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1. Introduction

In 1987, D.M. Olson [7] introduced the notion of uniformly strongly prime
radical in rings. In 1988, G.L. Booth and N.J. Groenwald [1] extended
this notion of uniformly strongly prime radical to Γ-ring. In 1977, G.A.P.
Heyman and C. Roos [6] introduced the notion of essential extension of
rings.

In this paper we introduce the notions of uniformly right strongly prime
ideal and uniformly left strongly prime ideal of a Γ-semiring and show that
these two notions are equivalent. Also we study uniformly strongly prime
k-radical of a Γ-semiring via its operators semirings as G.L. Booth and
N.J. Groenwald did in case of Γ-ring. Some earlier works on the opera-
tor semiring of a Γ-semiring may be found in [4]. We obtain a relation
between uniformly strongly prime k-radical of a Γ-semiring and with that of
its matrix Γ-semiring via operator semiring. Lastly, we introduce the
notion of super t-system in a Γ-semiring and obtain the relation between
the uniformly strongly prime k-radical and super t-system in a Γ-semiring.
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2. Uniformly strongly prime Γ-semirings

Definition 2.1 ([4]). Let S and Γ be two additive commutative semigroups.
Then S is called a Γ-semiring if there exists a mapping S × Γ × S −→ S
(image to be denoted by aαb, for a, b ∈ S and α ∈ Γ) satisfying the following
conditions:

(i) aα(b + c) = aαb + aαc

(ii) (a + b)αc = aαc + bαc

(iii) a(α + β)c = aαc + aβc

(iv) aα(bβc) = (aαb)βc

for all a, b, c ∈ S and for all α, β ∈ Γ.

Every semiring S is a Γ-semiring with Γ = S where aαb denotes the
product of elements a, α, b ∈ S.

If S contains an element 0 such that 0+x = x = x+0 and 0αx = xα0 = 0
for all x ∈ S, for all α ∈ Γ, then 0 is called the zero of S.

Throughout this paper we assume that a Γ-semiring always contains a
zero element.

Definition 2.2 ([4]) . Let S be a Γ-semiring and L be the left operator
semiring and R be the right operator semiring. If there exists an element

m
∑

i=1

[ei, δi] ∈ L



respectively
n
∑

j=1

[νj, fj ] ∈ R





such that

m
∑

i=1

eiδia = a



respectively
n
∑

j=1

aνjfj = a



 for all a ∈ S

then S is said to have the left unity

m
∑

i=1

[ei, δi]



respectively the right unity
n
∑

j=1

[νj, fj ]



 .



On uniformly strongly prime Γ-semirings (II) 221

Definition 2.3 ([4]). A nonempty subset I of a Γ-semiring S is called an
ideal of S if I + I ⊆ I, I ΓS ⊆ I, S Γ I ⊆ I, where for subsets U, V of S
and ∆ of Γ,

U∆V =
{

n
∑

i=1

uiγivi : ui ∈ U, vi ∈ V, γi ∈ ∆ and n is a positive integer
}

Definition 2.4. A Γ-semiring S is called uniformly right strongly prime if
S and Γ contain finite subsets F and ∆ respectively such that for any non
zero x(6= 0) ∈ S, x∆F∆y = {0} implies that y = 0 for all y ∈ S. The pair
(F, ∆) is called a uniform right insulator for S.

Analogously we can define uniformly left strongly prime Γ-semiring.

Theorem 2.5. A Γ-semiring S is uniformly right strongly prime if and only

if there exist finite subsets F of S and ∆ of Γ such that for any two nonzero

elements x and y of S there exist f ∈ F and α, β ∈ ∆ such that xαfβy 6= 0.

Proof. Let S be a uniformly right strongly prime Γ-semiring and (F, ∆)
be a uniform right insulator for S. Let x, y be any two nonzero elements of
S. Suppose that x∆F∆y = {0}. Then y = 0, a contradiction. So there
exist f ∈ S and α, β ∈ ∆ such that xαfβy 6= 0.

The converse follows by reversing the above argument.

Corollary 2.6. A Γ-semiring S is uniformly right strongly prime if and
only if S is uniformly left strongly prime.

So we ignore the word right from uniformly right strongly prime.

Definition 2.7. A nonzero ideal I of a Γ-semiring S is called an essential
ideal of S if for any nonzero ideal J of S, I

⋂

J 6= (0).

Example 2.8. Let S = {rω : r ∈ Z} and Γ = {rω2 : r ∈ Z}, where ω be a
cube root of unity and Z be the set of all integers. Then S is a Γ-semiring
with usual addition and multiplication. Let I = {2rω : r ∈ Z}. Then I is
a nonzero ideal of S. Let J be any nonzero ideal of S. Then I

⋂

J 6= (0).
Hence I is an essential ideal of S.

Definition 2.9. A Γ-semiring T is said to be an essential extension of a
Γ-semiring S if S is an essential ideal of T .
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Definition 2.10. Let A be a nonempty subset of a Γ-semiring S.
Right annihilator of A in S, denoted by annR(A), is defined by annR(A) =
{s ∈ S : AΓs = {0}}.

Analogously we can define left annihilator annL(A) of A in S. Annihilator
of a nonempty subset A is denoted by ann(A) which is a left as well as a
right annihilator of A.

Remark 2.11. If S is a Γ-semiring then annR(A) is a right ideal of S and
annL(A) is a left ideal of S. If A is an ideal of a Γ-semiring S then both
annihilators are ideals of S.

Lemma 2.12. Let S be a Γ-semiring and T be its essential extension.

If S is a uniformly strongly prime Γ-semiring then for each nonzero x
of T , x∆F = {0} implies that x ∈ annR(S) and F∆x = {0} implies that

x ∈ annL(S), where (F, ∆) is a uniform insulator for S.

Proof. Let x∆F = {0}. Then sαx∆F∆sαx = {0} for all s ∈ S and for
all α ∈ Γ. Since S is an ideal of T and s ∈ S, sαx ∈ S. Again since S is
uniformly strongly prime and (F, ∆) is a uniform insulator for S, sαx = 0
for all s ∈ S and for all α ∈ Γ i.e. S Γx = {0} i.e. x ∈ annR(S)
(By Definition 2.10).

Similarly we can prove that F∆x = {0} implies that x ∈ annL(S).

Lemma 2.13. Let S be a uniformly strongly prime Γ-semiring and T be its

essential extension. Then both annihilators of S in T are zero.

Proof. Let (F, ∆) be a uniform insulator for S. If possible let
annR(S) 6= (0). Then annR(S) is a nonzero ideal of T . Since S is an
essential ideal of T , annR(S)

⋂

S 6= (0). Let x(6= 0) ∈ annR(S)
⋂

S. Then
S Γx = {0}. Now x∆F∆x ⊆ xΓS Γx = {0}. Since S is a uniformly strongly
prime Γ-semiring, x = 0, a contradiction. Therefore annR(S) = (0).

Similarly we can prove that annL(S) = (0).

Theorem 2.14. Any essential extension of a uniformly strongly prime

Γ-semiring S is a uniformly strongly prime Γ-semiring.

Proof. Let (F, ∆) be a uniform insulator for S and T be an essential
extension of S. Let x be a nonzero element of T . Then x∆F and F∆x both
are nonzero. Suppose x∆F = {0} then by Lemma 2.12, x ∈ annR(S). Also
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by Lemma 2.13, annR(S) = (0), which implies that x = 0, a contradiction.
Therefore x∆F 6= {0}. Similarly F∆x 6= {0}. Let y, z be two nonzero
elements of T . Then there exist f1, f2 ∈ F and α1, α2 ∈ ∆ such that
yα1f1 6= 0 and f2α2z 6= 0. Since S is an ideal of T , so yα1f1, f2α2z ∈ S.
Again since S is uniformly strongly prime and (F, ∆) is a uniform insulator
for S, there exist α, β ∈ ∆ and f ∈ F such that yα1f1αfβf2α2z 6= 0.
Let F

′

= {f1αfβf2 : yα1f1αfβf2α2z 6= 0; f1, f, f2 ∈ F ; α, β, α1, α2 ∈
∆; y, z ∈ T}. Then F

′

⊆ S ⊆ T is a finite subset, since F and ∆ are finite
subsets. Hence by Theorem 2.5, T is uniformly strongly prime Γ-semiring
with insulator (F ′, ∆).

Definition 2.15. Let S be a Γ-semiring and T be a nonempty subset of
S. Then T is said to be a Γ-subsemiring of S if for t1, t2 ∈ T and α ∈ Γ,
t1 + t2, t1αt2 ∈ T .

Remark 2.16. Every ideal of a Γ-semiring S is a Γ-subsemiring of S.

Lemma 2.17. If S is a uniformly strongly prime Γ-semiring and I is an

ideal of S, then I is also a uniformly strongly prime Γ-subsemiring.

Proof. Let S be a uniformly strongly prime Γ-semiring and (F, ∆) be a
uniform insulator for S. If I = (0) then obviously I is a uniformly strongly
prime Γ-subsemiring. Suppose I 6= (0) and r be a fixed nonzero element of
I. Let F

′

= {f1αrβf2 : f1, f2 ∈ F ; α, β ∈ ∆}. Since I is an ideal of S and
F, ∆ are finite subsets, F

′

is a finite subset of I. Let x(6= 0) ∈ I and y ∈ I.
Now x∆F

′

∆y = {0} implies that x γf1αrβf2δy = 0 for all f1, f2 ∈ F and
for all α, β, γ, δ ∈ ∆ i.e. x∆F∆(rβf2δy) = {0} for all f2 ∈ F and for all
β, δ ∈ ∆. Since rβf2δy ∈ S for all f2 ∈ F and for all β, δ ∈ ∆ and S is a usp
Γ-semiring with x 6= 0, rβf2δy = 0 for all f2 ∈ F and for all β, δ ∈ ∆ i.e.
r∆F∆y = {0}. By previous argument y = 0 as r 6= 0. Hence (F

′

, ∆) is a
uniform insulator for I. Thus I is a uniformly strongly prime Γ-subsemiring.

3. Uniformly strongly prime k-radicals

Definition 3.1 ([3]) . An ideal P of a Γ-semiring S is called a uniformly
strongly prime ideal (usp ideal) if S and Γ contain finite subsets F and ∆
respectively such that x∆F∆y ⊆ P implies that x ∈ P or y ∈ P for all
x, y ∈ S.
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Definition 3.2. Let S be a Γ-semiring. The uniformly strongly prime
k-radical (usp k-radical) of a Γ-semiring S, denoted by τ(S) is defined by

τ(S) =
⋂

P∈ΛS

P,

where ΛS denote the set of all usp k-ideals of the Γ-semiring S.

Definition 3.3. Let S be a Γ-semiring and L (respectively R) be its
left (respectively right) operator semiring, the usp k-radical of L
(respectively R), denoted by τ(L) (respectively τ(R)) is defined by

τ(L) =
⋂

A∈ΛL

A,

where ΛL denote the set of all usp k-ideals of the left operator semiring
L (respectively τ(R) =

⋂

B∈ΛR

B, where ΛR denote the set of all usp k-ideals

of the right operator semiring R).

Theorem 3.4. Let S be a Γ-semiring with left and right unities and L be

its left operator semiring then τ(L)+ = τ(S) and τ(L) = τ(S)+
′

.

Proof. Let ΛL and ΛS denote the set of all usp k-ideals of L and S
respectively, then

τ(L) =
⋂

A∈ΛL

A and τ(S) =
⋂

P∈ΛS

P .

Hence

(τ(L))+ =





⋂

A∈ΛL

A





+

=
⋂

A∈ΛL

A+ .

Since for every A ∈ ΛL, A+ ∈ ΛS (Cf. Theorem 2.23 of [3]),

⋂

A∈ΛS

A ⊆
⋂

A∈ΛL

A+ .

Hence

τ(S) ⊆ (τ(L))+ .(1)



On uniformly strongly prime Γ-semirings (II) 225

Again

τ(S) =
⋂

P∈ΛS

P =
⋂

P∈ΛS

(

P+′
)+

=





⋂

P∈ΛS

P+′





+

.

Since for each P ∈ ΛS , P+′

∈ ΛL(Cf. Theorem 2.23 of [3] ),

⋂

P∈ΛL

P ⊆
⋂

P∈ΛS

P+′

.

Hence




⋂

P∈ΛL

P





+

⊆





⋂

P∈ΛS

P+′





+

,

which implies that

(τ(L))+ ⊆ τ(S).(2)

Thus from (1) and (2) we get τ(S) = (τ(L))+.

Similarly we can prove that τ(L) = τ(S)+′

.

Proposition 3.5. Let S be a Γ-semiring with left and right unities and R
be its right operator semiring then τ(R)∗ = τ(S) and τ(R) = τ(S)∗

′

.

Corollary 3.6. Let S be a Γ-semiring with left and right unities L and R
be its left and right operator semirings then τ(L)+ = τ(S) = τ(R)∗.

Theorem 3.7. Let S be a semiring with identity 1 and τ
′

(S), τ(S) denote

respectively the usp k-radical of the semiring S and the usp k-radical of the

Γ-semiring S, where Γ = S, then τ
′

(S) = τ(S) .

Proof. By Theorem 2.26 of [3] every usp k-ideal of a semiring S is a usp
k-ideal of the Γ-semiring S, where Γ = S. This follows that τ

′

(S) = τ(S).

4. USP k-radicals in Matrix Γ-semiring

Definition 4.1 ([5]). Let S be a Γ-semiring and m,n be positive integers.
We denote by Smn and Γnm respectively the sets of m × n matrices with
entries from S and n × m matrices with entries from Γ. Let A,B ∈ Smn
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and ∆ ∈ Γnm. Then A∆B ∈ Smn and A + B ∈ Smn. Clearly, Smn forms a
Γnm-semiring with these operations. We call it the matrix Γ-semiring S or
the matrix Γnm-semiring Smn or simply the Γnm-semiring Smn.

We denote the right operator semiring of the matrix Γnm-semiring Smn

by [Γnm, Smn] and the left one by [Smn,Γnm]. If x ∈ S, the notation xEij

will be used to denote a matrix in Smn with x in the (i, j)-th entry and zeros
elsewhere. The notation αEij , where α ∈ Γ will have a similar meaning. If
P ⊆ S, Pmn will denote the set of all m × n matrices with entries from P .
If ∆ ⊆ Γ, ∆nm is similarly defined.

Theorem 4.2. Let S be a Γ-semiring with left and right unities. Then S
is a usp Γ-semiring if and only if Smn is a usp Γnm-semiring for all positive

integers m and n.

Proof. S is a usp Γ-semiring if and only if L is a usp semiring if and
only if Lm is a usp semiring if and only if Smn is a usp Γnm-semiring
(By Theorem 2.18 of [3] and by Lemma 3.13 of [2] ).

Lemma 4.3. Let S be a Γ-semiring and m,n be positive integers; then a

nonempty subset P of Smn is a usp k-ideal of Smn if and only if P = Qmn,

for some usp k-ideal Q of S.

Proof. Let L be the left operator semiring of S and Lm be the left operator
semiring of the Γnm-semiring Smn. Let P be a usp k-ideal of Smn. Then
by Theorem 2.23 of [3] (applied to Γnm-semiring Smn) P+′

is a usp k-
ideal of the left operator semiring Lm of the Γnm-semiring Smn. So P+′

= Qm for some usp k-ideal Q of L. This implies that (P +′

)+ = (Qm)+

i.e. P = (Q+)mn(By Theorem 2.10 and Proposition 3.4 of [5]). Again by
Theorem 2.23 of [3], Q+ is an usp k-ideal of S. So the direct implication
follows.

Conversely, suppose Q is a usp k-ideal of S. Then Q+′

is a usp k-ideal of
L (By Theorem 2.23 of [3]). So (Q+′

)m is a usp k-ideal of Lm i.e. (Qmn)+
′

is a usp k-ideal of Lm by previous arguments. Hence Qmn = ((Qmn)+
′

)+ is
an usp k-ideal of the Γnm-semiring Smn.

Lemma 4.4. Let S be a Γ-semiring and I be an ideal of S. Then (S/I)mn

is isomorphic to Smn/Imn for all positive integers m,n.

Proof. Let θ be a mapping of the Γnm-semiring (S/I)mn to the Γnm-
semiring Smn/Imn defined by θ((xij/I)mn) = (xij)mn/Imn. Let (xij/I)mn,
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(yij/I)mn ∈ (S/I)mn. Now (xij/I)mn = (yij/I)mn if and only if xij/I =
yij/I, for all i, j if and only if xij + aij = yij + bij , for some aij , bij ∈ I
and for all i, j if and only if (xij + aij)mn = (yij + bij)mn if and only if
(xij)mn + (aij)mn = (yij)mn + (bij)mn for some matrices (aij)mn , (bij)mn ∈
Imn if and only if (xij)mn/Imn = (yij)mn/Imn if and only if θ((xij/I)mn) =
θ((yij/I)mn). Therefore θ is well defined as well as injective.

Clearly θ is onto and semigroup homomorphism under addition.
Now

θ
(

(xij/I)mn(αij)nm(yij/I)mn

)

= θ





(

n
∑

k=1

m
∑

l=1

(xikαklylj) /I

)

mn





=

(

n
∑

k=1

m
∑

l=1

(xikαklylj)

)

mn

/Imn

= ((xij)mn(αij)nm(yij)mn)/Imn

= ((xij)mn/I)(αij)nm((yij)mn/I)

= θ((xij/I)mn)ι((αij)nm)θ((yij/I)mn).

This shows that (θ, ι) is an isomorphism of (S/I)mn onto Smn/Imn , where
ι is the identity mapping from Γnm onto Γnm.

Proposition 4.5. Let A,B be two ideals of a Γ-semiring S. Then

(A∩B)mn = Amn ∩Bmn , where Amn, Bmn are two ideals of Γnm-semiring

Smn.

Theorem 4.6. Let S be a Γ-semiring. Then τ(Smn) = (τ (S))mn for all

positive integers m,n.

Proof. By Definition 3.2,

τ(Smn) =
⋂

P∈ΛSmn

P,
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where ΛSmn
denote the set of all usp k-ideals of the Γ-semiring Smn and

τ(S) =
⋂

Q∈ΛS

Q,

where ΛS denote the set of all usp k-ideals of the Γ-semiring S.

Therefore

(τ(S))mn =





⋂

Q∈ΛS

Q





mn

=
⋂

Q∈ΛS

Qmn

(By Proposition 4.5). Hence by Lemma 4.3 we get the result.

5. Special classes

Definition 5.1 . A class ℘ of Γ-semirings is called hereditary if I is an ideal
of a Γ-semiring S and S ∈ ℘ implies that I ∈ ℘.

Definition 5.2 . A class ℘ of Γ-semirings is called closed under essential
extension if I is an essential ideal of a Γ-semiring S and I ∈ ℘ implies that
S ∈ ℘.

Definition 5.3 . The class ℘ of Γ-semirings is called a special class if

(i) ℘ consists of prime Γ-semirings,

(ii) ℘ is hereditary and

(iii) ℘ is closed under essential extension.

Theorem 5.4 . A class £ of uniformly strongly prime Γ-semirings is a
special class.

Proof. Since uniformly strongly prime implies prime, so £ consists of all
prime Γ-semirings. By Lemma 2.17, we get £ is hereditary class. Again by
Theorem 2.14, £ is closed under essential extension. Hence £ is a special
class.
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Proposition 5.5 . The following conditions are equivalent for any class ρ
of prime Γ-semirings:

(i) if I is an ideal of S, I ∈ ρ and ann(I) = (0), then S ∈ ρ

(ii) ρ is closed under essential extension.

Proof. (i)⇒(ii) Let I be an essential ideal of S and I ∈ ρ. Let x ∈ I∩ann(I)
then x ∈ I and x ∈ ann(I) which implies that x ∈ I and I Γx = {0} = xΓ I.
So xΓ I Γx = {0} which implies that < x > Γ < x >= {0}. Since (0) is a
prime ideal of S so it follows that x = 0. Therefore ann(I) = (0). Hence by
(i), S ∈ ρ which imply (ii).

(ii)⇒(i) Let ρ be closed under essential extension. Let I ∈ ρ be an ideal
of S with ann(I) = (0). Let L be an ideal of S such that I ∩ L = (0). Now
I ΓL ⊆ I ∩ L = (0) and LΓ I ⊆ I ∩ L = (0). So I ΓL = (0) = LΓ I which
implies that L ⊆ ann(I) = (0), so L = (0). Therefore I is an essential ideal
of S. Also I ∈ ρ. Hence by (ii) S ∈ ρ.

A Γ-semiring S is called a us(1) prime if it has an insulator of the form
({x}, {γ}) where x ∈ S and γ ∈ Γ.

As in Theorem 5.4 we can show that the class £1 of all us(1) prime
Γ-semirings is a special class.

Definition 5.6 . A pair of subsets (T, I) of a Γ-semiring S is called a super
t-system of S if

(i) I is an ideal of S

(ii) T ∩ I ⊆ (0) and

(iii) there exist finite subsets F of S and ∆ of Γ such that for all a, b ∈ S\I,
a∆F∆b ∩ T 6= φ.

The pair (F, ∆) will be called an insulator of the super t-system. Therefore
I is a uniformly strongly prime ideal of S if and only if (S \ I, I) is a super
t-system.

Theorem 5.7 For a Γ-semiring S, τ(S) = {a ∈ S: whenever (T, I) is a

super t-system in S with a ∈ T then 0 ∈ T}.



230 T.K. Dutta and S. Dhara

Proof. Let H = {a ∈ S: whenever (T, I) is a super t-system in S with
a ∈ T then 0 ∈ T}. Let a ∈ τ(S). Suppose (T, I) is a super t-system in
S with a ∈ T and 0 6∈ T . So T ∩ I = φ. Let (F, ∆) be an insulator of
the super t-system. By Zorn’s lemma there exists a maximal ideal P such
that I ⊆ P and T ∩ P = φ. We now prove that P is a uniformly strongly
prime ideal of S with (F, ∆) be its uniform insulator. If possible let there
exist x, y 6∈ P such that x∆F∆y ⊆ P . Since x, y 6∈ P , then x, y 6∈ I which
implies that x, y ∈ S \ I and (x∆F∆y) ∩ T ⊆ P ∩ T = φ, a contradiction,
since (T, I) is a super t-system in S. So x∆F∆y ⊆ P implies that x ∈ P or
y ∈ P which implies that P is a uniformly strongly prime ideal of S. Hence
a ∈ τ(S) implies that a ∈ P . Again a ∈ T ⇒ a 6∈ P as T ∩ P = φ, which is
a contradiction. So 0 ∈ T . Then a ∈ H ⇒ τ(S) ⊆ H.

Conversely, let a 6∈ τ(S). Then there exists a uniformly strongly prime
k-ideal and hence an ideal say Q of S such that a 6∈ Q. Then a ∈ S \ Q,
so (S \ Q, Q) is a super t-system with a ∈ S \ Q but 0 6∈ S \ Q, so a 6∈ H.
Hence H ⊆ τ(S). This completes the proof.
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