ON UNIFORMLY STRONGLY PRIME Γ -SEMIRINGS (II) # TAPAN KUMAR DUTTA AND SUHRID DHARA Department of Pure Mathematics, University of Calcutta 35, Ballygunge Circular Road, Kolkata-700019, India e-mail: duttatapankumar@yahoo.co.in e-mail: suhridd@yahoo.com #### Abstract The Uniformly strongly prime k-radical of a Γ -semiring is a special class which we study via its operator semiring. **Keywords:** Γ-semiring, uniformly right strongly prime Γ-semiring, annihilators, essential ideal, essential extension, uniformly strongly prime k-radical, matrix Γ-semiring, special class, super t-system. 2000 Mathematics Subject Classification: 16Y60. #### 1. Introduction In 1987, D.M. Olson [7] introduced the notion of uniformly strongly prime radical in rings. In 1988, G.L. Booth and N.J. Groenwald [1] extended this notion of uniformly strongly prime radical to Γ-ring. In 1977, G.A.P. Heyman and C. Roos [6] introduced the notion of essential extension of rings. In this paper we introduce the notions of uniformly right strongly prime ideal and uniformly left strongly prime ideal of a Γ -semiring and show that these two notions are equivalent. Also we study uniformly strongly prime k-radical of a Γ -semiring via its operators semirings as G.L. Booth and N.J. Groenwald did in case of Γ -ring. Some earlier works on the operator semiring of a Γ -semiring may be found in [4]. We obtain a relation between uniformly strongly prime k-radical of a Γ -semiring and with that of its matrix Γ -semiring via operator semiring. Lastly, we introduce the notion of super t-system in a Γ -semiring and obtain the relation between the uniformly strongly prime k-radical and super t-system in a Γ -semiring. ## 2. Uniformly strongly prime Γ -semirings **Definition 2.1** ([4]). Let S and Γ be two additive commutative semigroups. Then S is called a Γ -semiring if there exists a mapping $S \times \Gamma \times S \longrightarrow S$ (image to be denoted by $a\alpha b$, for $a, b \in S$ and $\alpha \in \Gamma$) satisfying the following conditions: - (i) $a\alpha(b+c) = a\alpha b + a\alpha c$ - (ii) $(a+b)\alpha c = a\alpha c + b\alpha c$ - (iii) $a(\alpha + \beta)c = a\alpha c + a\beta c$ - (iv) $a\alpha(b\beta c) = (a\alpha b)\beta c$ for all $a, b, c \in S$ and for all $\alpha, \beta \in \Gamma$. Every semiring S is a Γ -semiring with $\Gamma = S$ where $a\alpha b$ denotes the product of elements $a, \alpha, b \in S$. If S contains an element 0 such that 0+x=x=x+0 and $0\alpha x=x\alpha 0=0$ for all $x \in S$, for all $\alpha \in \Gamma$, then 0 is called the zero of S. Throughout this paper we assume that a Γ -semiring always contains a zero element. **Definition 2.2** ([4]). Let S be a Γ -semiring and L be the left operator semiring and R be the right operator semiring. If there exists an element $$\sum_{i=1}^{m} [e_i, \delta_i] \in L \left(\text{respectively } \sum_{j=1}^{n} [\nu_j, f_j] \in R \right)$$ such that $$\sum_{i=1}^{m} e_i \delta_i a = a \left(\text{respectively } \sum_{j=1}^{n} a \nu_j f_j = a \right) \text{ for all } a \in S$$ then S is said to have the left unity $$\sum_{i=1}^{m} [e_i, \delta_i] \left(\text{respectively the right unity } \sum_{j=1}^{n} [\nu_j, f_j] \right).$$ **Definition 2.3** ([4]). A nonempty subset I of a Γ -semiring S is called an ideal of S if $I + I \subseteq I$, I $\Gamma S \subseteq I$, S Γ $I \subseteq I$, where for subsets U, V of S and Δ of Γ , $$U\Delta V = \Big\{ \sum_{i=1}^n u_i \gamma_i v_i : u_i \in U, v_i \in V, \gamma_i \in \Delta \text{ and } n \text{ is a positive integer } \Big\}$$ **Definition 2.4.** A Γ -semiring S is called uniformly right strongly prime if S and Γ contain finite subsets F and Δ respectively such that for any non zero $x(\neq 0) \in S$, $x\Delta F\Delta y = \{0\}$ implies that y = 0 for all $y \in S$. The pair (F, Δ) is called a uniform right insulator for S. Analogously we can define uniformly left strongly prime Γ -semiring. **Theorem 2.5.** A Γ -semiring S is uniformly right strongly prime if and only if there exist finite subsets F of S and Δ of Γ such that for any two nonzero elements x and y of S there exist $f \in F$ and $\alpha, \beta \in \Delta$ such that $x\alpha f\beta y \neq 0$. **Proof.** Let S be a uniformly right strongly prime Γ -semiring and (F, Δ) be a uniform right insulator for S. Let x, y be any two nonzero elements of S. Suppose that $x\Delta F\Delta y = \{0\}$. Then y = 0, a contradiction. So there exist $f \in S$ and $\alpha, \beta \in \Delta$ such that $x\alpha f\beta y \neq 0$. The converse follows by reversing the above argument. Corollary 2.6. A Γ -semiring S is uniformly right strongly prime if and only if S is uniformly left strongly prime. So we ignore the word right from uniformly right strongly prime. **Definition 2.7.** A nonzero ideal I of a Γ-semiring S is called an essential ideal of S if for any nonzero ideal J of S, $I \cap J \neq (0)$. **Example 2.8.** Let $S = \{r\omega : r \in \mathbf{Z}\}$ and $\Gamma = \{r\omega^2 : r \in \mathbf{Z}\}$, where ω be a cube root of unity and \mathbf{Z} be the set of all integers. Then S is a Γ -semiring with usual addition and multiplication. Let $I = \{2r\omega : r \in \mathbf{Z}\}$. Then I is a nonzero ideal of S. Let J be any nonzero ideal of S. Then $I \cap J \neq (0)$. Hence I is an essential ideal of S. **Definition 2.9.** A Γ -semiring T is said to be an essential extension of a Γ -semiring S if S is an essential ideal of T. **Definition 2.10.** Let A be a nonempty subset of a Γ -semiring S. Right annihilator of A in S, denoted by $ann_R(A)$, is defined by $ann_R(A) = \{s \in S : A \Gamma s = \{0\}\}.$ Analogously we can define left annihilator $ann_L(A)$ of A in S. Annihilator of a nonempty subset A is denoted by ann(A) which is a left as well as a right annihilator of A. **Remark 2.11.** If S is a Γ -semiring then $ann_R(A)$ is a right ideal of S and $ann_L(A)$ is a left ideal of S. If A is an ideal of a Γ -semiring S then both annihilators are ideals of S. **Lemma 2.12.** Let S be a Γ -semiring and T be its essential extension. If S is a uniformly strongly prime Γ -semiring then for each nonzero x of T, $x\Delta F = \{0\}$ implies that $x \in ann_R(S)$ and $F\Delta x = \{0\}$ implies that $x \in ann_L(S)$, where (F, Δ) is a uniform insulator for S. **Proof.** Let $x\Delta F = \{0\}$. Then $s\alpha x\Delta F\Delta s\alpha x = \{0\}$ for all $s \in S$ and for all $\alpha \in \Gamma$. Since S is an ideal of T and $s \in S$, $s\alpha x \in S$. Again since S is uniformly strongly prime and (F, Δ) is a uniform insulator for S, $s\alpha x = 0$ for all $s \in S$ and for all $\alpha \in \Gamma$ i.e. $S\Gamma x = \{0\}$ i.e. $x \in ann_R(S)$ (By Definition 2.10). Similarly we can prove that $F\Delta x = \{0\}$ implies that $x \in ann_L(S)$. **Lemma 2.13.** Let S be a uniformly strongly prime Γ -semiring and T be its essential extension. Then both annihilators of S in T are zero. **Proof.** Let (F, Δ) be a uniform insulator for S. If possible let $ann_R(S) \neq (0)$. Then $ann_R(S)$ is a nonzero ideal of T. Since S is an essential ideal of T, $ann_R(S) \cap S \neq (0)$. Let $x(\neq 0) \in ann_R(S) \cap S$. Then $S \Gamma x = \{0\}$. Now $x \Delta F \Delta x \subseteq x \Gamma S \Gamma x = \{0\}$. Since S is a uniformly strongly prime Γ -semiring, x = 0, a contradiction. Therefore $ann_R(S) = (0)$. Similarly we can prove that $ann_L(S) = (0)$. **Theorem 2.14.** Any essential extension of a uniformly strongly prime Γ -semiring S is a uniformly strongly prime Γ -semiring. **Proof.** Let (F, Δ) be a uniform insulator for S and T be an essential extension of S. Let x be a nonzero element of T. Then $x\Delta F$ and $F\Delta x$ both are nonzero. Suppose $x\Delta F = \{0\}$ then by Lemma 2.12, $x \in ann_R(S)$. Also by Lemma 2.13, $ann_R(S)=(0)$, which implies that x=0, a contradiction. Therefore $x\Delta F\neq\{0\}$. Similarly $F\Delta x\neq\{0\}$. Let y,z be two nonzero elements of T. Then there exist $f_1,\ f_2\in F$ and $\alpha_1,\ \alpha_2\in\Delta$ such that $y\alpha_1f_1\neq 0$ and $f_2\alpha_2z\neq 0$. Since S is an ideal of T, so $y\alpha_1f_1,\ f_2\alpha_2z\in S$. Again since S is uniformly strongly prime and $(F,\ \Delta)$ is a uniform insulator for S, there exist $\alpha,\beta\in\Delta$ and $f\in F$ such that $y\alpha_1f_1\alpha f\beta f_2\alpha_2z\neq 0$. Let $F'=\{f_1\alpha f\beta f_2:\ y\alpha_1f_1\alpha f\beta f_2\alpha_2z\neq 0;\ f_1,f,f_2\in F;\ \alpha,\beta,\alpha_1,\alpha_2\in\Delta;\ y,z\in T\}$. Then $F'\subseteq S\subseteq T$ is a finite subset, since F and Δ are finite subsets. Hence by Theorem 2.5, T is uniformly strongly prime Γ -semiring with insulator $(F',\ \Delta)$. **Definition 2.15.** Let S be a Γ -semiring and T be a nonempty subset of S. Then T is said to be a Γ -subsemiring of S if for $t_1, t_2 \in T$ and $\alpha \in \Gamma$, $t_1 + t_2$, $t_1 \alpha t_2 \in T$. **Remark 2.16.** Every ideal of a Γ -semiring S is a Γ -subsemiring of S. **Lemma 2.17.** If S is a uniformly strongly prime Γ -semiring and I is an ideal of S, then I is also a uniformly strongly prime Γ -subsemiring. **Proof.** Let S be a uniformly strongly prime Γ-semiring and (F, Δ) be a uniform insulator for S. If I=(0) then obviously I is a uniformly strongly prime Γ-subsemiring. Suppose $I \neq (0)$ and r be a fixed nonzero element of I. Let $F' = \{f_1 \alpha r \beta f_2 : f_1, f_2 \in F; \alpha, \beta \in \Delta\}$. Since I is an ideal of S and F, Δ are finite subsets, F' is a finite subset of I. Let $x(\neq 0) \in I$ and $y \in I$. Now $x\Delta F'\Delta y = \{0\}$ implies that $x\gamma f_1\alpha r\beta f_2\delta y = 0$ for all $f_1, f_2 \in F$ and for all $\alpha, \beta, \gamma, \delta \in \Delta$ i.e. $x\Delta F\Delta (r\beta f_2\delta y) = \{0\}$ for all $f_2 \in F$ and for all $\beta, \delta \in \Delta$ and S is a usp Γ-semiring with $x \neq 0$, $r\beta f_2\delta y = 0$ for all $f_2 \in F$ and for all $\beta, \delta \in \Delta$ i.e. $r\Delta F\Delta y = \{0\}$. By previous argument y = 0 as $r \neq 0$. Hence (F', Δ) is a uniform insulator for I. Thus I is a uniformly strongly prime Γ-subsemiring. ## 3. Uniformly strongly prime k-radicals **Definition 3.1** ([3]). An ideal P of a Γ -semiring S is called a uniformly strongly prime ideal (usp ideal) if S and Γ contain finite subsets F and Δ respectively such that $x\Delta F\Delta y\subseteq P$ implies that $x\in P$ or $y\in P$ for all $x,y\in S$. **Definition 3.2.** Let S be a Γ-semiring. The uniformly strongly prime k-radical (usp k-radical) of a Γ-semiring S, denoted by $\tau(S)$ is defined by $$\tau(S) = \bigcap_{P \in \Lambda_S} P,$$ where Λ_S denote the set of all usp k-ideals of the Γ -semiring S. **Definition 3.3.** Let S be a Γ -semiring and L (respectively R) be its left (respectively right) operator semiring, the usp k-radical of L (respectively R), denoted by $\tau(L)$ (respectively $\tau(R)$) is defined by $$\tau(L) = \bigcap_{A \in \Lambda_L} A,$$ where Λ_L denote the set of all usp k-ideals of the left operator semiring L (respectively $\tau(R) = \bigcap_{B \in \Lambda_R} B$, where Λ_R denote the set of all usp k-ideals of the right operator semiring R). **Theorem 3.4.** Let S be a Γ -semiring with left and right unities and L be its left operator semiring then $\tau(L)^+ = \tau(S)$ and $\tau(L) = \tau(S)^{+'}$. **Proof.** Let Λ_L and Λ_S denote the set of all usp k-ideals of L and S respectively, then $$\tau(L) = \bigcap_{A \in \Lambda_L} A \quad \text{and} \quad \tau(S) = \bigcap_{P \in \Lambda_S} P \; .$$ Hence $$(\tau(L))^+ = \left(\bigcap_{A \in \Lambda_L} A\right)^+ = \bigcap_{A \in \Lambda_L} A^+.$$ Since for every $A \in \Lambda_L$, $A^+ \in \Lambda_S$ (Cf. Theorem 2.23 of [3]), $$\bigcap_{A \in \Lambda_S} A \subseteq \bigcap_{A \in \Lambda_L} A^+ .$$ Hence (1) $$\tau(S) \subseteq (\tau(L))^+ .$$ Again $$\tau(S) = \bigcap_{P \in \Lambda_S} P = \bigcap_{P \in \Lambda_S} \left(P^{+'}\right)^+ = \left(\bigcap_{P \in \Lambda_S} P^{+'}\right)^+.$$ Since for each $P \in \Lambda_S$, $P^{+'} \in \Lambda_L(Cf. Theorem 2.23 of [3]),$ $$\bigcap_{P \in \Lambda_L} P \subseteq \bigcap_{P \in \Lambda_S} P^{+'}.$$ Hence $$\left(\bigcap_{P\in\Lambda_L}P\right)^+\subseteq\left(\bigcap_{P\in\Lambda_S}P^{+'}\right)^+,$$ which implies that $$(\tau(L))^+ \subseteq \tau(S).$$ Thus from (1) and (2) we get $\tau(S) = (\tau(L))^+$. Similarly we can prove that $\tau(L) = \tau(S)^{+'}$. **Proposition 3.5.** Let S be a Γ -semiring with left and right unities and R be its right operator semiring then $\tau(R)^* = \tau(S)$ and $\tau(R) = \tau(S)^{*'}$. Corollary 3.6. Let S be a Γ -semiring with left and right unities L and R be its left and right operator semirings then $\tau(L)^+ = \tau(S) = \tau(R)^*$. **Theorem 3.7.** Let S be a semiring with identity 1 and $\tau'(S)$, $\tau(S)$ denote respectively the usp k-radical of the semiring S and the usp k-radical of the Γ -semiring S, where $\Gamma = S$, then $\tau'(S) = \tau(S)$. **Proof.** By Theorem 2.26 of [3] every usp k-ideal of a semiring S is a usp k-ideal of the Γ -semiring S, where $\Gamma = S$. This follows that $\tau'(S) = \tau(S)$. ### 4. USP k-radicals in Matrix Γ -semiring **Definition 4.1** ([5]). Let S be a Γ-semiring and m, n be positive integers. We denote by S_{mn} and Γ_{nm} respectively the sets of $m \times n$ matrices with entries from S and $n \times m$ matrices with entries from Γ . Let $A, B \in S_{mn}$ and $\Delta \in \Gamma_{nm}$. Then $A\Delta B \in S_{mn}$ and $A + B \in S_{mn}$. Clearly, S_{mn} forms a Γ_{nm} -semiring with these operations. We call it the matrix Γ -semiring S or the matrix Γ_{nm} -semiring S_{mn} or simply the Γ_{nm} -semiring S_{mn} . We denote the right operator semiring of the matrix Γ_{nm} -semiring S_{mn} by $[\Gamma_{nm}, S_{mn}]$ and the left one by $[S_{mn}, \Gamma_{nm}]$. If $x \in S$, the notation xE_{ij} will be used to denote a matrix in S_{mn} with x in the (i, j)-th entry and zeros elsewhere. The notation αE_{ij} , where $\alpha \in \Gamma$ will have a similar meaning. If $P \subseteq S$, P_{mn} will denote the set of all $m \times n$ matrices with entries from P. If $\Delta \subseteq \Gamma$, Δ_{nm} is similarly defined. **Theorem 4.2.** Let S be a Γ -semiring with left and right unities. Then S is a usp Γ -semiring if and only if S_{mn} is a usp Γ_{nm} -semiring for all positive integers m and n. **Proof.** S is a usp Γ -semiring if and only if L is a usp semiring if and only if L_m is a usp semiring if and only if S_{mn} is a usp Γ_{nm} -semiring (By Theorem 2.18 of [3] and by Lemma 3.13 of [2]). **Lemma 4.3.** Let S be a Γ -semiring and m,n be positive integers; then a nonempty subset P of S_{mn} is a usp k-ideal of S_{mn} if and only if $P = Q_{mn}$, for some usp k-ideal Q of S. **Proof.** Let L be the left operator semiring of S and L_m be the left operator semiring of the Γ_{nm} -semiring S_{mn} . Let P be a usp k-ideal of S_{mn} . Then by Theorem 2.23 of [3] (applied to Γ_{nm} -semiring S_{mn}) $P^{+'}$ is a usp k-ideal of the left operator semiring L_m of the Γ_{nm} -semiring S_{mn} . So $P^{+'} = Q_m$ for some usp k-ideal Q of L. This implies that $(P^{+'})^+ = (Q_m)^+$ i.e. $P = (Q^+)_{mn}$ (By Theorem 2.10 and Proposition 3.4 of [5]). Again by Theorem 2.23 of [3], Q^+ is an usp k-ideal of S. So the direct implication follows. Conversely, suppose Q is a usp k-ideal of S. Then $Q^{+'}$ is a usp k-ideal of L (By Theorem 2.23 of [3]). So $(Q^{+'})_m$ is a usp k-ideal of L_m i.e. $(Q_{mn})^{+'}$ is a usp k-ideal of L_m by previous arguments. Hence $Q_{mn} = ((Q_{mn})^{+'})^+$ is an usp k-ideal of the Γ_{nm} -semiring S_{mn} . **Lemma 4.4.** Let S be a Γ -semiring and I be an ideal of S. Then $(S/I)_{mn}$ is isomorphic to S_{mn}/I_{mn} for all positive integers m, n. **Proof.** Let θ be a mapping of the Γ_{nm} -semiring $(S/I)_{mn}$ to the Γ_{nm} -semiring S_{mn}/I_{mn} defined by $\theta((x_{ij}/I)_{mn}) = (x_{ij})_{mn}/I_{mn}$. Let $(x_{ij}/I)_{mn}$, $(y_{ij}/I)_{mn} \in (S/I)_{mn}$. Now $(x_{ij}/I)_{mn} = (y_{ij}/I)_{mn}$ if and only if $x_{ij}/I = y_{ij}/I$, for all i, j if and only if $x_{ij} + a_{ij} = y_{ij} + b_{ij}$, for some $a_{ij}, b_{ij} \in I$ and for all i, j if and only if $(x_{ij} + a_{ij})_{mn} = (y_{ij} + b_{ij})_{mn}$ if and only if $(x_{ij})_{mn} + (a_{ij})_{mn} = (y_{ij})_{mn} + (b_{ij})_{mn}$ for some matrices $(a_{ij})_{mn}$, $(b_{ij})_{mn} \in I_{mn}$ if and only if $(x_{ij})_{mn}/I_{mn} = (y_{ij})_{mn}/I_{mn}$ if and only if $\theta((x_{ij}/I)_{mn}) = \theta((y_{ij}/I)_{mn})$. Therefore θ is well defined as well as injective. Clearly θ is onto and semigroup homomorphism under addition. Now $$\theta\left((x_{ij}/I)_{mn}(\alpha_{ij})_{nm}(y_{ij}/I)_{mn}\right)$$ $$=\theta\left(\left(\sum_{k=1}^{n}\sum_{l=1}^{m}(x_{ik}\alpha_{kl}y_{lj})/I\right)_{mn}\right)$$ $$=\left(\sum_{k=1}^{n}\sum_{l=1}^{m}(x_{ik}\alpha_{kl}y_{lj})\right)_{mn}/I_{mn}$$ $$=((x_{ij})_{mn}(\alpha_{ij})_{nm}(y_{ij})_{mn})/I_{mn}$$ $$=((x_{ij})_{mn}/I)(\alpha_{ij})_{nm}((y_{ij})_{mn}/I)$$ $$=\theta((x_{ij}/I)_{mn})\iota((\alpha_{ij})_{nm})\theta((y_{ij}/I)_{mn}).$$ This shows that (θ, ι) is an isomorphism of $(S/I)_{mn}$ onto S_{mn}/I_{mn} , where ι is the identity mapping from Γ_{nm} onto Γ_{nm} . **Proposition 4.5.** Let A, B be two ideals of a Γ -semiring S. Then $(A \cap B)_{mn} = A_{mn} \cap B_{mn}$, where A_{mn} , B_{mn} are two ideals of Γ_{nm} -semiring S_{mn} . **Theorem 4.6.** Let S be a Γ -semiring. Then $\tau(S_{mn}) = (\tau(S))_{mn}$ for all positive integers m, n. **Proof.** By Definition 3.2, $$\tau(S_{mn}) = \bigcap_{P \in \Lambda_{S_{mn}}} P,$$ where $\Lambda_{S_{mn}}$ denote the set of all usp k-ideals of the Γ -semiring S_{mn} and $$\tau(S) = \bigcap_{Q \in \Lambda_S} Q,$$ where Λ_S denote the set of all usp k-ideals of the Γ -semiring S. Therefore $$(\tau(S))_{mn} = \left(\bigcap_{Q \in \Lambda_S} Q\right)_{mn} = \bigcap_{Q \in \Lambda_S} Q_{mn}$$ (By Proposition 4.5). Hence by Lemma 4.3 we get the result. # 5. Special classes **Definition 5.1.** A class \wp of Γ-semirings is called hereditary if I is an ideal of a Γ-semiring S and $S \in \wp$ implies that $I \in \wp$. **Definition 5.2.** A class \wp of Γ-semirings is called closed under essential extension if I is an essential ideal of a Γ-semiring S and $I \in \wp$ implies that $S \in \wp$. **Definition 5.3.** The class \wp of Γ -semirings is called a special class if - (i) \wp consists of prime Γ -semirings, - (ii) \wp is hereditary and - (iii) \wp is closed under essential extension. **Theorem 5.4.** A class \mathcal{L} of uniformly strongly prime Γ -semirings is a special class. **Proof.** Since uniformly strongly prime implies prime, so \mathcal{L} consists of all prime Γ -semirings. By Lemma 2.17, we get \mathcal{L} is hereditary class. Again by Theorem 2.14, \mathcal{L} is closed under essential extension. Hence \mathcal{L} is a special class. **Proposition 5.5.** The following conditions are equivalent for any class ρ of prime Γ -semirings: - (i) if I is an ideal of S, $I \in \rho$ and ann(I) = (0), then $S \in \rho$ - (ii) ρ is closed under essential extension. **Proof.** (i) \Rightarrow (ii) Let I be an essential ideal of S and $I \in \rho$. Let $x \in I \cap ann(I)$ then $x \in I$ and $x \in ann(I)$ which implies that $x \in I$ and $I \cap x = \{0\} = x \cap I$. So $x \cap I \cap x = \{0\}$ which implies that $x \in I \cap I$ So $x \cap I \cap x = \{0\}$ which implies that $x \in I \cap I$ So $x \cap I \cap X = \{0\}$ which implies that $x \in I \cap I$ So $x \cap I \cap X = \{0\}$ so it follows that $x \in I \cap I$ So $x \cap \cap$ (ii) \Rightarrow (i) Let ρ be closed under essential extension. Let $I \in \rho$ be an ideal of S with ann(I) = (0). Let L be an ideal of S such that $I \cap L = (0)$. Now $I \Gamma L \subseteq I \cap L = (0)$ and $L \Gamma I \subseteq I \cap L = (0)$. So $I \Gamma L = (0) = L \Gamma I$ which implies that $L \subseteq ann(I) = (0)$, so L = (0). Therefore I is an essential ideal of S. Also $I \in \rho$. Hence by (ii) $S \in \rho$. A Γ -semiring S is called a us(1) prime if it has an insulator of the form $(\{x\}, \{\gamma\})$ where $x \in S$ and $\gamma \in \Gamma$. As in Theorem 5.4 we can show that the class \mathcal{L}_1 of all us(1) prime Γ -semirings is a special class. **Definition 5.6.** A pair of subsets (T, I) of a Γ -semiring S is called a super t-system of S if - (i) I is an ideal of S - (ii) $T \cap I \subseteq (0)$ and - (iii) there exist finite subsets F of S and Δ of Γ such that for all $a, b \in S \setminus I$, $a\Delta F\Delta b \cap T \neq \phi$. The pair (F, Δ) will be called an insulator of the super t-system. Therefore I is a uniformly strongly prime ideal of S if and only if $(S \setminus I, I)$ is a super t-system. **Theorem 5.7** For a Γ -semiring S, $\tau(S) = \{a \in S : whenever <math>(T, I) \text{ is a super } t\text{-system in } S \text{ with } a \in T \text{ then } 0 \in T\}.$ **Proof.** Let $H = \{a \in S : \text{ whenever } (T, \ I) \text{ is a super } t\text{-system in } S \text{ with } a \in T \text{ then } 0 \in T\}.$ Let $a \in \tau(S)$. Suppose $(T, \ I)$ is a super $t\text{-system in } S \text{ with } a \in T \text{ and } 0 \not\in T.$ So $T \cap I = \phi$. Let $(F, \ \Delta)$ be an insulator of the super t-system. By Zorn's lemma there exists a maximal ideal P such that $I \subseteq P$ and $T \cap P = \phi$. We now prove that P is a uniformly strongly prime ideal of S with $(F, \ \Delta)$ be its uniform insulator. If possible let there exist $x, y \notin P$ such that $x\Delta F\Delta y \subseteq P$. Since $x, y \notin P$, then $x, y \notin I$ which implies that $x, y \in S \setminus I$ and $(x\Delta F\Delta y) \cap T \subseteq P \cap T = \phi$, a contradiction, since (T, I) is a super t-system in S. So $x\Delta F\Delta y \subseteq P$ implies that $x \in P$ or $y \in P$ which implies that P is a uniformly strongly prime ideal of S. Hence $a \in \tau(S)$ implies that $a \in P$. Again $a \in T \Rightarrow a \notin P$ as $T \cap P = \phi$, which is a contradiction. So $0 \in T$. Then $a \in H \Rightarrow \tau(S) \subseteq H$. Conversely, let $a \notin \tau(S)$. Then there exists a uniformly strongly prime k-ideal and hence an ideal say Q of S such that $a \notin Q$. Then $a \in S \setminus Q$, so $(S \setminus Q, Q)$ is a super t-system with $a \in S \setminus Q$ but $0 \notin S \setminus Q$, so $a \notin H$. Hence $H \subseteq \tau(S)$. This completes the proof. # Acknowledgement The authors are thankful to the learned referee for his kind suggestions. # REFERENCES - [1] G.L. Booth and N.J. Groenwald, On Uniformly Strongly Prime Γ -rings, Bull. Austral Math. Soc. **37** (1988), 437–445. - [2] T.K. Dutta and M.L. Das, On Uniformly Strongly Prime semirings (communicated). - [3] T.K. Dutta and S. Dhara, On Uniformly Strongly Prime Γ -semirings, Southeast Asian Bull. of Mathematics **30** (2006), 32–39. - [4] T.K. Dutta and S.K. Sardar, On The Operator Semirings of a Γ -semiring, Southeast Asian Bull. of Mathematics, Springer-Verleg, **26** (2002), 203–213. - [5] T.K. Dutta and S.K. Sardar, On Matrix Γ-semirings, Far East J. Math. Soci. (FJMS) 7 (1) (2002), 17–31. - [6] G.A.P. Heyman and C. Roos, Essential extensions in radical theory for rings J. Austral. Math. Soc. Ser A, 23 (1977), 340–347. - [7] D.M. Olson, A Uniformly Strongly Prime Radicals J. Austral Math. Soc. Ser A 43 (1) (1987), 95–102. - [8] D.M. Olson and S. Veldsman, Some remarks on Uniformly Strongly prime Radicals, Math. Japon **33** (3) (1988), 445–455. $\begin{tabular}{ll} Received 10 July 2006 \\ Revised 13 September 2006 \end{tabular}$