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Abstract

We consider join-semilattices with 1 where for every element p a
mapping on the interval [p,1] is defined; these mappings are called
sectional mappings and such structures are called semilattices with
sectional mappings. We assign to every semilattice with sectional map-
pings a binary operation which enables us to classify the cases where
the sectional mappings are involutions and / or antitone mappings.
The paper generalizes results of [3] and [4], and there are also some
connections to [1].
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In the whole paper we deal with join-semilattices with a greatest element
1, denoted by S = (5;V,1). Its induced order will be denoted by <. For
p € S, the interval [p, 1] of S is called a section. A mapping of [p, 1] into
itself is called a sectional mapping. To discern such mappings for distinct
sections, we will use the notation z — aP for x € [p,1]. If S is endowed
with a sectional mapping on every section, S will be called a semilattice with
sectional mappings.

For a semilattice S = (S;V,1) with sectional mappings we define the
so-called assigned operation o as follows:

x o y:=(x V y"

Since x V y € [y,1], o is well-defined on S and the new structure will be
denoted by §* = (S;V,0,1).
It is easily seen that the following properties hold in S*:

(1) z oy € [y1],ie, (x o y)Vy=x o y forall z,y € S;
(2) (xVy)oy==x oy forall z,y € S;
3) z oy=2a¥ forall y € S and z € [y,1].

Conversely, let S* = (S;V,0,1) be a join-semilattice with a greatest element
1 and a binary operation o satisfying (1) and (2). If we define 2P :=x o p
forany p € Sand x € [p,1], then S = (S;V,1) is a semilattice with
sectional mappings.

Furthermore, using (1)—(3) one can easily check that the mappings S —
S* and §* — S are inverse bijections between the class of all semilattices
with sectional mappings and the variety of all structures (S;V,o0,1) where
(S;V,1) is a join-semilattice with 1 and o satisfies (1) and (2).

A sectional mapping © — aP on [p,1] is called a switching mapping if
the following holds:

2P =p if andonlyif z=1,

2P =1 if and only if =z = p.

We say that S is a semilattice with sectional switching mappings if S is a
semilattice with sectional mappings which all are switching mappings.
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Lemma 1. Let S* = (S;V,0,1) be the algebra assigned to a semilattice with
sectional switching mappings. Then S* satisfies the following:

4) z<y ifandonlyif zoy=1;
(65) zvVy=1 ifandonlyif zoy=y;
(6) zox=1,2z0l1=1 and lox=uzx.

Conversely, suppose that S* satisfies (4)—(6), then S = (S;V,1) is a
semilattice with sectional switching mappings.

Proof.If x <ythenzVy=yand hencexoy=(zVy¥y=9y’=1

Conversely, z oy = 1 yields (z V y)¥ = 1, from which we infer zVy =y
thus x < y.

IfxVvy=1thenxoy=(xVy)¥ =1Y =y. Conversely, x oy = y yields
(x Vy)¥ =y, which implies z Vy = 1.

Further, 1 o z = x follows from (5), and zoxz = 1, z o1 = 1 follow
from (4).

The second statement of the Lemma follows straightforward from

(4)-(6). |

In what follows, we call also S* = (S;V,0,1) a semilattice with sectional
(switching) mappings in case that it corresponds to such a structure by the
bijection defined above.

For an algebra A = (A; F'), denote by Con A the lattice of all congru-
ences on A (with respect to set inclusion), i.e., the lattice of all equivalence
relations © on A which are subalgebras of the algebra A x A. In particular,
for a semilattice S* = (5;V, 0, 1) with sectional mappings, Con S* denotes
the congruence lattice of S*.

Note that the meet A in the lattice Con A is given by the set-theoretical
intersection, i.e., @1 A Oy = ©1 N O, for all ©1,05 € Con A. For z € A and
© € Con A, [z]© denotes the congruence class of x w.r.t. ©.

An algebra A = (A; F') with a constant 1 is called distributive at 1 if

1©n (@ VE) = [1(Ond)V(OnT)

for any ©,®, ¥ € Con A (where V is the join in the lattice Con A);
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A is permutable at 1 if
[1](© e ®) =[1](D e O)

for any ©,® € Con A (where e denotes the relational product). The
following result is a straightforward modification of Theorem 8.3.2 in [2].

Lemma 2. An algebra of a variety V with constant 1 is both distributive at
1 and permutable at 1 if and only if there exists a binary term t(z,y) such
that

t(x,z) =1, t(z,1)=1 and t(1,z)=x.

By Lemma 1, every semilattice with sectional switching mappings is a
member of a variety with a binary term ¢(z,y) = x o y satisfying the
identities of Lemma 2. Hence, we infer immediately:

Corollary 1. Every semilattice S* = (S;V,0,1) with sectional switching
mappings is distributive at 1 and permutable at 1.

Call S* = (S;V,0,1) a semilattice with sectional involutions if every
sectional mapping is an involution, i.e., PP = x for each p € S and each

z € [p,1].
Lemma 3. Let S* = (5;V,0,1) be a semilattice with sectional mappings.
Then S* is a semilattice with sectional involutions if and only if it satisfies

the identity (roy)oy =z Vy.

Proof. Suppose that every sectional mapping is an involution. We have
(xVy)Y €[y, 1], ie., y < (zVy)Y and hence

(@oy)oy=((xVy)Vy)!=(@@Vy*”=zVy.
Conversely, suppose x € [p, 1] for p € S. Then p < x and
P =xzop (by (3)), ie, a =(xop)op=azVp==x

thus every sectional mapping is an involution. [
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Remark 1. Every semilattice S = (S;V,1) can be considered as a
semilattice with sectional switching involutions. Namely, for any p € S
we can define x — zP as follows:

P=p, pP=1 and 2 =2 for 2 #p, = #1.

Of course, these mappings are both involutions and switching mappings.
Hence, we can state:

Theorem 1. On every semilattice S = (S;V,1) we can define a binary
operation o satisfying

(i) z<yifandonlyifroy=1,
(ii)) zvVy=1ifandonlyifzoy =y,
(iii) (zoy)oy=aVy,

(iv) zox=1, lox=2, zol=1.

We are going to show that every congruence on such a semilattice is uniquely
determined by its class containing 1.

Lemma 4. Let S* = (S,V,0,1) be a semilattice with sectional switching
involutions and let © € Con S*. Then

(x,y) €O if and only if zoy, yoz € [l]O.

Proof. Suppose (x,y) € ©. Then also

(xoy,1)=(zoy,yoy) €O and

(yox,1)=(yox,yoy) €O, ie, zoy, yox € [1]©.

Conversely, suppose z oy, yox € [1]©. Then (zoy,1) € © thus also
(zVy,y)=(zoy)oy,loy) €Oand (zVy,z)=((yox)oxlox)cO.
Due to symmetry and transitivity of ©, we get (x,y) € ©. [ ]

An algebra A = (A; F') with a constant 1 is called weakly regular at 1 if every
congruence on A is uniquely determined by its 1-class, i.e., if ©,® € Con A
and [1]© = [1]® then © = ®.
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Theorem 2. Let §* = (S;V,0,1) be a semilattice with sectional
switching involutions. Then S* is weakly reqular at 1 and, moreover, Con S*
15 distributive.

Proof. The first assertion follows from Lemma 4. Moreover [1](ON(DPV¥))
= [1]((©N®) Vv (©NT)) by Corollary 1 and hence, by the previous assertion,
also

ON(PVvY)=0ONe)V(ONT)
thus Con S* is distributive. []

Call §* = (S;V,o0,1) a semilattice with sectional antitone mappings if every
sectional mapping is antitone, i.e., if z < y for =,y € [p, 1] implies y? < 2P
for any p € S.

Lemma 5. Let §* = (5;V,0,1) be a semilattice with sectional mappings.
Then S* is a semilattice with sectional antitone mappings if and only if it
satisfies

xoz>(xVy)oz.

Proof. Let every sectional mapping be antitone. Since z < zVz < axVyVz,
we have
zoz=(xVz2)*>(xVyVz)=(xVy)oz

Conversely, if S* satisfies the given identity and x,y € [z, 1] with < y, then
Yy’ =yoz=(zxVyloz<zoz=(xrVz) =21
thus every sectional mapping is antitone. [

Remark 2. It is evident that if S* = (5;V,0,1) is a semilattice with
sectional antitone involutions then every sectional mapping is also a
switching mapping. Hence, these algebras have distributive congruence lat-
tices and every congruence on S* is determined by its 1-class (Theorem 2).
Moreover, we can characterize such semilattices by three simple identities,
as the following theorem shows.

Theorem 3. Let S* = (S;V,0,1) be a semilattice with sectional mappings.
Then S* is a semilattice with sectional antitone involutions if and only it
satisfies the following identities:
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(Al) lox=u,
(A2) (zoy)oy==zVy,
(A3) ((xVy)oz)o(zoz)=1

Proof. Let S* = (S;V,0,1) satisfy (A1), (A2) and (A3). If aob =1 for
a,b € S then, by (A2) and (A1),

aVb=(aob)ob=10ob=5b thus a<b.

Hence, (A3) yields (xVy)oz < zoz and, by Lemma 5, the sectional mappings
are antitone. By (A2) and Lemma 3, they are involutions.

Conversely, if the sectional mappings are antitone involutions then they
are switching mappings and, by Lemma 1, S* satisfies (A1), by Lemma 3, it
satisfies (A2) and, by Lemma 5 and Lemma 1 (4), it satisfies also (A3). m

Corollary 2. If §* = (S;V,0,1) satisfies (A1), (A2) and (A3) then every
section is a lattice ([p,1],A\p,V) with respect to the induced order, and for
x,y € [p,1] we have

zApy=((zop)V(yop)op.

Proof. Since the sectional mappings are antitone involutions by Theorem
3, we obtain that

(z?VyP)P = ((xop)V(yop))op

is a greatest lower bound of z,y in [p, 1]. [

Up to now we did not consider the case that sectional mappings of different
sections are dependent. If, however, (S, V, A, 1) is an upper bounded modular
lattice, x? is a complement of = in the section [¢, 1], ¢ < p and z € [p, 1] then

(cc) 2 =z1Vp

is a complement of = in [p, 1]. We can generalize this as follows: A semilattice
§* = (S5;V,0,1) with sectional mappings satisfies the compatibility condition
if for any q < p < z the condition (cc) holds. This condition can be expressed
equivalently as an identity in the operations V and o:

zo(yVz)=((xVy)oz)VyVz forall z,y,z€S.
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Indeed, applying the compatibility condition to the case
z<yVz<zVyVvz

we obtain
(xVyVv2)Pi=(zVyVz)*VyVz,

ie,zo(yVz)=((xVy)oz)VyV z.

Conversely, (cc) follows from this identity by taking y = p and 2z = ¢ with
gsp=<zx.

By an ortholattice we mean a bounded lattice with an antitone
involution = +— 2’ such that 2’ is a complement of z. In this case 2z’ is
called an orthocomplement of x. An orthomodular lattice is an ortholattice
which satisfies the orthomodular law:

r <y implies zV(yAz)=y

or, equivalently,
r <y implies yA(zVy')=ux.

For a semilattice with sectional mappings satisfying (cc) we are able to
characterize — in the following theorem — the case where all sections are
orthomodular lattices. Let us note that the case where all sections are
Boolean algebras was characterized by J.C. Abbott [1].

Theorem 4. Let S* = (S;V,o0,1) be a semilattice with sectional mappings
satisfying the compatibility condition. Then every section is an orthomodular
lattice if and only if S* satisfies (A1), (A2) and (A3).

Proof. Suppose S* satisfies (A1), (A2) and (A3). Then, by Corollary 2,
every section is a lattice ([p,1],Ap, V). Let x € [p,1], then p < 2 < z and,
by the compatibility condition, we obtain

l=z"=2PVz.

Since, by Theorem 3, the sectional mappings are antitone involutions, we
have 2P A\, x = (2 V 2P)? = 1P = p thus 2P is a complement and hence an
orthocomplement of z in the section [p,1]. Suppose z,y € [p,1], = < y.
Then p < z < y and, again by the compatibility condition, we have

y'=y’Va
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thus y A, (x VyP) = y A, y* = x which is just the orthomodular law in [p, 1],
ie., ([p,1],Ap,V) is an orthomodular lattice.

Conversely, if every section of S* is an orthomodular lattice and xP is
an orthocomplement of z in [p, 1] then the mapping = — 2P is an antitone
involution and thus, by Theorem 3, S* satisfies (A1), (A2) and (A3). ]
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