma_{f\left(x_{4}, x_{2}, x_{2}, x_{1}\right)}\right\} \\
& C_{7}=T R_{\text {mon }}(4) \backslash\left\{\sigma_{f\left(x_{1}, x_{1}, x_{2}, x_{4}\right)}, \sigma_{f\left(x_{1}, x_{1}, x_{3}, x_{4}\right)}, \sigma_{f\left(x_{1}, x_{2}, x_{4}, x_{4}\right)}, \sigma_{f\left(x_{1}, x_{3}, x_{4}, x_{4}\right)},\right. \\
& \left.\sigma_{f\left(x_{4}, x_{2}, x_{1}, x_{1}\right)}, \sigma_{f\left(x_{4}, x_{3}, x_{1}, x_{1}\right)}, \sigma_{f\left(x_{4}, x_{4}, x_{2}, x_{1}\right)}, \sigma_{f\left(x_{4}, x_{4}, x_{3}, x_{1}\right)}\right\} .
\end{aligned}
$$

References

[1] V. Budd, K. Denecke and S.L. Wismath, Short Solid Superassociative Type (n) Varieties, East-West Journal of Mathematics 2 (2) (2001), 129-145.
[2] Th. Changphas, Monoids of Hypersubstitutions, Dissertation, Universität Potsdam 2004.
[3] Th. Changphas and K. Denecke, Full Hypersubstitutions and Full Solid Varieties of Semigroups, East-West Journal of Mathematics 4 (1) (2002), 177-193.
[4] K. Denecke and J. Koppitz, M-Solid Varieties of Semigroups, Discuss. Math. 15 (1995), 23-41.
[5] K. Denecke and J. Koppitz, M-Solid Varieties of Algebras, Springer ScienceBusiness Media 2006.
[6] K. Denecke, J. Koppitz and S. Niwczyk, Equational theories generated by hypersubstitutions of type (n), Int. Journal of Algebra and Computation 12 (6) (2002), 867-876.
[7] K. Denecke, J. Koppitz and S. Shtrakov, The Depth of a Hypersubstitution, Journal of Automata, Languages and Combinatorics 6 (3) (2001), 253-262.
[8] K. Denecke and M. Reichel, Monoids of hypersubstitutions and M-solid varieties, Contributions to General Algebra 9, Wien 1995, 117-126.
[9] K. Denecke and S.L. Wismath, Hyperidentities and clones, Gordon and Breach Scientific Publishers, 2000.
[10] K. Denecke and S.L. Wismath, Complexity of Terms, Composition, and Hypersubstitution, Int. Journal of Mathematics and Mathematical Sciences 15 (2003), 959-969.
[11] V.H. Fernandes, G.M.S. Gomes and M.M. Jesus, Presentations for Some Monoids of Partial Transformations on a Finite Chain, Communications in Algebra 33 (2005), 587-604.
[12] Il. Gyudzhenov and Il. Dimitrova, On the Maximal Subsemigroups of the Semigroup of All Isotone Transformations with Defect ≥ 2, Comptes rendus de l'Academie bulgare des Sciences 59 (3) (2006), 239-244.
[13] Il. Gyudzhenov and Il. Dimitrova, On the Maximal Subsemigroups of the Semigroup of all Monotone Transformations, Discuss. Math., submitted.
[14] J.M. Howie, An Introduction to Semigroup Theory, Academic Press, London 1976.
[15] M.W. Liebeck, C.E. Praeger and J. Saxl, A Classification of the Maximal Subgroups of the Finite Alternating and Symmetric Groups, Journal of Algebra 111 (1987), 365-383.
[16] X. Yang, A Classification of Maximal Subsemigroups of Finite OrderPreserving Transformation Semigroups, Communications in Algebra 28 (3) (2000), 1503-1513.

