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Abstract

The paper considers a generalization of the standard completion of
a partially ordered set through the collection of all its lower sets.
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1. Introduction

Let Pos be the category of partially ordered sets (posets) and order-
preserving maps and let JCPos be its subcategory consisting of complete
lattices and join-preserving maps. It is known that the category JCPos is
reflective in Pos (see, e.g., [1]). The completion of a poset goes through the
collection of all its lower-sets.

Given a quantale Q one can consider the category Q-Mod of modules
over Q (see, e.g., [5]). Since the categories 2-Mod and JCPos are
isomorphic one could ask about the generalization of the aforesaid result
for an arbitrary quantale Q. We answer the question in two ways using the
generalization of the category Pos in the latter one.

All results from Category Theory used in the paper can be found in [1].

∗This research was supported by the European Social Fund.
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2. Definition of the category Q-Mod

In this section we recall basic facts about the category Q-Mod motivated by
the category of modules over a ring [3, 4]. Start by recalling the definition
of quantale (see, e.g., [5]).

Definition 2.1. A quantale is a triple (Q,6, ·) such that

(i) (Q,6) is a complete lattice;

(ii) (Q, ·) is a semigroup;

(iii) q · (
∨

S) =
∨

s∈S

(q · s) and (
∨

S) · q =
∨

s∈S

(s · q) for every q ∈ Q and

every S ⊆ Q.

Given a quantale Q, denote its top (bottom) element by > (⊥) respectively.

Definition 2.2. A quantale Q is called unital provided that there exists an
element e ∈ Q such that (Q, ·, e) is a monoid.

From now on without further references all quantales are supposed to be
unital. The following are examples of quantales:

(i) (2,6,∧, 1) where 2 = {0, 1};

(ii) ([0, 1],6,∧, 1) where [0, 1] is the unit interval;

(iii) ([0, 1],6, ·, 1) where · is the usual multiplication;

(iv) the chain 3 with the usual order and the map 3 × 3
·
- 3 given by

the table:

· 0 1 2

0 0 0 0

1 0 1 2

2 0 2 2

Notice that > 6= e.
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As in the last example we do not assume that > = e for every quantale Q

we use.

Now define the category Q-Mod of quantale modules or in other words
the category of enriched complete lattices over the category JCPos.

Definition 2.3. Given a quantale Q, define the category Q-Mod as follows:

(i) The objects are triples (A,6, ∗) where (A,6) is a complete lattice and

Q × A
∗
- A is a map such that

(a) q ∗ (
∨

S) =
∨

s∈S

(q ∗ s) for every q ∈ Q, S ⊆ A;

(b) (
∨

S) ∗ a =
∨

s∈S

(s ∗ a) for every a ∈ A, S ⊆ Q;

(c) q1 ∗ (q2 ∗ a) = (q1 · q2) ∗ a for every q1, q2 ∈ Q, a ∈ A;

(d) e ∗ a = a for every a ∈ A.

(ii) The morphisms are maps (A,6, ∗)
f
- (B,6, ∗) such that

(a) f(
∨

S) =
∨

f(S) for every S ⊆ A;

(b) f(q ∗ a) = q ∗ f(a) for every a ∈ A, q ∈ Q.

We consider the category Q-Mod as a concrete category over Set in the
following way.

Definition 2.4. Define the forgetful functor Q-Mod
U
- Set as follows:

U((A,6, ∗)
f
- (B,6, ∗)) = A

f
- B.

Definitions 2.3 and 2.4 yield a construct (Q-Mod, U). One can easily see
that 2-Mod is concretely isomorphic to JCPos (compare with integers Z

in case of the category R-Mod of modules over the ring R). Thus while
considering the category Q-Mod we study the category JCPos as well.

Remark 2.1. For Q = 1 it follows that A ∈ Ob(Q-Mod) iff A ∼= 1, i.e.,
1-Mod is equivalent to the terminal category.
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The following theorem states a useful property of the category Q-Mod.

Theorem 2.1. The category Q-Mod is a monadic construct.

Corollary 2.2. The category Q-Mod is complete, cocomplete, wellpowered,
extremally co-wellpowered, and has regular factorizations.

3. Completion of partially ordered sets

In this section we generalize the standard method of completion of posets
given in the following proposition (see [1]).

Proposition 3.1. The category JCPos is reflective in Pos.

Proof. Given a poset A one has the complete lattice BA of all lower-sets

of A and the embedding A ⊂ - BA : a 7→↓ a which is the reflection arrow
for A.

We are going to generalize the result for the category Q-Mod. The first
approach is as follows.

Proposition 3.2. Let Q be a quantale. Then the category Q-Mod is
reflective in Pos.

Proof. Given a poset A, the reflection arrow can be constructed as
follows. Define BA = {h ∈ QA | a 6 b implies h(b) 6 h(a)} and let

A
r
- BA : a 7→↓ a where

↓ a : A - Q : b 7→

{

e, b 6 a

⊥, otherwise.

Given a Q-Mod-object B and a Pos-morphism A
f
- B, there exists a

unique Q-Mod-morphism BA
f

- B such that f ◦ r = f , i.e.,

f : BA
- B : h 7→

∨

a∈A h(a) ∗ f(a).

Another approach is more sophisticated. Start with the following definition.
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Definition 3.1. Given a quantale Q, define the category Q-Pos as follows:

(i) The objects are triples (A,6, ∗) where (A,6) is a poset and Q ×

A
∗
- A is a map such that

(a) the map A
q∗

- A is order-preserving for every q ∈ Q;

(b) the map Q
∗a
- A is order-preserving for every a ∈ A;

(c) q1 ∗ (q2 ∗ a) = (q1 · q2) ∗ a for every q1, q2 ∈ Q, a ∈ A;

(d) e ∗ a = a for every a ∈ A.

(ii) The morphisms are maps (A,6, ∗)
f
- (B,6, ∗) such that

(a) f is order-preserving;

(b) q ∗ f(a) 6 f(q ∗ a) for every a ∈ A, q ∈ Q (notice that we use
a rather non-standard definition of morphisms since one would
expect ”=” instead of ”6”).

The objects of the category Q-Pos will be referred to as Q-posets. One can
consider the category Q-Pos as a concrete category over Set in the following
way.

Definition 3.2. Define the forgetful functor Q-Pos
U
- Set as follows:

U((A,6, ∗)
f
- (B,6, ∗)) = A

f
- B.

Definitions 3.1 and 3.2 give a construct (Q-Pos, U). One can easily see that

2-Pos is concretely isomorphic to Pos (for a poset A let ∗ : 2×A - A :
(q, a) 7→ a). Thus while considering the category Q-Pos we study the
category Pos as well.

Every Q-Pos-object A has the following map

→ : A × A - Q : (a, b) 7→
∨

{q ∈ Q | q ∗ a 6 b}.
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Consider a property of the aforesaid map. Start by recalling some
preliminary notions (cf. Chapter 0–3 in [2]).

Definition 3.3. Let C be an ordered category (i.e., hom-sets are partially
ordered and composition on both sides is order-preserving). A pair of C-

morphisms A
g
-

�

d
B is called an adjunction between A and B provided

that idB 6 g ◦ d and d ◦ g 6 idA.

Notice that for every quantale Q one has the ordered category Q-Pos.

Definition 3.4. Let A be a Q-poset and let q ∈ Q. Define A
qA
- A : a 7→

q ∗ a.

Given a Q-Pos-morphism A
f
- B, it follows that qB ◦ f 6 f ◦ qA for

every q ∈ Q. Moreover, Definition 3.4 gives the following characterization
of adjunctions in Q-Pos.

Lemma 3.3. Let A
g
-

�

d
B be Q-Pos-morphisms. The following are

equivalent:

(i) (g, d) is an adjunction between A and B;

(ii) qB 6 g ◦ qA ◦ d and d ◦ qB ◦ g 6 qA for every q ∈ Q.

Proof. (i)⇒(ii) If q ∈ Q, then qB 6 qB ◦ (g ◦ d) 6 g ◦ qA ◦ d and
d ◦ qB ◦ g 6 (d ◦ g) ◦ qA 6 qA.

(ii)⇒(i) Set q = e.

Theorem 3.4. Let A
g
-

�

d
B be maps between Q-posets. The following are

equivalent:

(i) (g, d) is an adjunction between A and B;

(ii) (a) d is a Q-Pos-morphism;

(b) g(a) = max d−1[↓ a] for every a ∈ A;

(c) d ◦ qB ◦ g 6 qA for every q ∈ Q.
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Proof. (i)⇒(ii) See the proof of Theorem 0–3.2 in [2] and use Lemma 3.3.

(ii)⇒(i) By Theorem 0–3.2 in [2] (g, d) is an adjunction in Pos. By
qB ◦ g 6 (g ◦ d) ◦ qB ◦ g = g ◦ (d ◦ qB ◦ g) 6 g ◦ qA, g is a Q-Pos-morphism.

Now the promised property.

Corollary 3.5. Let A be a Q-poset and let a ∈ A. The following are
equivalent:

(i) (a → , ∗ a) is an adjunction between A and Q (and thus a →
(
∧

S) =
∧

s∈S

(a → s) for every S ⊆ A such that
∧

S exists in A);

(ii) (a → b) ∗ a 6 b for every b ∈ A.

Corollary 3.5 gives rise to the following definition which will be useful for us
later.

Definition 3.5. Given a Q-poset A, say that it satisfies condition (A)
provided that (a → b) ∗ a 6 b for every a, b ∈ A.

Every Q-module satisfies condition (A). The situation with Q-posets,
however, is different as shows the following example. Let 2 be ordered

by equality. Define Q × 2
∗
- 2 : (q, a) 7→ a. Then 2 is a Q-poset which

does not satisfy (A).

Return to the completion of posets.

Lemma 3.6. Let A be a Q-Pos-object. Then (b → c) · (a → b) 6 (a → c)
for every a, b, c ∈ A.

Proof. Straightforward computations.

Now the main proposition.

Proposition 3.7. Let Q be a quantale. Then the category Q-Mod is
reflective in Q-Pos.
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Proof. Given a Q-poset A, the reflection arrow can be constructed as
follows. Define BA = {h ∈ QA |h(b) · (a → b) 6 h(a) for every a, b ∈ A}.
Then BA is a submodule of QA (closed under arbitrary meets) and h ∈ BA

iff h(a) =
∨

b∈A h(b) · (a → b) for every a ∈ A. Let A
r
- BA : a 7→ → a.

By Lemma 3.6 the map r is correct. For the rest see Proposition 3.2.

Below are some properties of the reflection arrow A
r
- BA.

Lemma 3.8. Let Q be completely distributive. Then r preserves all existing
meets.

Proof. Let S ⊆ A be such that
∧

S exists in A and let a ∈ A. Show that
a → (

∧

S) =
∧

s∈S(a → s). Set a → (
∧

S) =
∨

T and
∧

s∈S(a → s) =
∧

s∈S

∨

Ts. It will be enough to show that
∧

s∈S

∨

Ts 6
∨

T . By the
assumption,

∧

s∈S

∨

Ts =
∨

f∈F

∧

s∈S f(s) where F is the set of choice
functions defined on S. Since

∧

s∈S f(s) ∈ T for every f ∈ F , the result
follows.

Lemma 3.9. Let A satisfy condition (A). Then r is injective and preserves
all existing meets.

Proof. Since the second statement follows from Corollary 3.5 we show that
r is injective. Let a, b ∈ A with r(a) = r(b). Then e 6 a → a = (r(a))(a) =
(r(b))(a) = a → b implies a = e ∗ a 6 (a → b) ∗ a 6 b. Similarly b 6 a.

In conclusion let us note that it would be interesting to consider other
generalizations of completions, e.g., of the Dedekind-MacNeille completion
(see, e.g., [6]).
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