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Abstract

In this paper we consider different relations on the set P (V ) of all
proper hypersubstitutions with respect to a given variety V and their
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solid varieties having given degrees. Finally, for all varieties of bands
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1. Introduction

Let τ be a fixed type with fundamental operation symbols fi, i ∈ I, where
fi is ni-ary. Let Wτ (X) be the set of all terms of type τ on an alphabet X =
{x1, x2, . . .}. A hypersubstitution of type τ is a mapping which associates
to every operation symbol fi a term σ(fi) of the same arity as fi. Any
hypersubstitution σ can be uniquely extended to a map σ̂ on Wτ (X) which
is inductively defined as follows:

(i) If t = xj for some j ≥ 1, then σ̂[t] := xj .

(ii) If t = fi(t1, . . . , tni
) for some ni-ary operation symbol fi and some

terms t1, . . . , tni
, then σ̂[t] := σ(fi)(σ̂[t1], . . . , σ̂[tni

]).
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The left hand side of (ii) means the composition of the term σ(fi) and
the terms σ̂[t1], . . . , σ̂[tni

]. We can define a binary operation ◦h on the
set Hyp(τ) of all hypersubstitutions of type τ by letting σ1 ◦h σ2 be the
hypersubstitution which maps each fundamental operation symbol fi to the
term σ̂1[σ2(fi)]. The set Hyp(τ) forms a monoid since the operation ◦h is
associative and the identity hypersubstitution σid which maps every fi to
fi(x1, . . . , xni

) acts as an identity element.

Hypersubstitutions can be applied to equations as well as to algebras.

Let A = (A; (fi
A)i∈I) be an algebra of type τ with ni-ary fundamental

operations fi, i ∈ I. For a hypersubstitution σ ∈ Hyp(τ) we denote by
σ(A) = (A; (σ(fi)

A)i∈I) the derived algebra, where the fundamental opera-

tion f
σ(A)
i of the derived algebra is given by f

σ(A)
i = σ(fi)

A for every i ∈ I.

From this equation one gets tσ(A) = σ(t)A for all t ∈ Wτ (X) by induction
on the complexity of terms. If K is a class of algebras of the same type and
if σ ∈ Hyp(τ), then we define σ(K) = {σ(A) | A ∈ K}. If V is a vari-
ety of algebras of type τ , then σ(V ) is in general not a variety. Let υσ(V )
be the variety generated by σ(V ). The variety υσ(V ) is called the derived

variety from V by σ. One can ask for varieties V containing any derived
variety as subvariety. Those varieties can be characterized by hyperidenti-
ties. Let s ≈ t be an identity satisfied in a variety V of algebras of type
τ . We write V |= s ≈ t. Then s ≈ t is called a hyperidentity satisfied in
V if σ̂[s] ≈ σ̂[t] is an identity in V for all σ ∈ Hyp(τ). If in a variety V
every identity is satisfied as a hyperidentity, then V is called solid. For a
submonoid M ⊆ Hyp(τ) we speak of an M -hyperidentity and an M -solid
variety, respectively. It is well-know (see [4, 10]) that a variety V satisfies
σ̂[s] ≈ σ̂[t] whenever σ(V ) satisfies s ≈ t and conversely. From this
connection between derived classes and hyperidentities follows that a
variety V is solid iff it contains all derived varieties υσ(V ). We are
interested in identities which are invariant under applications of all
hypersubstitutions. Conversely one can look for all hypersubstitutions
which preserve all identities of a given variety V . Those hypersubstitutions
are called V -proper ([11]). Let P (V ) be the set of all V -proper hypersubstitu-
tions for a variety V . Since every equation is invariant under the application
of σid, the set P (V ) contains at least σid. P (V ) is equal to Hyp(τ) if and
only if V is solid.

As usual we denote by IdV the set of all identities satisfied in a variety
V and by ModΣ for a set Σ ⊆ Wτ (X)2 of equations of type τ the class of
all algebras of type τ where any equation from Σ is satisfied as an identity.
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If we want to test whether an identity s ≈ t is satisfied as a hyperidentity
in a variety V , we have to apply all, that means infinitely many
hypersubstitutions to s ≈ t. In [11] the author introduced an equivalence
relation ∼V on Hyp(τ) which allows to restrict this checking to one
representative from each ∼V -block. If we have a bigger relation (with
respect to set inclusion), we have less blocks and checking for
hypersatisfaction is less complex supposed that this relation has the
property described before. One of our problems is to find the greatest binary
relation having this property.

2. Binary relations on monoids of hypersubstitutions

Let Hyp(τ) be the monoid of all hypersubstitutions of type τ and let M
be a submonoid. In [11] the author defined the following binary relation on
Hyp(τ).

Definition 2.1. Let σ1, σ2 ∈ Hyp(τ) and let V be a variety of type τ .
Then σ1 ∼V σ2 iff σ1(fi) ≈ σ2(fi) ∈ IdV for all i ∈ I.

It is clear that ∼V is an equivalence relation on Hyp(τ). The relation ∼V can
be restricted to submonoids of Hyp(τ) and the restricted relations ∼V |M are
equivalence relations on M . From the definition of ∼V one obtains σ̂1[t] ≈
σ̂2[t] ∈ IdV for any term t ∈ Wτ (X) whenever σ1 ∼V σ2. Further, it is quite
easy to see ([11]) that the monoid P (V ) of all V -proper hypersubstitutions
is saturated with respect to ∼V . This means that P (V ) consists of full blocks
with respect to ∼V , i.e. if σ1 ∼V σ2 and σ1 ∈ P (V ), then σ2 ∈ P (V ). This
can also be expressed by:

σ1 ∼V σ2 ∧ ∀s ≈ t ∈ IdV (σ̂1[s] ≈ σ̂1[t] ∈ IdV ⇒ σ̂2[s] ≈ σ̂2[t] ∈ IdV ).

This implication makes clear that the relation ∼V has the desired property:
checking for hyperidentities we can consider the quotient set Hyp(τ)/∼V

and select one representative from each ∼V -block for checking. Since ∼V

in general is not a congruence relation on the monoid Hyp(τ), the quotient
set Hyp(τ)/∼V is in general not a monoid. Since for a variety V and for
any hypersubstitution σ ∈ Hyp(τ) we have σ̂1[σ(fi)] ≈ σ̂2[σ(fi)] ∈ IdV for
all i ∈ I whenever σ1 ∼V σ2, the relation ∼V is a right-, but it in general
not a left congruence. But the restriction ∼V |P (V ) is a congruence on
P (V ). Another interesting property of ∼V was proved in [3]. For any set



236 K. Denecke and R. Srithus

Σ ⊆ Wτ (X)2, we let < Σ > denote the deductive closure of Σ (see e.g. [1],
p.94), i.e. the set IdModΣ which can be obtained from Σ by application
of the five rules of algebraic derivation. Let M ⊆ Hyp(τ) be a submonoid.
Binary relations on monoids of hypersubstitutions were studied in [3]. We
want to recall the following results. For a binary relation r ⊆ M 2 we define
e(r) := {σ1(fi) ≈ σ2(fi) | (σ1, σ2) ∈ r, i ∈ I}. Then in [3] was proved:

Proposition 2.2. Let M ⊆ Hyp(τ) and r ⊆ (Hyp(τ))2.

(i) There exists a variety V of type τ such that r =∼V iff r is deductively

closed on Hyp(τ).

(ii) There exists an M -solid variety V of type τ such that r =∼V iff r
is deductively closed on Hyp(τ) and {(σ◦hσ1, σ◦hσ2) | σ ∈ M, (σ1, σ2)
∈ r} ⊆ r.

(iii) If r ⊆ M 2 then there exists an M -solid variety V of type τ such that

r = ∼V |M iff r is deductively closed on M and r is a congruence

on M .

In [6] we defined the following binary relation on Hyp(τ):

Definition 2.3. Let σ1, σ2 ∈ Hyp(τ) and let V be a variety of type τ .
Then σ1 ∼V −iso σ2 iff for all algebras A in V we have σ1(A) ∼= σ2(A).

The relation ∼V −iso is also an equivalence relation on Hyp(τ). In [6] was
proved that P (V ) is saturated with respect to ∼V −iso. One moment’s
reflection gives that ∼V −iso contains ∼V as a subrelation. Indeed, if
σ1 ∼V σ2, then σ1(fi) ≈ σ2(fi) ∈ IdV for all i ∈ I and then for all
algebras A ∈ V we have σ1(fi)

A = σ2(fi)
A for the term operations

on A induced by σ1(fi) and σ2(fi). But then σ1(A) = σ2(A) for all
algebras A ∈ V and therefore σ1 ∼V −iso σ2.

Moreover we prove:

Proposition 2.4. Let V be a variety of type τ . The relation ∼V −iso|P (V )
is a congruence on the monoid P (V ) of all V -proper hypersubstitutions.

Proof. We prove that ∼V −iso|P (V ) is a left and a right congruence on
P (V ). Assume that σ1 ∼V −iso|P (V ) σ2 and that σ ∈ P (V ). Since σ(A) ∈ V
we have σ1(σ(A)) ∼= σ2(σ(A)) for all A ∈ V . We mentioned earlier the

equation f
σ(A)
i = σ(fi)

A for all i ∈ I. These equations give f
σ1(σ(A))
i =

σ1(fi)
σ(A) = σ̂[σ1(fi)]

A = (σ ◦h σ1)(fi)
A and thus σ1(σ(A)) = (σ ◦h σ1)(A)
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and then σ ◦h σ1 ∼V −iso|P (V ) σ ◦h σ2. Since isomorphic algebras have
isomorphic derived algebras, from σ1(A) ∼= σ2(A) there follows σ(σ1(A)) ∼=
σ(σ2(A)) for all A ∈ V and thus σ1 ◦h σ ∼V −iso|P (V ) σ2 ◦h σ.

We mention that both parts of the proof need that the derived algebras
belong to V and this is only guaranteed when σ, σ1 and σ2 ∈ P (V ).
Therefore the relation ∼V −iso is not a congruence on Hyp(τ). But for a
solid variety V we have P (V ) = Hyp(τ) and then ∼V −iso is a congruence
on Hyp(τ).

The third relation which we want to consider is defined by:

Definition 2.5. Let σ1, σ2 ∈ Hyp(τ) and let V be a variety of type τ .
Then σ1 ≈j

V σ2 iff υσ1
(V ) ∨ V = υσ2

(V ) ∨ V .

Again we have an equivalence relation on Hyp(τ) and we prove

Lemma 2.6. Let V be a variety of type τ . Then P (V ) is saturated with

respect to ≈j
V .

Proof. Let σ1 ≈j
V σ2 and let σ̂1[s] ≈ σ̂1[t] ∈ IdV for all s ≈ t ∈ IdV .

Then Id(υσ1
(V )∨V ) = Id(υσ2

(V )∨V ) we get Idυσ1
(V )∩IdV = Idυσ2

(V )∩
IdV . Since from σ̂1[s] ≈ σ̂1[t] ∈ IdV there follows s ≈ t ∈ Idσ1(V ) we have
s ≈ t ∈ Idσ1(V ) ∩ IdV , so s ≈ t ∈ Idυσ2

(V ) ∩ IdV implies σ̂2[s] ≈ σ̂2[t]
∈ IdV .

Proposition 2.7. Let V be a variety of type τ . Then the cardinality of the

quotient set P (V )/ ≈j
V |P (V ) is 1.

Proof. Let σ1, σ2 ∈ P (V ). We want to show that σ1 ≈j
V |P (V )σ2.

Let s ≈ t ∈ Id(υσ1
(V ) ∨ V ) = Idυσ1

(V ) ∩ IdV . Then from s ≈ t ∈ IdV
there follows σ̂2[s] ≈ σ̂2[t] ∈ IdV since σ2 ∈ P (V ). By using the conjugate
property, we obtain that s ≈ t ∈ Idσ2(V ) = Idυσ2

(V ). Then there follows
s ≈ t ∈ Idυσ2

(V )∩IdV = Id(υσ2
(V )∨V ). So Id(υσ1

(V )∨V ) ⊆ Id(υσ2
(V )∨

V ). Similarly we can show that Id(υσ2
(V )∨V ) ⊆ Id(υσ1

(V )∨V ). Therefore
σ1 ≈j

V |P (V )σ2. This shows that |P (V )/ ≈j
V |P (V )| = 1.

Since P (V )/ ≈j
V |P (V ) consists of precisely one block, the relation ≈j

V is the
greatest equivalence relation on Hyp(τ) such that P (V ) is saturated with
respect to this relation.
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Theorem 2.8. Let V be a variety of type τ and let r ⊆ Hyp(τ)2 be an

equivalence relation. Then P (V ) is saturated with respect to r iff r ⊆≈j
V .

Proof. The first direction is clear because of the previous remark. Con-
versely, assume that r ⊆≈j

V , then from (σ1, σ2) ∈ r, there follows σ1 ≈j
V σ2

and then Idσ1(V ) ∩ IdV = Idσ2(V ) ∩ IdV . This means that for all
s ≈ t ∈ IdV there holds: if σ̂1[s] ≈ σ̂1[t] ∈ IdV , then σ̂2[s] ≈ σ̂2[t] ∈ IdV
and therefore P (V ) is saturated with respect to r.

The forth relation which we want to consider is defined by:

Definition 2.9. Let σ1, σ2 ∈ Hyp(τ) and let V be a variety of type τ .
Then σ1 ≈V σ2 iff υσ1

(V ) = υσ2
(V ), i.e. if the derived varieties are equal.

Clearly ≈V is an equivalence relation on Hyp(τ) and ≈V ⊆≈j
V . Then from

Theorem 2.8 we obtain

Lemma 2.10. Let V be a variety of type τ . Then P (V ) is saturated with

respect to ≈V .

If σ1 ∼V −iso σ2, i.e. if for all A ∈ V we have σ1(A) ∼= σ2(A), then υσ1
(V ) =

υσ2
(V ) and thus σ1 ≈V σ2 and this means ∼V −iso⊆≈V .

Since σ1(σ2(A)) = (σ2 ◦h σ1)(A) we have σ1(σ2(V )) = (σ2 ◦h σ1)(V )
and then υσ2◦hσ1

(V ) = ModId(σ2 ◦h σ1)(V ) = ModIdσ1(ModIdσ2(V ))
= υσ1

(υσ2
(V )) since

σ1(ModIdσ2(V )) |= s ≈ t

⇔ ModIdσ2(V ) |= σ̂1[s] ≈ σ̂1[t] by the conjugate property

⇔ σ̂1[s] ≈ σ̂1[t] ∈ IdModIdσ2(V ) by a property of the Galois

connection (Mod, Id)

⇔ σ̂1[s] ≈ σ̂1[t] ∈ Idσ2(V )

⇔ σ2(V ) |= σ̂1[s] ≈ σ̂1[t]

⇔ V |= (σ2 ◦h σ1)̂[s] ≈ (σ2 ◦h σ1)̂[t] by the conjugate property

⇔ (σ2 ◦h σ1)(V ) |= s ≈ t.

This means Idσ1(ModIdσ2(V )) = Id(σ2 ◦h σ1)(V ) and therefore ModIdσ1

(ModIdσ2(V )) = ModId(σ2 ◦h σ1)(V ) and thus υσ1
(υσ2

(V )) = υσ2◦hσ1
(V ).
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Using this property we are able to prove:

Proposition 2.11. Let V be a variety of type τ . The relation ≈V is a right

congruence on Hyp(τ).

Proof. If σ1 ≈V σ2, then υσ1
(V ) = υσ2

(V ) and thus υσ(υσ1
(V )) =

υσ(υσ2
(V )) and then υσ1◦hσ(V ) = υσ2◦hσ(V ) and this means σ1 ◦h σ ≈V

σ2 ◦h σ. Therefore ≈V is a right congruence on Hyp(τ).

3. The degree of proper hypersubstitutions

In [6] for any variety V the cardinals dp(V ) := |P (V )/∼V |P (V )|
and isdp(V ) := |P (V )/∼V −iso |P (V )| were introduced. The inclusion
∼V ⊆∼V −iso implies dp(V ) ≥ isdp(V ). Now we define idp(V ) := |P (V )/≈V

|P (V )|. In [9] the author introduced the dimension of a variety V as the
cardinality of the set of all proper derived varieties υσ(V ) of V . Clearly,
dim(V )+1 = idp(V ). Since ∼V −iso⊆≈V we have dp(V ) ≥ isdp(V ) ≥ idp(V ).
In [6] was proved that for a non-trivial solid variety of type τ = (ni)i∈I such
that n := max{ni | i ∈ I} exists we have dp(V ) ≥

∏

i∈I ni + nn − n. Here
we want to prove a similar result for idp(V ). But first we prove two
propositions for projection hypersubstitutions, i.e. hypersubstitutions which
map any operation symbol to a variable.

Proposition 3.1. Let V be a non-trivial variety of type τ = (ni)i∈I which

has at least one operation symbol with an arity greater than 1 and assume

that σ1, σ2 are different projection hypersubstitutions. Then σ1 6≈V σ2.

Proof. If σ1, σ2 are different projection hypersubstitutions of type τ ,
then there is an element j ∈ I with σ1(fj) = xk(j) 6= xl(j) = σ2(fj)
where k(j), l(j) ∈ {1, . . . , nj}. Suppose that σ1 ≈V σ2. Then Idσ1(V ) =
Idσ2(V ). For all A ∈ V the derived algebras σ1(A) satisfy the identity
fj(x1, . . . , xnj

) ≈ xk(j). Therefore fj(x1, . . . , xnj
) ≈ xk(j) ∈ Idσ1(V ) =

Idσ2(V ) and by the conjugate property V |= σ̂2[fj(x1, . . . , xnj
)] ≈ xk(j) and

thus V |= xl(j) ≈ xk(j), a contradiction.

Proposition 3.2. Let V be a non-trivial solid variety of type τ = (ni)i∈I

with ni > 0 for all i ∈ I which has at least one operation symbol with an

arity greater than 1 and assume that σ is a projection hypersubstitution of

type τ . Then σ 6≈V σid.
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Proof. Let σ be the projection hypersubstitution of type τ defined by
σ(fi) = xk(i) for all i ∈ I. Suppose that σ ≈V σid. Then Idσ(V ) =
Idσid(V ) = IdV . Since the type contains at least one operation symbol
with arity greater than 1, there is a projection hypersubstitution σ ′ which
is different from σ, i.e. there is a j ∈ I with σ(fj) = xk(j) 6= xl(j) = σ′(fj).
Since V is solid, we have σ ′ ∈ P (V ). Clearly, fj(x1, . . . , xnj

) ≈ xk(j) ∈

Idσ(V ) = IdV . So σ̂′[fj(x1, . . . , xnj
)] = xl(j) ≈ xk(j) = σ̂′[xk(j)] ∈ IdV and

V is trivial, a contradiction.

Proposition 3.3. A non-trivial variety V of type τ = (ni)i∈I is solid and

idp(V ) = 1 iff V is of type τ = (1, 1, . . .) and V = Mod{fi(x) ≈ x | i ∈ I}.

Proof. Let V be a non-trivial solid variety with idp(V ) = 1. Since V is
solid, we have RAτ ⊆ V where RAτ is the variety of rectangular algebras
of type τ (see [4]). Since σx1

defined by σx1
(fi) = x1 for all i ∈ I and

σxni
defined by σxni

(fi) = xni
for all i ∈ I are elements of P (V ) and since

idp(V ) = 1 the identities fi(x1, . . . , xni
) ≈ x1 and fi(x1, . . . , xni

) ≈ xni
are

satisfied in V and there follows x1 ≈ xni
∈ IdV . Since V is non-trivial, we

get xni
= x1 for all i ∈ I. Since fi(x) ≈ x ∈ Idσx(V ) for all i ∈ I where σx

is the hypersubstitution mapping each operation symbol fi to x and since
υσ(V ) = V we get V = Mod{fi(x) ≈ x | i ∈ I}. The other direction follows
from Proposition 2.6 in [2].

Our aim is to show that for some solid varieties the degree idP (V )
(and a generalization which will introduced later on) has a non-trivial lower
bound which depends on the type of the variety. The way to show this
fact is proving that we have enough proper hypersubstitutions which are
pairwise non-related to each other. We can find such hypersubstitutions
under the projection hypersubstitutions and sometimes under bijection
hypersubstitutions. Later on we need the following lemma about bijection
hypersubstitutions.

Lemma 3.4. Let V be a variety of type τ and let σ be a hypersubstitution

of this type whose extension σ̂ is bijective. Then σ ∈ P (V ) iff σ ≈V σid.

Proof. We remark that hypersubstitutions σ such that σ̂ are bijective
were characterized in [10], Theorem 6.2.7. If σ ≈V σid, then υσ(V ) = V for
the derived variety and then σ(V ) ⊆ V , i.e. σ is V -proper. If conversely σ ∈

P (V ), then the cyclic group < σ̂ > is a subgroup of the semigroup (P̂ (V ); ◦)
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with P̂ (V ) := {σ̂′ | σ′ ∈ P (V )}. Therefore the inverse σ̂−1 of the extension

of the bijective hypersubstitution σ̂ belongs to P̂ (V ). If s ≈ t ∈ Idσ(V ),
then σ̂[s] ≈ σ̂[t] ∈ IdV and then also (σ̂−1)[σ̂[s]] ≈ (σ̂−1)[σ̂[t]] ∈ IdV , i.e.
s ≈ t ∈ IdV and then Idσ(V ) ⊆ IdV which implies V ⊆ υσ(V ). The
converse inclusion is clear since σ ∈ P (V ). Altogether we have υσ(V ) = V
and σ ≈V σid.

Let Hn be the full transformation monoid of all transformations on
{1, . . . , n}. Green’s equivalence L is defined on Hn by

fLg :⇔ ∃h, l ∈ Hn (f = h ◦ g and g = l ◦ f).

It is well-know that for two transformations f , g we have fLg iff Imf = Img.
We define n∗ = |Hn/L| − n.

For s ∈ Hn we define the hypersubstitution σj
s mapping fj to

fj(xs(1), · · · , xs(n)), s ∈ Hn and fi to fi(x1, · · · , xni
) for any i 6= j, i ∈ I.

Lemma 3.5. Let V be a non-trivial solid variety of type τ = (ni)i∈I with

ni > 0 for all i ∈ I such that n := max{ni | i ∈ I} exists and let n = nj.

Then for all s1, s2 ∈ Hn we have

s1 6Ls2 =⇒ σj
s1

6≈V σj
s2

.

Proof. Suppose that there are mappings s1, s2 ∈ Hn with s1 6Ls2, but
σj

s1
≈V σj

s2
. From s1 6Ls2 there follows Ims1 6= Ims2, i.e. there is an element

k ∈ Ims2 and k 6∈ Ims1 or conversely. Without loss of generality we assume
that k ∈ Ims2 and k 6∈ Ims1. Then s1(i) 6= k for all i ∈ {1, . . . , n}. Let
j := maxs−1

2 (k). We define a mapping s on {1, . . . , n} by

s(i) :=

{

s1(j) if i = k

i otherwise.

Clearly, s is not the identity mapping since s(k) = s1(j), but
s1(j) 6= k. Now we show that s ◦ s1 = s1 and s ◦ s2 6= s2. From
k /∈ Ims1 we get (s ◦ s1)(i) = s1(i) for every i ∈ {1, . . . , n} and thus
s ◦ s1 = s1. Further, (s ◦ s2)(j) = s(k) = s1(j) 6= k = s2(j) and then
s ◦ s2 6= s2. Now we prove that fj(xs(1), . . . , xs(n)) ≈ fj(x1, . . . , xn) ∈

Idσj
s1

(V ). Since σ̂j
s1

[fj(xs(1), . . . , xs(n))] = fj(x(s◦s1)(1), . . . , x(s◦s1)(n))=

fj(xs1(1), . . . , xs1(n)) and σ̂j
s1

[fj(x1, . . . , xn)]= fj(xs1(1), . . . , xs1(n)) we have
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σ̂j
s1

[fj(xs(1), . . . , xs(n))]≈ σ̂j
s1

[fj(x1, . . . , xn)] ∈ IdV . This implies fj(xs(1)

, . . . , xs(n)) ≈ fj(x1, . . . , xn) ∈ Idσj
s1

(V ) = Idσj
s2

(V ) and thus

σ̂j
s2

[fj(xs(1), . . . , xs(n))] ≈ σ̂j
s2

[fj(x1, . . . , xn)] ∈ IdV.

The last identity implies

fj(x(s◦s2)(1), . . . , x(s◦s2)(n)) ≈ fj(xs2(1), . . . , xs2(n)) ∈ IdV

with s ◦ s2 6= s2. By the claim in the proof of Lemma 3.3 in [6] we have

fj(x(s◦s2)(1), . . . , x(s◦s2)(n)) ≈ fj(xs2(1), . . . , xs2(n)) 6∈ IdV,

a contradiction and therefore Lemma 3.5 is proved.

Now we prove that no projection hypersubstitution can collapse with respect
to ≈V with one of the σj

s’s where s is non-constant.

Lemma 3.6. Let V be a non-trivial solid variety of type τ = (ni)i∈I with

ni > 0 for all i ∈ I such that n := max{ni | i ∈ I} exists and n = nj. Then

for all s ∈ Hn such that |Ims| > 1, for any hypersubstitution of the form σj
s

and for any projection hypersubstitution σ we have σ 6≈V σj
s.

Proof. Assume that σ ≈V σj
s. Because of Idσ(V ) = Idσj

s(V ) from
fj(x1, . . . , xn) ≈ xjl

∈ Idσ(V ) where σ(fj) = xjl
, 1 ≤ jl ≤ n, there

follows fj(x1, . . . , xn) ≈ xjl
∈ Idσj

s(V ) and then σ̂j
s[fj(x1, . . . , xn)]=

fj(xs(1), . . . , xs(n)) ≈ xjl
= σ̂j

s[xjl
] ∈ IdV . Since |Ims| > 1, there is a

k ∈ {1, . . . , n} with s(k) 6= jl. Let σ′ be a projection hypersubstitution with
σ′(fj) = xs(k). Then σ̂′[fj(xs(1), . . . , xs(n))] = xs(k) ≈ xjl

= σ̂′[xjl
] ∈ IdV

implies that V is trivial, a contradiction.

Theorem 3.7. Let V be a non-trivial solid variety of type τ = (ni)i∈I

with ni > 0 for all i ∈ I such that n := max{ni | i ∈ I} exists. Then

idp(V ) ≥
∏

i∈I ni + n∗.
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Proof. We consider the cases n > 1 and n = 1.

For n = 1 the inequality is clearly valid. Assume that n > 1.
There is an element j ∈ I with nj = n and there are exactly

∏

i∈I ni

different projection hypersubstitutions of type τ . Since V is non-trivial
and n > 1, by Proposition 3.1 for any pair σ, σ ′ of different projection
hypersubstitutions we have σ 6≈V σ′. Since V is solid, any projection
hypersubstitution is V -proper and therefore idp(V ) ≥

∏

i∈I ni. Now for

any s ∈ Hn we consider the hypersubstitution σj
s mapping the n-ary

operation symbol fj to fj(xs(1), . . . , xs(n)) and fi for i 6= j to fi(x1, . . . , xni
).

By Lemma 3.5 we get that P (V )/ ≈V contains n∗ + n pairwise different
blocks. Two hypersubstitutions σj

s, σj
s′ with different images of s and s′

generate different blocks. By Lemma 3.6 no projection hypersubstitution
can collapse with respect to ≈V with one of the σj

s’s where s is non-constant.
Since Hn/L contains only n blocks generated by constant mappings, we get
idp(V ) ≥

∏

i∈I ni + n∗.

Now we are interested in properties of solid varieties which satisfy the
equality idp(V ) =

∏

i∈I ni + n∗.

Proposition 3.8. Let V be a non-trivial solid variety of type τ = (ni)i∈I

with ni > 0 for all i ∈ I such that n := max{ni | i ∈ I} exists. Assume

that n = nj. If idp(V ) =
∏

i∈I ni + n∗, then ni = 1, fi(x) ≈ x ∈ IdV for

all i 6= j, i ∈ I and for all n-ary terms t one of the following conditions is

satisfied:

(i) there exists an integer l ∈ {1, . . . , n} such that t(x1, . . . , xn) ≈ xl ∈
IdV ,

(ii) there exists a mapping s ∈ Hn which is not bijective and t(xs(1)

, . . . , xs(n)) ≈ t ∈ IdV ,

(iii) IdV = Idσ(V ) for a hypersubstitution σ with σ(fj) = t.

Proof. We prove at first that ni = 1 for all i ∈ I with i 6= j. Suppose
that there is an element k with k ∈ I and k 6= j such that nk > 1. The
idea of the proof is to show that in this case idp(V ) >

∏

i∈I ni + n∗ which
contradicts the assumption of the proposition. Therefore we have to find
enough hypersubstitutions which are not related to each other with respect
to ≈V . Let σj

s be the hypersubstitution mapping the operation symbol fj
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to fj(xs(1), . . . , xs(n)) for a mapping s ∈ Hn which is not bijective and fi to
fi(x1, . . . , xni

) for all i ∈ I, i 6= j, and let σ′ be the hypersubstitution which
maps σ′(fj) = fj(x1, . . . , xn) and σ′(fj) = xni

for all i ∈ I \ {j}. Further
we need the fact that for every mapping s which is not bijective there is a
non-identical mapping s′ such that s′ ◦ s = s.

Fact 1. For all s ∈ Hn which are not bijective we have σ′ 6≈V σj
s.

Proof of the Fact. Suppose that there is a mapping s ∈ Hn which is not
a permutation such that σ′ ≈V σj

s. Let s′ be a non-identical mapping from
Hn with s′◦s = s. Then we have that fj(xs′(1), . . . , xs′(n)) ≈ fj(x1, . . . , xn) ∈

Idσj
s(V ). Then from fj(xs′(1), . . . , xs′(n)) ≈ fj(x1, . . . , xn) ∈ Idσ′(V ) there

follows σ̂′[fj(xs′(1), . . . , xs′(n))] = fj(xs′(1), . . . , xs′(n))≈ fj(x1, . . . , xn) =
σ̂′[fj(x1, . . . , xn)] ∈ IdV . Since s′ is not the identity mapping, there is
an element m ∈ {1, . . . , n} such that s′(m) 6= m (i.e. xs′(m) 6= xm). Let σ′′

be a projection hypersubstitution with σ ′′(fj) = xm. Since V is solid, so σ′′

is proper and σ̂′′[fj(xs′(1), . . . , xs′(n))] = xs′(m) ≈ xm = σ̂′′[fj(x1, . . . , xn)] ∈
IdV , a contradiction since V is non-trivial.

Fact 2. σ′ 6≈V σid. By definition of σ′ we have fk(x1, . . . , xnk
) ≈ xnk

∈
Idσ′(V ). Since nk > 1 and since V is solid we get fk(x1, . . . , xk) ≈ xnk

6∈
IdV . This implies Idσ′(V ) 6= IdV , i.e. σ′ 6≈V σid.

Fact 3. For each projection hypersubstitution σ we have σ ′ 6≈V σ.

If σ is a projection hypersubstitution, then fj(x1, . . . , xn) ≈ xm ∈
Idσ(V ) where σ(fj) = xm and m ∈ {1, . . . , n}. If σ′ ≈V σ, then
fj(x1, . . . , xn) ≈ xm ∈ Idσ′(V ), so σ̂′[fj(x1, . . . , xn)] = fj(x1, . . . , xn) ≈
xm = σ̂′[xm] ∈ IdV , i.e fj(x1, . . . , xn) ≈ xm ∈ IdV , a contradiction. There-
fore σ′ 6≈V σ.

Altogether, this means that [σ ′]≈V
6∈ {[σ]≈V

| σ is a projection

hypersubstitution} ∪ {[σj
s]≈V

| s ∈ Hn and |Ims| > 1} and then idp(V ) >
∏

i∈I ni + n∗ since by Proposition 3.1, Lemma 3.5 and Lemma 3.6 the con-
sidered blocks are pairwise different. This is a contradiction and therefore
ni = 1 for all i ∈ I with i 6= j, i.e. τ = (1, . . . , 1, n, 1, . . . , 1, . . .). If n = 1,
then by Proposition 3.3 V = Mod{fi(x) ≈ x | i ∈ I} and from these identi-
ties one obtains t(x) ≈ x for any t ∈ Wτ ({x1}).

We assume that n > 1 and want to show that V satisfies fi(x) ≈ x
for every i 6= j, i ∈ I. Let σ′′ be the hypersubstitution defined by
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σ′′(fj) = fj(x1, . . . , xn) and σ′′(fi) = x1 for all i ∈ I \ {j}. Clearly σ′′ 6≈V σ
for any projection hypersubstitution σ since fj(x1, . . . , xn) ≈ xm 6∈ Idσ′′(V )
for all 1 ≤ m ≤ n. Using the same arguments as in the first part of
the proof we have σ′′ 6≈V σj

s for all s ∈ Hn and Im s 6= {1, . . . , n}.
Since by idp(V ) =

∏

i∈I ni + n∗ and by P (V )/≈V ⊇ {[σ]≈V
| σ is a pro-

jection hypersubstitution} ∪ {[σj
s]≈V

| s ∈ Hn and |Ims| > 1} we get

P (V )/≈V = {[σ]≈V
| σ is a projection hypersubstitution}∪{[σj

s]≈V
| s ∈ Hn

and |Ims| > 1} there follows σ′′ ≈V σj
s′ where s′ is a permutation. Then

σj
s′ ≈V σid. By transitivity we have σ ′′ ≈V σid. Since σ̂′′[fi(x)] = x ≈

x = σ̂′′[x] ∈ IdV implies fi(x) ≈ x ∈ Idσ′′(V ) we have fi(x) ≈ x ∈ IdV .
Let t ∈ Wτ (Xn) be an arbitrary n-ary term of type τ . We have to ver-
ify that (i), (ii) or (iii) is satisfied. We define the hypersubstitution σ t by
σt(fj) = t and σt(fi) = fi(x) for all i ∈ I \ {j}. From Hyp(τ)/≈V =

P (V )/≈V = {[σ]≈V
| σ is a projection hypersubstitution}∪{[σj

s]≈V
| s ∈ Hn

and |Ims| > 1} there follows that there is a projection hypersubstitution
σ such that σt ≈V σ or there is a mapping s′ ∈ Hn which is not bijec-
tive and |Ims′| > 1 such that σt ≈V σj

s′ or σt ≈V σid. In the first case
we have fj(x1, . . . , xn) ≈ xjl

∈ Idσ(V ) = Idσt(V ), so σ̂t[fj(x1, . . . , xn)] ≈
xjl

= σ̂t[xjl
] ∈ IdV , i.e. t(x1, . . . , xn) ≈ xjl

∈ IdV . In the second case
there is a non-bijective s ∈ Hn with fj(xs(1), . . . , xs(n)) ≈ fj(x1, . . . , xn) ∈

Idσj
s′(V ). Then σ̂t[fj(xs(1), . . . , xs(n))] ≈ σ̂t[fj(x1, . . . , xn)] ∈ IdV implies

t(xs(1), . . . , xs(n)) ≈ t ∈ IdV . In the last case we get Idσt(V ) = IdV .
Clearly, σid ≈V σ where σ is a hypersubstitution with σ(fj) = t. Then
Idσ(V ) = IdV .

4. The isomorphism degree of proper hypersubstitutions

Because of idp(V ) ≤ isdp(V ) Theorem 3.7 is also satisfied for isdp(V ). The
generalization of Proposition 3.1 to isdp(V ) is contained in [7].

Proposition 4.1 [7]. Let V be a non-trivial variety of type τ = (ni)i∈I with

ni > 0 for all i ∈ I such that at least one operation symbol of arity > 1 and

let σ, σ′ be different projection hypersubstitutions. Then σ 6∼V −iso σ′.

Under the same assumptions for any projection hypersubstitution σ we have
σ 6∼V −iso σid ([7]).

Now we consider hypersubstitutions of the form σj
s for s ∈ Hn.
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Proposition 4.2. Let V be a non-trivial solid variety of type τ = (ni)i∈I

with ni > 0 for all i ∈ I such that n := max{ni | i ∈ I} exists. If s, s′ ∈ Hn

with s 6= s′, then σs
j 6∼V −iso σ′

s
j

where j ∈ I with nj = n.

Proof. Assume that s 6= s′. From s 6= s′ there follows that there is a
k ∈ {1, . . . , n} with s(k) 6= s′(k). For i ∈ {1, . . . , n} \ {j} let σs

j(fi) =
fi(x1, . . . , xni

). Let k ∈ {1, . . . , n} and let Ak be a projection algebra of
type τ with fj

Ak = ek
n,A. Then Ak ∈ V since V is solid and Ak 6∼= Al for

all l ∈ {1, . . . , n}, k 6= l. Now we consider the derived algebras σs
j(Ak) and

σs′
j(Ak) with fundamental operations σs

j(fi)
Ak and σs′

j(fi)
Ak for all i ∈ I,

respectively. We have σs
j(fi) = fi(x1, . . . , xni

) = σs′
j(fi) for all i ∈ I \ {j}

and σs
j(fi)

Ak , σs′
j(fi)

Ak are projections. Since fj
Ak = ek

n,A by definitions
of σs

j and σs′
j we have σs

j(fj)
Ak = (fj(xs(1), . . . , xs(n)))

Ak = es(k)
n,A and

σs′
j(fj)

Ak = es′(k)
n,A. Since σs

j(Ak) and σs′
j(Ak) are different projection

algebras over the same universes, we have σs
j(Ak) 6∼= σs′

j(Ak) and then
σs

j 6∼V −iso σs′
j . This proves the proposition.

Because of nn − n ≥ n∗ we can sharpen Theorem 3.7 in the case of isdp(V )
and obtain:

Theorem 4.3. Let V be a non-trivial solid variety of type τ = (ni)i∈I

with ni > 0 for all i ∈ I such that n := max{ni | i ∈ I} exists. Then

isdp(V ) ≥
∏

i∈I ni + nn − n.

Proof. For n = 1 the inequalitiy is clearly valid. Assume that n > 1.
Then there is an element j ∈ I such that nj = n and there are exactly
∏

i∈I ni different projection hypersubstitutions of type τ . By Proposition
4.1 we have σ 6∼V −iso σ′ if σ 6= σ′ are different projection hypersubstitutions
and therefore P (V )/ ∼V −iso contains at least

∏

i∈I ni pairwise different
blocks. By Proposition 4.2, P (V )/∼V −iso contains nn pairwise different
blocks generated by hypersubstitutions of the form σs

j . Now we verify that
no projection hypersubstitution collapses with a hypersubstitution of the
form σs

j where s is non-constant. Suppose that there are a projection hyper-
substitution σ and a non-constant mapping s ∈ Hn such that σ ∼V −iso σs

j .
From the definitions of σ and σs

j we have σ(fj) = xjl
, jl ∈ {1, . . . , n} and

σs
j(fj) = fj(xs(1), . . . , xs(n)). Since s is not constant, there is an integer

k ∈ {1, . . . , n} with xs(k) 6= xjl
. This implies fj(xs(1), . . . , xs(n)) ≈ xjl

6∈ IdV
since V is non-trivial and solid. Therefore, there is an algebra A ∈ V with



Binary relations on the monoid of V -proper ... 247

A 6|= fj(xs(1), . . . , xs(n)) ≈ xjl
. From σ ∼V −iso σs

j we obtain an isomor-

phism h from σ(A) onto σs
j(A) and then h(ajl

) = h(σ(fj)
A(a1, . . . , an)) =

σs
j(fj)

A(h(a1), . . . , h(an)) = (fj(xs(1), . . . , xs(n)))
A(h(a1), . . . , h(an)) for all

a1, . . . , an ∈ A. It follows (fj(xs(1), . . . , xs(n)))
A(a1, . . . , an) = ajl

=

ejl

n,A(a1, . . . , an) for all a1, . . . , an ∈ A, i.e. (fj(xs(1), . . . , xs(n)))
A = ejl

n,A.
This means that A |= fj(xs(1), . . . , xs(n)) ≈ xjl

, a contradiction.

Since there are exactly n hypersubstitutions mapping fj to a term of
the form fj(xc, . . . , xc) and fi to fi(x1, . . . , xni

), i 6= j where c ∈ {1, . . . , n}
we get isdp(V ) ≥

∏

i∈I ni + nn − n.

5. Varieties of bands

We are particularly interested in the following varieties of bands:

TR = Mod{x1 ≈ x2},

LZ = Mod{x1x2 ≈ x1},

RZ = Mod{x1x2 ≈ x2},

SL = Mod{x1(x2x3) ≈ (x1x2)x3, x1
2 ≈ x1, x1x2 ≈ x2x1},

RB = Mod{x1(x2x3) ≈ (x1x2)x3 ≈ x1x3, x1
2 ≈ x1},

NB = Mod{x1(x2x3) ≈ (x1x2)x3, x1
2 ≈ x1, x1x2x3x4 ≈ x1x3x2x4},

RegB = Mod{x1(x2x3) ≈ (x1x2)x3, x1
2 ≈ x1, x1x2x1x3x1 ≈ x1x2x3x1},

LN = Mod{x1(x2x3) ≈ (x1x2)x3, x1
2 ≈ x1, x1x2x3 ≈ x1x3x2},

RN = Mod{x1(x2x3) ≈ (x1x2)x3, x1
2 ≈ x1, x1x2x3 ≈ x2x1x3},

LReg = Mod{x1(x2x3) ≈ (x1x2)x3, x1
2 ≈ x1, x1x2 ≈ x1x2x1},

RReg = Mod{x1(x2x3) ≈ (x1x2)x3, x1
2 ≈ x1, x1x2 ≈ x2x1x2},

LQN = Mod{x1(x2x3) ≈ (x1x2)x3, x1
2 ≈ x1, x1x2x3 ≈ x1x2x1x3},

RQN = Mod{x1(x2x3) ≈ (x1x2)x3, x1
2 ≈ x1, x1x2x3 ≈ x1x3x2x3}.
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In [8] the author determined the dimension of every subvariety
of the variety RegB. This means that idp(V ) for these varieties is known.
Now we determine idp(V ) for every variety of bands. Since our proofs for
subvarieties of RegB are quite different from the proofs in [8] we will give
here the full proof. In [6] Proposition 4.1 was proved that for each variety
of bands ∼V =∼V −iso. Therefore dp(V ) = isdp(V ) for each variety of bands.
Moreover it was proved that

dp(V ) = 1 iff V ∈ {TR,LZ,RZ, SL},

dp(V ) = 2 iff V ∈ {LN,RN,LReg,RReg},

dp(V ) = 3 iff V is not dual solid and V 6∈ {LZ,RZ,LN,RN,

LReg,RReg, LQN,RQN},

dp(V ) = 4 iff V is dual solid and V 6∈ {TR, SL,NB,RegB}

or V ∈ {LQN,RQN},

dp(V ) = 6 iff V ∈ {NB,RegB}.

We note that a variety of type τ = (2) is called dual solid if σ̂x2x1
[s] ≈

σ̂x2x1
[t] ∈ IdV for every identity s ≈ t satisfied in V . (σ t denotes the

hypersubstitution mapping the binary operation symbol f to the binary
term t.) Now we are interested in idp(V ) for every variety of bands. Since
1 ≤ idp(V ) ≤ dp(V ) for V ∈ {TR,LZ,RZ, SL} we get idp(V ) = 1.

Now we have:

Theorem 5.1. Let V be a variety of bands. Then

(i) idp(V ) = 1 iff V ∈ {TR,LZ,RZ, SL},

(ii) idp(V ) = 2 iff V ∈ {LN,RN,LReg,RReg},

(iii) idp(V ) = 3 iff V is not dual solid and V 6∈ {LZ,RZ,LN,

RN,LReg,RReg, LQN,RQN}, or V is

dual solid and V 6∈ {TR, SL,NB,RegB}
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(iv) idp(V ) = 4 iff V ∈ {LQN,RQN},

(v) idp(V ) = 5 iff V ∈ {NB,RegB}.

Proof. If V ∈ {TR,LZ,RZ, SL}, then idp(V ) = 1.

For V ∈ {LN,RN,LReg,RReg} the quotient set P (V )/∼V | P (V ) con-
sists of precisely two classes. In each case it is easy to see that the derived
varieties are different. As an example we consider P (LN)/∼LN | P (LN)
= {[σx1

]∼LN | P (LN), [σx1x2
]∼LN | P (LN)} (see proof of Theorem 4.2 in [6]).

Clearly σx1
6≈LN | P (LN)σx1x2

. This proves (ii).

For the variety NB, by the proof of Theorem 4.2 in [6] we have
P (NB)/∼NB | P (NB) = Hyp(2)/∼NB = {[σx1

]∼NB
, [σx2

]∼NB
, [σx1x2

]∼NB
,

[σx2x1
]∼NB

, [σx1x2x1
]∼NB

, [σx2x1x2
]∼NB

} and |P (NB)/∼NB | = 6. From the
results of the previous section, we get σx1

6≈NB σx2
, σx1

6≈NB σx1x2
,

σx2
6≈NB σx1x2

, σx1x2
≈NB σx2x1

by Lemma 3.4. Now we show that
σx1x2x1

6≈NB σx1
, σx1x2x1

6≈NB σx2
, σx1x2x1

6≈NB σx1x2
, σx1x2x1

6≈NB

σx2x1x2
. If σx1x2x1

≈NB σx1
, then Idσx1x2x1

(NB) = Idσx1
(NB). Since

x1x2 ≈ x1 ∈ Idσx1
(NB), so x1x2 ≈ x1 ∈ Idσx1x2x1

(NB) there fol-
lows x1x2x1 ≈ x1 ∈ IdNB, a contradiction since x1x2x1 ≈ x1 6∈ IdNB.
Therefore σx1x2x1

6≈NB σx1
. Similarly we show that σx1x2x1

6≈NB σx2
. If

σx1x2x1
≈NB σx1x2

, then Idσx1x2x1
(NB) = IdNB. Clearly x1x2x1 ≈ x1x2 ∈

Idσx1x2x1
(NB) since σ̂x1x2x1

[x1x2x1] ≈ x1(x2x1x2)x1 ≈ x1x2x1x2x1 ≈
x1x2x1 and σ̂x1x2x1

[x1x2] ≈ x1x2x1 there follows x1x2x1 ≈ x1x2 ∈ IdNB, a
contradiction. Therefore σx1x2x1

6≈NB σx1x2
.

If σx1x2x1
≈NB σx2x1x2

, then Idσx1x2x1
(NB) = Idσx2x1x2

(NB). Since
x1x2x1 ≈ x1x2 ∈ Idσx1x2x1

(NB), so x1x2x1 ≈ x1x2 ∈ Idσx2x1x2
(NB)

and there follows σ̂x2x1x2
[x1x2x1] = x1(x2x1x2)x1 ≈ x1x2x1 ≈ x2x1x2 =

σ̂x2x1x2
[x1x2] ∈ IdNB, a contradiction since x1x2x1 ≈ x2x1x2 6∈ IdNB.

Therefore σx1x2x1
6≈NB σx2x1x2

. In a similar way we conclude for σx2x1x2
.

Remark that σx1x2
(NB) = σx2x1

(NB) by Lemma 3.4. This means that
P (NB)/≈NB ={[σx1

]≈NB
, [σx2

]≈NB
, [σx1x2

]≈NB
, [σx1x2x1

]≈NB
, [σx2x1x2

]≈NB
},

i.e. idp(NB) = 5. In a similar way we prove that idp(RegB) = 5. This
shows (v).

For the variety LQN we have P (LQN)/∼LQN | P (LQN) = {[σx1
]∼LQN

|P (LQN), [σx2
]∼LQN | P (LQN), [σx1x2

]∼LQN | P (LQN), [σx1x2x1
]∼LQN | P (LQN)}.

By the same way as above we show that σ 6≈LQN | P (LQN)σ′ where



250 K. Denecke and R. Srithus

σ, σ′ ∈ {σx1
, σx2

, σx1x2
, σx1x2x1

}, σ 6= σ′. This shows that P (LQN)
/≈LQN | P (LQN) = {[σx1

]≈LQN | P (LQN), [σx2
]≈LQN | P (LQN), [σx1x2

]≈LQN

| P (LQN), [σx1x2x1
]≈LQN | P (LQN)}, i.e. idp(LQN) = 4. Similarly we can

prove that idp(RQN) = 4. This shows (iv).

Let V be a dual solid variety different from TR, SL,RB,NB and RegB.
Then P (V )/∼V | P (V ) = {[σx1

]∼V | P (V ), [σx2
]∼V | P (V ), [σx1x2

]∼V | P (V ),
[σx2x1

]∼V | P (V )} (see proof of Theorem 4.2 in [6]). By the same idea as
above we can show that σ 6≈V | P (V )σ′ where σ, σ′ ∈ {σx1

, σx2
, σx1x2

},
σ 6= σ′. So idp(V ) = 3.

Finally, let V is a non-dual solid variety different from LZ,RZ,LN,
RN,LReg,RReg, LQN,RQN, then P (V )/∼V | P (V ) = {[σx1

]∼V | P (V ),
[σx2

]∼V | P (V ), [σx1x2
]∼V | P (V )}. Similarly as above, we get that each

representative of different blocks of P (V )/∼V | P (V ) cannot be ≈V | P (V )-
related. Therefore idp(V ) = 3 and this shows (iii).

Since all possible cases are considered we get the second direction of (i).
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