# BIPARTITE PSEUDO $M V$-ALGEBRAS 

Grzegorz Dymek<br>Institute of Mathematics and Physics<br>University of Podlasie<br>3 Maja 54, 08-110 Siedlce, Poland<br>e-mail: gdymek@o2.pl


#### Abstract

A bipartite pseudo $M V$-algebra $A$ is a pseudo $M V$-algebra such that $A=M \cup M^{\sim}$ for some proper ideal $M$ of $A$. This class of pseudo $M V$-algebras, denoted $\mathbf{B P}$, is investigated. The class of pseudo $M V$ algebras $A$ such that $A=M \cup M^{\sim}$ for all maximal ideals $M$ of $A$, denoted $\mathbf{B P}_{0}$, is also studied and characterized.


Keywords: pseudo $M V$-algebra, (maximal) ideal, bipartite pseudo $M V$-algebra.
2000 Mathematics Subject Classification: 06D35.

## 1. Preliminaries

In the theory of $M V$-algebras, the classes $\mathbf{B P}$ and $\mathbf{B P} \mathbf{P}_{0}$ are defined and studied by A. Di Nola, F. Liguori and S. Sessa in [3] and investigated by R. Ambrosio and A. Lettieri in [1]. Here we define and investigate the classes $\mathbf{B P}$ and $\mathbf{B P} \mathbf{P}_{0}$ of pseudo $M V$-algebras and we give some characterizations of them. Pseudo $M V$-algebras were introduced by G. Georgescu and A. Iorgulescu in [5] and later by J. Rachůnek in [6] (here called generalized $M V$-algebras or, in short, $G M V$-algebras) and they are a non-commutative generalization of $M V$-algebras.

Let $A=\left(A, \oplus,^{-}, \sim, 0,1\right)$ be an algebra of type $(2,1,1,0,0)$. Set $x \cdot y=$ $\left(y^{-} \oplus x^{-}\right)^{\sim}$ for any $x, y \in A$. We consider that the operation $\cdot$ has priority to the operation $\oplus$, i.e., we will write $x \oplus y \cdot z$ instead of $x \oplus(y \cdot z)$. The algebra $A$ is called a pseudo $M V$-algebra if for any $x, y, z \in A$ the following conditions are satisfied:
(A1) $\quad x \oplus(y \oplus z)=(x \oplus y) \oplus z ;$
(A2) $x \oplus 0=0 \oplus x=x ;$
(A3) $\quad x \oplus 1=1 \oplus x=1 ;$
(A4) $1^{\sim}=0 ; 1^{-}=0 ;$
(A5) $\quad\left(x^{-} \oplus y^{-}\right)^{\sim}=\left(x^{\sim} \oplus y^{\sim}\right)^{-} ;$
(A6) $\quad x \oplus x^{\sim} \cdot y=y \oplus y^{\sim} \cdot x=x \cdot y^{-} \oplus y=y \cdot x^{-} \oplus x ;$
(A7) $x \cdot\left(x^{-} \oplus y\right)=\left(x \oplus y^{\sim}\right) \cdot y$;
(A8) $\left(x^{-}\right)^{\sim}=x$.

If the addition $\oplus$ is commutative, then both unary operations - and $\sim$ coincide and then $A$ is an $M V$-algebra.

Throughout this paper $A$ will denote a pseudo $M V$-algebra. We will write $x \approx$ instead of $\left(x^{\sim}\right)^{\sim}$. For any $x \in A$ and $n=0,1,2, \ldots$ we put

$$
\begin{aligned}
& 0 x=0 \text { and }(n+1) x=n x \oplus x \\
& x^{0}=1 \text { and } x^{n+1}=x^{n} \cdot x .
\end{aligned}
$$

Proposition 1.1 (Georgescu and Iorgulescu [5]). The following properties hold for any $x, y \in A$ :
(a) $0^{-}=1$;
(b) $1 \approx=1$;
(c) $\left(x^{\sim}\right)^{-}=x$;
(d) $\left(x^{-}\right)^{\approx}=x^{\sim}$;
(e) $(x \oplus y)^{-}=y^{-} \cdot x^{-} ;(x \oplus y)^{\sim}=y^{\sim} \cdot x^{\sim}$;
(f) $(x \cdot y)^{-}=y^{-} \oplus x^{-} ;(x \cdot y)^{\sim}=y^{\sim} \oplus x^{\sim}$;
(g) $(x \oplus y) \approx=x \approx \oplus y \approx$.

We define

$$
x \leqslant y \Longleftrightarrow x^{-} \oplus y=1 .
$$

As it is shown in [5], $(A, \leqslant)$ is a lattice in which the join $x \vee y$ and the meet $x \wedge y$ of any two elements $x$ and $y$ are given by:

$$
\begin{aligned}
& x \vee y=x \oplus x^{\sim} \cdot y=x \cdot y^{-} \oplus y \\
& x \wedge y=x \cdot\left(x^{-} \oplus y\right)=\left(x \oplus y^{\sim}\right) \cdot y .
\end{aligned}
$$

For every pseudo $M V$-algebra $A$ we set $\mathcal{L}(A)=(A, \vee, \wedge, 0,1)$.
Proposition 1.2 (Georgescu and Iorgulescu [5]). Let $x, y \in A$. Then the following properties hold:
(a) $x \leqslant y \Longleftrightarrow y^{-} \leqslant x^{-}$;
(b) $x \leqslant y \Longleftrightarrow y^{\sim} \leqslant x^{\sim}$.

Following [4], we can consider the set $\operatorname{Inf}(A)=\left\{x \in A: x^{2}=0\right\}$. We have the following proposition.

Proposition 1.3 (Dymek and Walendziak [4]). For every $x \in A$, the following conditions are equivalent:
(a) $x \in \operatorname{Inf}(A)$;
(b) $2 x^{-}=1$;
(c) $2 x^{\sim}=1$.

By Proposition 1.3, $\operatorname{Inf}(A)=\left\{x \in A: 2 x^{-}=1\right\}=\left\{x \in A: 2 x^{\sim}=1\right\}$. We also have the following simple proposition.

Proposition 1.4. The following conditions are equivalent for every $x \in A$ and $n \in \mathbb{N}$ :
(a) $x^{n}=0$;
(b) $n x^{-}=1$;
(c) $n x^{\sim}=1$.

Proof. $(\mathrm{a}) \Rightarrow(\mathrm{b}):$ Let $x^{n}=0$. Then, by Proposition 1.1, $n x^{-}=\left(x^{n}\right)^{-}=$ $0^{-}=1$.
$(\mathrm{b}) \Rightarrow(\mathrm{c})$ : Suppose that $n x^{-}=1$. Hence, by Proposition $1.1,1=1 \approx=$ $\left(n x^{-}\right)^{\approx}=n\left(x^{-}\right)^{\approx}=n x^{\sim}$.
$(\mathrm{c}) \Rightarrow(\mathrm{a})$ : Suppose that $n x^{\sim}=1$. Applying Proposition 1.1, we obtain $0=1^{-}=\left(n x^{\sim}\right)^{-}=\left[\left(x^{\sim}\right)^{-}\right]^{n}=x^{n}$.

Let $\mathrm{N}(A)=\left\{x \in A: x^{n}=0\right.$ for some $\left.n \in \mathbb{N}\right\}$. Elements of $\mathrm{N}(A)$ are called the nilpotent elements of $A$. From Proposition 1.4 we see that $\mathrm{N}(A)=\{x \in$ $A: n x^{-}=1$ for some $\left.n \in \mathbb{N}\right\}=\left\{x \in A: n x^{\sim}=1\right.$ for some $\left.n \in \mathbb{N}\right\}$. It is obvious that $\operatorname{Inf}(A) \subseteq \mathrm{N}(A)$.

Definition 1.5. A subset $I$ of $A$ is called an ideal of $A$ if it satisfies the following conditions:
(I1) $0 \in I$;
(I2) If $x, y \in I$, then $x \oplus y \in I$;
(I3) If $x \in I, y \in A$ and $y \leqslant x$, then $y \in I$.
Under this definition, $\{0\}$ and $A$ are the simplest examples of ideals.
Proposition 1.6 (Walendziak [8]). Let I be a nonvoid subset of A. Then I is an ideal of $A$ if and only if I satisfies conditions (I2) and
(I3') If $x \in I, y \in A$, then $x \wedge y \in I$.
Denote by $\operatorname{Id}(A)$ the set of ideals of $A$ and note that $\operatorname{Id}(A)$ ordered by set inclusion is a complete lattice.

Remark 1.7. Let $I \in \operatorname{Id}(A)$.
(a) If $x, y \in I$, then $x \cdot y, x \wedge y, x \vee y \in I$.
(b) $I$ is an ideal of the lattice $\mathcal{L}(A)$.

For every subset $W \subseteq A$, the smallest ideal of $A$ which contains $W$, i.e., the intersection of all ideals $I \supseteq W$, is said to be the ideal generated by $W$, and will be denoted $(W]$. For every $z \in A$, the ideal $(z]=(\{z\}]$ is called the principal ideal generated by $z$ (see [5]), and we have

$$
(z]=\{x \in A: x \leqslant n z \text { for some } n \in \mathbb{N}\} .
$$

Definition 1.8. Let $I$ be a proper ideal of $A$ (i.e., $I \neq A$ ).
(a) $I$ is called prime if, for all $I_{1}, I_{2} \in \operatorname{Id}(A), I=I_{1} \cap I_{2}$ implies $I=I_{1}$ or $I=I_{2}$.
(b) $I$ is called regular if $I=\bigcap X$ implies that $I \in X$ for every subset $X$ of $\operatorname{Id}(A)$.
(c) $I$ is called maximal if whenever $J$ is an ideal such that $I \subseteq J \subseteq A$, then either $J=I$ or $J=A$.

By definition, each regular ideal is prime.
Proposition 1.9 (Walendziak [8]). If $I \in \operatorname{Id}(A)$ is maximal, then $I$ is prime.

Definition 1.10. A cover of a proper ideal $I$ of $A$ is a unique least ideal $I^{*}$ which properly contains $I$.

Definition 1.11. A pseudo $M V$-algebra $A$ is called normal-valued if for any regular ideal $I$ of $A$ and any $x \in I^{*}, x \oplus I=I \oplus x$.

An element $x \neq 0$ of a pseudo $M V$-algebra $A$ is called infinitesimal (see [7]) if $x$ satisfies condition

$$
n x \leqslant x^{-} \text {for each } n \in \mathbb{N} \text {. }
$$

Proposition 1.12. Let $A$ be a pseudo $M V$-algebra and $x \in A$. Then the following conditions are equivalent:
(a) $x$ is infinitesimal;
(b) $n x \leqslant x^{\sim}$ for each $n \in \mathbb{N}$;
(c) $x \leqslant\left(x^{-}\right)^{n}$ for each $n \in \mathbb{N}$;
(d) $x \leqslant\left(x^{\sim}\right)^{n}$ for each $n \in \mathbb{N}$.

Proof. (a) $\Leftrightarrow$ (b): See Rachůnek [7].
(b) $\Rightarrow$ (c): Let $n x \leqslant x^{\sim}$ for each $n \in \mathbb{N}$. Then, by Propositions 1.2(a) and 1.1(e), $x=\left(x^{\sim}\right)^{-} \leqslant(n x)^{-}=\left(x^{-}\right)^{n}$ for each $n \in \mathbb{N}$.
$(\mathrm{c}) \Rightarrow(\mathrm{b})$ : Let $x \leqslant\left(x^{-}\right)^{n}$ for each $n \in \mathbb{N}$. Then, by Propositions 1.1(e) and $1.2(\mathrm{~b}), n x=\left[(n x)^{-}\right]^{\sim}=\left[\left(x^{-}\right)^{n}\right]^{\sim} \leqslant x^{\sim}$ for each $n \in \mathbb{N}$.
(a) $\Leftrightarrow(d)$ : Analogous.

Let us denote by $\operatorname{Infinit}(A)$ the set of all infinitesimal elements in $A$ and by $\operatorname{Rad}(A)$ the intersection of all maximal ideals of $A$.

Proposition 1.13 (Rachůnek [7]). Let $A$ be a pseudo MV-algebra. Then:
(a) $\operatorname{Rad}(A) \subseteq \operatorname{Infinit}(A)$.
(b) If $A$ is normal-valued, then $\operatorname{Rad}(A)=\operatorname{Infinit}(A)$.

Proposition 1.14 (Dymek and Walendziak [4]). Let $A$ be a pseudo MValgebra. Then $\operatorname{Infinit}(A) \subseteq \operatorname{Inf}(A)$.

Proposition 1.15 (Dymek and Walendziak [4]). Let $A$ be a normal-valued pseudo $M V$-algebra. Then $\operatorname{Inf}(A)$ is an ideal of $A$ if and only if $\operatorname{Inf}(A)=$ $\operatorname{Rad}(A)$.

## 2. Implicative ideals

Definition 2.1. An ideal $I$ of $A$ is called implicative if for any $x, y, z \in A$ it satisfies the following condition:
$(\operatorname{Im}) \quad\left(x \cdot y \cdot z \in I\right.$ and $\left.z^{\sim} \cdot y \in I\right) \Longrightarrow x \cdot y \in I$.
Proposition 2.2 (Walendziak [8]). The implication (Im) is equivalent to
$\left(\operatorname{Im}^{\prime}\right)$ For all $x, y, z \in A$, if $x \cdot y \cdot z^{-} \in I$ and $z \cdot y \in I$, then $x \cdot y \in I$.
Proposition 2.3 (Walendziak [8]). Let $I \in \operatorname{Id}(A)$. Then the following conditions are equivalent:
(a) I is implicative;
(b) $\mathrm{N}(A) \subseteq I$;
(c) $\operatorname{Inf}(A) \subseteq I$.

Now we give an example of an ideal of a pseudo $M V$-algebra which is not implicative.

Example 2.4. Let $A$ be the set of all increasing bijective functions $f$ : $\mathbb{R} \rightarrow \mathbb{R}$ such that

$$
x \leqslant f(x) \leqslant x+1 \text { for all } x \in \mathbb{R} .
$$

Define the operations $\oplus,-\sim$ and constans 0 and 1 as follows:

$$
\begin{aligned}
(f \oplus g)(x) & =\min \{f(g(x)), x+1\}, \\
f^{-}(x) & =f^{-1}(x)+1, \\
f^{\sim}(x) & =f^{-1}(x+1), \\
0(x) & =x, \\
1(x) & =x+1 .
\end{aligned}
$$

Then $\left(A, \oplus,^{-}, \sim, 0,1\right)$ is a pseudo $M V$-algebra. Note that

$$
\operatorname{Inf}(A)=\left\{f \in A: 2 f^{-}=1\right\}=\left\{f \in A: f(x) \leqslant f^{-1}(x)+1 \text { for all } x \in \mathbb{R}\right\}
$$

and the function $g(x)=x+\frac{1}{2}$ belongs to $\operatorname{Inf}(A)$. Observe that $\operatorname{Inf}(A)$ is not an ideal of $A$ because $g \oplus g \notin \operatorname{Inf}(A)$. Now, define a function $f$ as follows:

$$
f(x)= \begin{cases}x+1 & \text { if } x \leqslant 0 \\ 1+\frac{x}{2} & \text { if } 0<x<2 \\ x & \text { if } x \geqslant 2\end{cases}
$$

Obviously $f \in A$. Let $I$ be the ideal generated by $f^{-}$, i.e.,

$$
I=\left\{h \in A: h \leqslant n f^{-} \text {for some } n \in \mathbb{N}\right\} .
$$

Observe that $f^{-}(1)=1$ and thus $n f^{-}(1)=1$ for every $n \in \mathbb{N}$. Hence $g(1)=1.5>n f^{-}(1)$ for all $n$, i.e., $g \notin I$. Therefore $\operatorname{Inf}(A) \nsubseteq I$ and so, by Proposition 2.3, $I$ is not an implicative ideal of $A$.

Proposition 2.5 (Walendziak [8]). If $\operatorname{Inf}(A)$ is an ideal, then $\operatorname{Inf}(A)$ is implicative.

Proposition 2.6. If $\operatorname{Inf}(A)$ is an ideal of $A$, then $\operatorname{Inf}(A)=\mathrm{N}(A)$.
Proof. Assume that $\operatorname{Inf}(A)$ is an ideal of $A$. Then, by Proposition 2.5, it is implicative. So, by Proposition $2.3, \mathrm{~N}(A) \subseteq \operatorname{Inf}(A)$ and since $\operatorname{Inf}(A) \subseteq$ $\mathrm{N}(A)$, we obtain $\operatorname{Inf}(A)=\mathrm{N}(A)$.

For a nonvoid subset $B$ of a pseudo $M V$-algebra $A$ we put:

$$
B^{-}=\left\{x^{-}: x \in B\right\} \text { and } B^{\sim}=\left\{x^{\sim}: x \in B\right\}
$$

Proposition 2.7. Let $I$ be a proper ideal of $A$ such that $I^{-}=I^{\sim}$ and let $A_{I}$ be a subalgebra of $A$ generated by $I$. Then $A_{I}=I \cup I^{-}=I \cup I^{\sim}$.

Proof. First, it is clear that $I \cup I^{-}=I \cup I^{\sim}$. Now, we prove that $I \cup I^{-}$ is a subalgebra of $A$. Since $0 \in I$, we have $1=0^{-} \in I^{-} \subseteq I \cup I^{-}$. Thus $0,1 \in I \cup I^{-}$.

Take arbitrary $x \in I \cup I^{-}$. Then $x \in I$ or $x \in I^{-}$. If $x \in I$, then $x^{-} \in I^{-}$and therefore $x^{-} \in I \cup I^{-}$. If $x \in I^{-}$, then $x \in I^{\sim}$. This entails $x=y^{\sim}$ for some $y \in I$ and hence $x^{-}=y \in I$. Therefore $x^{-} \in I \cup I^{-}$for any $x \in I \cup I^{-}$. Similarly, if $x \in I \cup I^{-}$, then $x^{\sim} \in I \cup I^{\sim}=I \cup I^{-}$.

Now, we show that $x \oplus y, x \cdot y \in I \cup I^{-}$for every $x, y \in I \cup I^{-}$. We consider four cases.

Case 1. $x, y \in I$.
Since $I$ is an ideal, $x \oplus y, x \cdot y \in I \subseteq I \cup I^{-}$.
Case 2. $x \in I, y \in I^{-}$.
Then, $x \cdot y \leqslant x$ and $x \in I$ entail $x \cdot y \in I \subseteq I \cup I^{-}$. Since $y \in I^{-}$, we have $y=z^{-}$, where $z \in I$ and hence, by Proposition 1.1(f), $x \oplus y=x \oplus z^{-}=$ $\left(x^{\sim}\right)^{-} \oplus z^{-}=\left(z \cdot x^{\sim}\right)^{-} \in I^{-}$because $z \cdot x^{\sim} \in I$. Thus $x \oplus y, x \cdot y \in I \cup I^{-}$.

Case 3. $x \in I^{-}, y \in I$.
Analogous.
Case 4. $x, y \in I^{-}$.
We have $x \oplus y=z^{-} \oplus t^{-}=(t \cdot z)^{-} \in I^{-}$for some $t, z \in I$. Similarly, $x \cdot y=z^{-} \cdot t^{-}=(t \oplus z)^{-} \in I^{-}$. Therefore $x \oplus y, x \cdot y \in I \cup I^{-}$.

Finally, we get that $I \cup I^{-}$is a subalgebra (containing $I$ ) of an algebra $A$ and from this reason, $A_{I} \subseteq I \cup I^{-}$. It is obvious that $I \cup I^{-} \subseteq A_{I}$.

Remark 2.8. The assumption $I^{-}=I^{\sim}$ in Proposition 2.7 is necessary. Indeed, consider the pseudo $M V$-algebra $A$ from Example 2.4. Take an ideal

$$
I=\left\{h \in A: h \leqslant n f^{-} \text {for some } n \in \mathbb{N}\right\}
$$

generated by $f^{-}$, where

$$
f(x)= \begin{cases}x+1 & \text { if } x \leqslant 0 \\ 1+\frac{x}{2} & \text { if } 0<x<2 \\ x & \text { if } x \geqslant 2\end{cases}
$$

Thus $f \in I^{\sim}$. Since $f(1)=1.5>n f^{-}(1)=1$ and $f^{\sim}(1)=2>n f^{-}(1)$, we have $f \notin I$ and $f^{\sim} \notin I$. Hence $f^{-} \notin I^{-}$and $f \notin I^{-}$. Consequently we obtain $I^{-} \neq I^{\sim}$ and $f \notin I \cup I^{-}$, but $f \in A_{I}$.

Proposition 2.9 (Dymek and Walendziak [4]). Let I be a prime ideal of $A$. Then the following conditions are equivalent:
(a) I is implicative;
(b) $A=I \cup I^{\sim}\left(=I \cup I^{-}\right)$.

Proposition 2.10 (Dymek and Walendziak [4]). Let I be a proper ideal of $A$. If $A=I \cup I^{\sim}\left(=I \cup I^{-}\right)$, then $I$ is a maximal ideal of $A$ generating $A$.

Let us denote by $\operatorname{IRad}(A)$ the intersection of all implicative ideals of $A$. It is clear that $\operatorname{IRad}(A)$ is an implicative ideal of $A$, in fact, it is the smallest implicative ideal of $A$. By Propositions 1.13, 1.14 and 2.3 , we have a ladder of inclusions:

$$
\begin{equation*}
\operatorname{Rad}(A) \subseteq \operatorname{Infinit}(A) \subseteq \operatorname{Inf}(A) \subseteq \mathrm{N}(A) \subseteq \operatorname{IRad}(A) \tag{1}
\end{equation*}
$$

Theorem 2.11. $(\mathrm{N}(A)]=\operatorname{IRad}(A)$.
Proof. Since $\mathrm{N}(A) \subseteq(\mathrm{N}(A)]$, it follows that $(\mathrm{N}(A)]$ is implicative. It is the smallest implicative ideal containing $\mathrm{N}(A)$ and hence the thesis.

Remark 2.12. We have also $(\operatorname{Inf}(A)]=\operatorname{IRad}(A)$ because $(\operatorname{Inf}(A)]$ is the smallest implicative ideal of $A$ containing $\operatorname{Inf}(A)$.

Corollary 2.13. $\operatorname{Inf}(A)$ is an ideal of $A$ iff $\operatorname{Inf}(A)=\mathrm{N}(A)=\operatorname{IRad}(A)$.
Theorem 2.14. $\operatorname{IRad}(A)$ is a prime ideal of $A$ iff $A=\operatorname{IRad}(A) \cup(\operatorname{IRad}(A))^{\sim}$.
Proof. Let $\operatorname{IRad}(A)$ be a prime ideal of $A$. Since $\operatorname{IRad}(A)$ is implicative, we have, by Proposition 2.9, that $A=\operatorname{IRad}(A) \cup(\operatorname{IRad}(A))^{\sim}$.

If $A=\operatorname{IRad}(A) \cup(\operatorname{IRad}(A))^{\sim}$, then it is easy to see that $\operatorname{IRad}(A)$ is a maximal ideal of $A$. Hence, by Proposition 1.9 , it is a prime ideal of $A$.

Corollary 2.15. $\operatorname{IRad}(A)$ is a prime ideal of $A$ iff $A=\operatorname{IRad}(A) \cup(\operatorname{IRad}(A))^{-}$.

## 3. Bipartite pseudo $M V$-algebras

Now, we define the class BP of bipartite pseudo $M V$-algebras as follows: $A \in \mathbf{B P}$ iff $A=M \cup M^{\sim}$ for some proper ideal $M$ of $A$. By Proposition 2.10, we have that if $A \in \mathbf{B P}$, then there is a maximal ideal of $A$ generating $A$.

First, recall that a pseudo $M V$-algebra $A$ is said to be symmetric if $x^{-}=x^{\sim}$ for any $x \in A$. It is shown in [2] that the variety of symmetric pseudo $M V$-algebras contains as a proper subvariety the variety of all $M V$ algebras. We have the following proposition.

Proposition 3.1. Let $A$ be a symmetric pseudo $M V$-algebra. Then $A \in \mathbf{B P}$ if and only if $A$ is generated by some maximal ideal.
Proof. Let $A$ be a symmetric pseudo $M V$-algebra. If $A \in \mathbf{B P}$, then, by Proposition 2.10, there is a maximal ideal of $A$ generating $A$.

Conversely, assume that $A$ is generated by some maximal ideal $M$. Since $A$ is symmetric, we have $M^{-}=M^{\sim}$. Hence, by Proposition 2.7, $A=$ $M \cup M^{\sim}$. Therefore $A \in \mathbf{B P}$.

Proposition 3.2 (Dymek and Walendziak [4, Th. 3.5]). A $\notin \mathbf{B P}$ iff $(\operatorname{Inf}(A)]=A$.

Remark 3.3. Observe that for the pseudo $M V$-algebra $A$ from Example $2.4,(\operatorname{Inf}(A)]=A$. Thus, by Proposition $3.2, A \notin \mathbf{B P}$.

Proposition 3.4. If $\operatorname{Inf}(A)$ is a proper ideal of $A$, then $A \in \mathbf{B P}$.
Proof. Assume that $\operatorname{Inf}(A)$ is a proper ideal of $A$. It is clear that there exists a maximal ideal $M$ of $A$ such that $\operatorname{Inf}(A) \subseteq M$. Then, by Proposition 2.3, $M$ is implicative. From Proposition 2.9 we conclude that $A=M \cup M^{\sim}$. Thus $A \in \mathbf{B P}$.

Proposition 3.5. $A \in \mathbf{B P}$ iff there exists an ideal $I$ of $A$ which is prime and implicative.

Proof. Follows from Proposition 2.9.
Theorem 3.6. The class $\mathbf{B P}$ is closed under subalgebras.
Proof. Let $A \in \mathbf{B P}$. Then there exists a proper ideal $M$ of $A$ such that $A=M \cup M^{\sim}$. Let $B$ be a subalgebra of $A$. Then $I=M \cap B$ is a proper ideal of $B$. Since $(B \cap M)^{\sim}=B \cap M^{\sim}$, we have

$$
\begin{aligned}
B & =B \cap A=B \cap\left(M \cup M^{\sim}\right)=(B \cap M) \cup\left(B \cap M^{\sim}\right) \\
& =(B \cap M) \cup(B \cap M)^{\sim}=I \cup I^{\sim} .
\end{aligned}
$$

Therefore $B \in \mathbf{B P}$.
Let $A_{t}$ be a pseudo $M V$-algebra for $t \in T$ and let $A=\prod_{t \in T} A_{t}$ be the direct product of $A_{t}$. We can consider the canonical projection $\mathrm{pr}_{t}: A \rightarrow A_{t}$ which is, of course, a homomorphism of pseudo $M V$-algebras. If $t \in T$ and $I_{t}$ is a proper ideal of $A_{t}$, then it is easily seen that $\mathrm{pr}_{t}^{-1}\left(I_{t}\right)$ is a proper ideal of $A$ and that $\operatorname{pr}_{t}^{-1}\left(I_{t}^{-}\right)=\left[\operatorname{pr}_{t}^{-1}\left(I_{t}\right)\right]^{-}$and $\mathrm{pr}_{t}^{-1}\left(I_{t}^{-}\right)=\left[\operatorname{pr}_{t}^{-1}\left(I_{t}\right)\right]^{\sim}$.

Theorem 3.7. Let $A$ and $A_{t}$ for $t \in T$ be pseudo $M V$-algebras such that $A=\prod_{t \in T} A_{t}$. If $A_{t_{0}} \in \mathbf{B P}$ for some $t_{0} \in T$, then $A \in \mathbf{B P}$.

Proof. Since $A_{t_{0}} \in \mathbf{B P}$, we have $A_{t_{0}}=M_{t_{0}} \cup M_{t_{0}}$ for some proper ideal $M_{t_{0}}$ of $A_{t_{0}}$. From the above discussion, $\operatorname{pr}_{t_{0}}^{-1}\left(M_{t_{0}}\right)$ is a proper ideal of $A$ and

$$
\begin{aligned}
A & =\operatorname{pr}_{t_{0}}^{-1}\left(A_{t_{0}}\right)=\operatorname{pr}_{t_{0}}^{-1}\left(M_{t_{0}} \cup M_{t_{0}}^{\sim}\right)=\operatorname{pr}_{t_{0}}^{-1}\left(M_{t_{0}}\right) \cup \mathrm{pr}_{t_{0}}^{-1}\left(M_{t_{0}}^{\sim}\right) \\
& =\operatorname{pr}_{t_{0}}^{-1}\left(M_{t_{0}}\right) \cup\left[\operatorname{pr}_{t_{0}}^{-1}\left(M_{t_{0}}\right)\right]^{\sim} .
\end{aligned}
$$

Hence $A \in \mathbf{B P}$.
Corollary 3.8. The class $\mathbf{B P}$ is closed under direct products.
Further, we define the class $\mathbf{B P}_{0}$ of pseudo $M V$-algebras as follows: $A \in$ $\mathbf{B P}_{0}$ iff $A=M \cup M^{\sim}$ for all maximal ideals $M$ of $A$. Note that if $A \in$ $\mathbf{B P}_{0}$, then $A$ is generated by all its maximal ideals. Remark that if $A$ is a symmetric pseudo $M V$-algebra, then $A \in \mathbf{B P}_{0}$ if and only if $A$ is generated by all its maximal ideals. Clearly, $\mathbf{B P}_{0} \subseteq \mathbf{B P}$.

Theorem 3.9. $A \in \mathbf{B P}_{0}$ iff $\operatorname{Inf}(A)=\operatorname{Rad}(A)$.
Proof. Let $A \in \mathbf{B P}_{0}$. Then $A=M \cup M^{\sim}$ for every maximal ideal $M$ of $A$. By Propositions 2.9 and $2.3, \operatorname{Inf}(A) \subseteq M$ for every maximal ideal $M$ of $A$ and hence $\operatorname{Inf}(A) \subseteq \operatorname{Rad}(A)$. Thus, by $(1), \operatorname{Inf}(A)=\operatorname{Rad}(A)$.
Now, assume that $\operatorname{Inf}(A)=\operatorname{Rad}(A)$. Then $\operatorname{Inf}(A) \subseteq M$ for every maximal ideal $M$ of $A$. By Propositions 2.3 and 2.9 we obtain that $A=M \cup M^{\sim}$ for every maximal ideal $M$ of $A$. Thus $A \in \mathbf{B P}_{0}$.

Corollary 3.10. If $A \in \mathbf{B P}_{0}$, then $\operatorname{Inf}(A)=\mathrm{N}(A)$.
Proof. From Theorem 3.9 we conclude that $\operatorname{Inf}(A)$ is an ideal of $A$. By Proposition 2.6, $\operatorname{Inf}(A)=\mathrm{N}(A)$.

Corollary 3.11. $A \in \mathbf{B P}_{0}$ iff $\operatorname{Rad}(A)$ is an implicative ideal of $A$.
Proof. Let $A \in \mathbf{B P}_{0}$. Then, by Theorem 3.9, $\operatorname{Inf}(A) \subseteq \operatorname{Rad}(A)$ and hence, by Proposition 2.3, $\operatorname{Rad}(A)$ is an implicative ideal of $A$.

Conversely, assume that $\operatorname{Rad}(A)$ is an implicative ideal of $A$. Then, by Proposition 2.3, $\operatorname{Inf}(A) \subseteq \operatorname{Rad}(A)$ and thus, by $(1), \operatorname{Inf}(A)=\operatorname{Rad}(A)$. Therefore, by Theorem $3.9, A \in \mathbf{B P}_{0}$.

Theorem 3.12. Let $A$ be a pseudo MV-algebra. Then the following are equivalent:
(a) $A \in \mathbf{B P}_{0}$;
(b) $\operatorname{Rad}(A)=\operatorname{Infinit}(A)=\operatorname{Inf}(A)=\mathrm{N}(A)=\operatorname{IRad}(A)$;
(c) every maximal ideal of $A$ is implicative.

Proof. $(\mathrm{a}) \Rightarrow(\mathrm{b})$ : Let $A \in \mathbf{B P}_{0}$. Then, by (1) and Theorem 3.9, $\operatorname{Rad}(A)=$ $\operatorname{Infinit}(A)=\operatorname{Inf}(A)$. Hence $\operatorname{Inf}(A)$ is an ideal of $A$ and by Corollary 2.13, $\operatorname{Inf}(A)=\mathrm{N}(A)=\operatorname{IRad}(A)$. Therefore $(\mathrm{b})$ is true.
$(\mathrm{b}) \Rightarrow(\mathrm{c}):$ Since $\operatorname{Inf}(A)=\operatorname{Rad}(A), \operatorname{Inf}(A) \subseteq M$ for every maximal ideal $M$ of $A$ and by Proposition 2.3, every maximal ideal $M$ of $A$ is implicative.
$(c) \Rightarrow(a)$ : Since every maximal ideal $M$ of $A$ is implicative, we obtain by Proposition 2.9, $A=M \cup M^{\sim}$ for every maximal ideal $M$ of $A$. Thus $A \in \mathbf{B P}_{0}$.

Theorem 3.13. Let $A$ be a normal-valued pseudo MV-algebra. Then the following are equivalent:
(a) $A \in \mathbf{B P}_{0}$;
(b) $\operatorname{Inf}(A)$ is an ideal of $A$;
(c) $\operatorname{Rad}(A)=\operatorname{Infinit}(A)=\operatorname{Inf}(A)=\mathrm{N}(A)=\operatorname{IRad}(A)$;
(d) every maximal ideal of $A$ is implicative.

Proof. (a) $\Rightarrow$ (b): Follows from Theorem 3.9.
$(\mathrm{b}) \Rightarrow(\mathrm{c})$ : Follows from (1), Proposition 1.15 and Corollary 2.13.
$(\mathrm{c}) \Rightarrow(\mathrm{d}),(\mathrm{d}) \Rightarrow(\mathrm{a})$ : Follow from Theorem 3.12.
From [2, Proposition 4.9], for any pseudo $M V$-algebras $A, B$ we have:

$$
\begin{equation*}
\operatorname{Rad}(A \times B)=\operatorname{Rad}(A) \times \operatorname{Rad}(B) \tag{2}
\end{equation*}
$$

Lemma 3.14. Let $A, B$ be any pseudo $M V$-algebras. Then $\operatorname{Inf}(A \times B)=$ $\operatorname{Inf}(A) \times \operatorname{Inf}(B)$.

Proof. Let $(x, y) \in \operatorname{Inf}(A \times B)$. Then $(x, y)^{2}=\left(x^{2}, y^{2}\right)=(0,0)$ and hence $x^{2}=y^{2}=0$. Thus $x \in \operatorname{Inf}(A)$ and $y \in \operatorname{Inf}(B)$, i.e., $(x, y) \in \operatorname{Inf}(A) \times \operatorname{Inf}(B)$.

Now, let $x \in \operatorname{Inf}(A), y \in \operatorname{Inf}(B)$. Then $x^{2}=y^{2}=0$. Hence $(x, y)^{2}=$ $(0,0)$, i.e., $(x, y) \in \operatorname{Inf}(A \times B)$. Therefore $\operatorname{Inf}(A \times B)=\operatorname{Inf}(A) \times \operatorname{Inf}(B)$.

From (2), Lemma 3.14 and Theorem 3.9 we obtain the following theorem.
Theorem 3.15. Let $A, B$ be any pseudo $M V$-algebras. Then $A, B \in \mathbf{B P}_{0}$ iff $A \times B \in \mathbf{B P}_{0}$.

We shall end the paper with two examples. The first one is an example of a pseudo $M V$-algebra which belongs to $\mathbf{B P}_{0}$, while the second one is an example of a pseudo $M V$-algebra which is in $\mathbf{B P}$ and is not in $\mathbf{B P} \mathbf{P}_{0}$.

Example 3.16 (Dymek and Walendziak [4]). Let $B=\{(1, y): y \geqslant 0\} \cup$ $\{(2, y): y \leqslant 0\}, \mathbf{0}=(1,0), \mathbf{1}=(2,0)$. For any $(a, b),(c, d) \in B$, we define operations $\oplus,-, \sim$ as follows:

$$
\begin{aligned}
(a, b) \oplus(c, d) & = \begin{cases}(1, b+d) & \text { if } a=c=1, \\
(2, a d+b) & \text { if ac }=2 \text { and } a d+b \leqslant 0, \\
(2,0) & \text { in other cases. }\end{cases} \\
(a, b)^{-} & =\left(\frac{2}{a},-\frac{2 b}{a}\right), \\
(a, b)^{\sim} & =\left(\frac{2}{a},-\frac{b}{a}\right) .
\end{aligned}
$$

Then $B=\left(B, \oplus,^{-}, \sim, \mathbf{0}, \mathbf{1}\right)$ is a pseudo $M V$-algebra. Let $M=\{(1, y): y \geqslant$ $0\}$. Then $M$ is the unique maximal ideal of $B$ and $B=M \cup M^{\sim}$ is generated by $M$. Thus $B \in \mathbf{B P}_{0}$ and so $B \in \mathbf{B P}$. Note that $M$ is an implicative ideal of $B$ and $\operatorname{Rad}(B)=\operatorname{Infinit}(B)=\operatorname{Inf}(B)=\mathrm{N}(B)=\operatorname{IRad}(B)=M$.

Example 3.17. Let $A$ be the pseudo $M V$-algebra from Example 2.4 and $B$ be the pseudo $M V$-algebra from Example 3.16. Since $B \in \mathbf{B P}$, we conclude, by Theorem 3.7, $A \times B \in \mathbf{B P}$. But, by Theorem 3.15, $A \times B \notin \mathbf{B P}_{0}$ because $A \notin \mathbf{B P}_{0}$.

## Acknowledgements

The author is heartily thankful to Professor A. Walendziak for his valuable comments. He also wishes to express his thanks to the referee for his remarks which were incorporated into this revised version.

## References

[1] R. Ambrosio and A. Lettieri, A classification of bipartite MV-algebras, Math. Japonica 38 (1993), 111-117.
[2] A. Di Nola, A. Dvurečenskij and J. Jakubík, Good and bad infinitesimals, and states on pseudo MV-algebras, Order 21 (2004), 293-314.
[3] A. Di Nola, F. Liguori and S. Sessa, Using maximal ideals in the classification of MV-algebras, Port. Math. 50 (1993), 87-102.
[4] G. Dymek and A. Walendziak, On maximal ideals of GMV-algebras, submitted.
[5] G. Georgescu and A. Iorgulescu, Pseudo-MV algebras, Multi. Val. Logic. 6 (2001), 95-135.
[6] J. Rachůnek, A non-commutative generalization of MV-algebras, Czechoslovak Math. J. 52 (2002), 255-273.
[7] J. Rachůnek, Radicals in non-commutative generalizations of MV-algebras, Math. Slovaca 52 (2002), 135-144.
[8] A. Walendziak, On implicative ideals of pseudo MV-algebras, Sci. Math. Jpn. 62 (2005), 281-287; e-2005, 363-369.

Received 2 January 2006
Revised 9 May 2006

