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Abstract

Brouwerian ordered sets generalize Brouwerian lattices. The aim
of this paper is to characterize α-complete Brouwerian ordered sets
in a manner similar to that used previously for pseudocomplemented,
Stone, Boolean and distributive ordered sets. The sublattice G(P )
in the Dedekind-Mac Neille completion DM(P ) of an ordered set P
generated by P is said to be the characteristic lattice of P . We can
define a stronger notion of Brouwerianicity by demanding that both
P and G(P ) be Brouwerian. It turns out that the two concepts are
the same for finite ordered sets. Further, the so-called antiblocking
property of distributive lattices is generalized to distributive ordered
sets.
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This characterization is generalized to α-complete Brouwerian ordered sets.
The sublattice G(P ) in the Dedekind-Mac Neille completion DM(P ) of an
ordered set P generated by P is said to be the characteristic lattice of P .
Its basic properties were investigated in [7]. We can define a stronger notion
of Brouwerianicity by demanding that both P and G(P ) be Brouwerian.
It turns out that the two concepts are the same for finite ordered sets.
It remains an open problem whether they coincide in general. Further,
the so-called antiblocking property of distributive lattices is generalized to
distributive ordered sets. Clearly, finite Brouwerian ordered sets generalize
finite distributive lattices and therefore can be considered for applications
where distributive ordered sets are too general.

1. Preliminaries

First we recall some important definitions and facts from [9].

The sets of all lower bounds and of all upper bounds of the union of sub-
sets A1, . . . , An in an ordered set (P,≤) will be denoted by LP (A1, . . . , An)
and UP (A1, . . . , An) respectively, shortly L(A1, . . . , An) and U(A1, . . . , An).
As usual, ↓p := {q ∈ P | q ≤ p}.

Lemma 1. Let P ⊆ Q be a subset of an ordered set (Q,≤) endowed with
the induced order such that b =

∨

(↓b ∩ P ) for each b ∈ Q. Then LQ(P ) =
LQ(Q) ∪ LP (P ) and the following conditions are equivalent:

(i) LP (P ) = LQ(Q) ∩ P ;

(ii) LP (P ) ⊆ LQ(Q);

(iii) LQ(P ) = LQ(Q).

Proof. For each b ∈ LQ(P ) we have b =
∨

(↓b∩P ) =
∨

(↓b∩LP (P )). This
yields LQ(P ) = LQ(Q)∪LP (P ) since ↓b∩LP (P ) is either empty or formed
by the least element in P . Obviously (i) =⇒ (ii). Now, from (ii) we obtain
LQ(P ) = LQ(Q) ∪LP (P ) = LQ(Q). This proves (ii) =⇒ (iii). Implication
(iii) =⇒ (i) is easily verified with LP (P ) = LQ(P ) ∩ P = LQ(Q) ∩ P .
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Definition. We say that a subset P ⊆ Q is dense in an ordered set (Q,≤)
if b =

∨

(↓b ∩ P ) for each b ∈ Q. If in addition any of conditions (i)–(iii)
from Lemma 1 is satisfied, then P is strictly dense in Q. It is doubly dense
if it is both dense and dually dense.

Note that the definition of a dense subset admits that P and Q have different
bottom elements, the bottom element of P being the unique atom in Q.
Exactly this is avoided in our definition of a strictly dense subset. This
fact is important when investigating pseudocomplemented ordered sets, the
definition is used here only for the reason of consistency. It can be easily
checked that a doubly dense subset is both strictly dense and dually strictly
dense.

Lemma 8 from [9] can be generalized to

Lemma 2. Let P be a dense subset of an ordered set (Q,≤) and A,B ⊆ P .
Then

LP (A) ⊆ LP (B) ⇔ LQ(A) ⊆ LQ(B),

and if moreover P is strictly dense in Q, then

LP (A) ⊆ LP (P ) ⇔ LQ(A) ⊆ LQ(Q).

Proof. First we prove the former equivalence.

⇒: q ∈ LQ(A) implies that ↓q ∩ P ⊆ LP (A) ⊆ LP (B) ⊆ LQ(B), and
hence q =

∨

(↓q ∩ P ) ∈ LQ(B).

⇐: LP (A) = P ∩ LQ(A) ⊆ P ∩ LQ(B) = LP (B).

The latter equivalence is obtained by setting B := P and applying condition
(iii) from Lemma 1.

Definition. A subset C is a cut in an ordered set P if C = LU(C).

The set of all cuts in P ordered by inclusion is called the Dedekind-
Mac Neille completion of P and denoted DM(P ).

The lattice G(P ) generated in DM(P ) by P is called the characteristic
lattice of P .
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Observation 3. Every ordered set P is doubly dense in DM(P ) and G(P ).

For the sake of simplicity, an ordered set P is identified with the subset
{↓a | a ∈ P} in DM(P ).

Lemma 4 (cf. [1]). If P is a doubly dense subset of a complete lattice L,
then L is isomorphic to DM(P ) over P .

Definition. P is said to be a generating subset of a lattice L if L is
generated by P as a lattice.

Lemma 5 ([7]). If P is a doubly dense generating subset of a lattice L, then
L is isomorphic to G(P ) over P .

Definition. We say that an ordered set P is distributive if for each
a, b, c ∈ P we have L({a}, U({b, c})) = LU(L({a, b}), L({a, c})). We say
that an element b of an ordered set P is the pseudocomplement of an element
a if L({a, c}) = L(P ) ⇔ c ≤ b. We say that P is pseudocomplemented if
each element a ∈ P has a pseudocomplement a∗ in P .

See [5] and [6] for details.

2. Conditions for distributivity

It is a commonplace that a lattice is distributive if and only if

c ∧ a ≤ c ∧ b & c ∨ a ≤ c ∨ b =⇒ a ≤ b,

cf. [12], p. 114. Since c ∧ a ≤ c ∧ b ⇐⇒ c ∧ a ≤ b and c ∨ a ≤ c ∨ b ⇐⇒
a ≤ c ∨ b, the above condition can be rewritten in the form

c ∧ a ≤ b & a ≤ c ∨ b =⇒ a ≤ b.

Andreas Polyméris’ query was how the last condition, used in investigations
in artificial intelligence and called the antiblocking property by him, can be
reformulated for ordered sets. It turns out that the situation is much similar
to the lattice case.
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Proposition 6. Let (P,≤) be an ordered set. The following conditions are
equivalent:

(i) (P,≤) is distributive;

(ii) L({v, z}) ⊆ L({w}) & U({w, z}) ⊆ U({v}) =⇒ v ≤ w for each
v, w, z ∈ P ;

(iii) L({v, z}) ⊆ L({w, z}) & U({w, z}) ⊆ U({v, z}) =⇒ v ≤ w for each
v, w, z ∈ P .

Proof. (i) ⇐⇒ (ii) was proved by Erné in [2], Corollary 2.6.

(ii) =⇒ (iii) as L({v, z}) ⊆ L({w, z}) & U({w, z}) ⊆ U({v, z}) implies
that L({v, z}) ⊆ L({w, z}) ⊆ L({w}) & U({w, z}) ⊆ U({v, z}) ⊆ U({v}),
which by assumption yields v ≤ w.

In order to verify (iii) =⇒ (i), suppose that (P,≤) is not distributive.
Then there exist elements a, b, c ∈ P such that

LU(L({a, b}), L({a, c})) ⊂ L({a}, U({b, c}))

and equivalently

UL({a}, U({b, c})) ⊂ U(L({a, b}), L({a, c})).

Let us denote

A := U(L({a, b}), L({a, c})) \ UL({a}, U({b, c}))

and

B := L({a}, U({b, c})) \ LU(L({a, b}), L({a, c})).

Obviously A 6= ∅ and A ∩ U({b, c}) = ∅. It is easy to see that B \
L({w}) 6= ∅ for each w ∈ A. Indeed, LU(L({a, b}), L({a, c})) ⊆ L({w}) and
L({a}, U({b, c})) * L({w}), and therefore B \ L({w}) = L({a}, U({b, c})) \
L({w}) 6= ∅. We distinguish two cases.

If A∩U({b}) 6= ∅, then we choose w ∈ A∩U({b}) and v ∈ B \L({w}).
Clearly v 6≤ w. Further we put z := c. Then
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L({v, z}) = L({v, c})

⊆ L({a, c}) as L({v}) ⊆ L({a})

⊆ L({w, c}) = L({w, z}) as L({a, c}) ⊆ L({w})

and

U({w, z}) = U({w, c})

⊆ U({b, c}) as U({w}) ⊆ U({b})

⊆ U({v, c}) = U({v, z}) as U({b, c}) ⊆ U({v}).

Thus (iii) is not satisfied.

Otherwise we choose w ∈ A and v ∈ B \ L({w}) arbitrarily. Clearly
v 6≤ w. We put z := b. Then

L({v, z}) = L({v, b})

⊆ L({a, b}) as L({v}) ⊆ L({a})

⊆ L({w, b}) = L({w, z}) as L({a, b}) ⊆ L({w})

and

U({w, z}) = U({w, b})

⊆ U(L({a, b}), L({a, c}), {b}) as L({a, b}) ∪ L({a, c}) ⊆ L({w})

⊆ UL({a}, U({b, c}), {b}) as A ∩ U({b}) = ∅

⊆ U({v, b}) = U({v, z}) as UL({a}, U({b, c})) ⊆ U({v}).

Thus (iii) is not satisfied.
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Notice that condition (ii) can be rewritten as follows.

For each elements v, w, z ∈ P such that v � w either there is an element
v′ ∈ L(v, z) such that v′ � w or there is an element w′ ∈ U(w, z) such that
v � w′.

For lattices, a closely related assertion holds.

Observation 7. A lattice is distributive if and only if

c ∧ a = c ∧ b & c ∨ a = c ∨ b =⇒ a = b.

The analogous assertion for ordered sets doesn’t hold. It follows from the
preceding that we have

L({v, z}) = L({w, z}) & U({v, z}) = U({w, z}) =⇒ v = w

in every distributive ordered set. However, the converse is not true. Indeed,
the ordered set visualized in Figure 1 is not distributive.

Figure 1.

Nevertheless, there are no elements v 6= w and z with L({v, z}) = L({w, z}) &
U({v, z}) = U({w, z}).
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3. Brouwerian ordered sets

Definition. Let (P,≤) be an ordered set and a ∈ P , B ⊆ P . If the set
{s ∈ P | L({a, s}) ⊆ L(B)} has a greatest element, we call it the relative
pseudocomplement of a with respect to B. If B = {b}, then we denote it
a ∗ b.

Halaš defined relative pseudocomplements for one-element subsets B only
in [4]. The notation is adopted from [3].

We can slightly reformulate the definition.

Observation 8. An element r is the relative pseudocomplement of a with
respect to B if and only if

L({a, s}) ⊆ L(B) ⇐⇒ s ≤ r.

Lemma 9. Let (Q,≤) be an ordered set, B ⊆ P ⊆ Q such that P is dense
in Q and r be the relative pseudocomplement of a with respect to B in P
with the induced order. Then r is the relative pseudocomplement of a with
respect to B in Q.

Proof. From the assumption it follows that LP ({a, r}) ⊆ LP (B).
Using Lemma 2 we immediately obtain LQ({a, r}) ⊆ LQ(B). If conversely
LQ({a, c}) ⊆ LQ(B) for an element c ∈ Q, then c =

∨

(↓c ∩ P ). Now,
for each p ∈ ↓c ∩ P , we have LQ({a, p}) ⊆ LQ({a, c}) ⊆ LQ(B), which by
Lemma 2 yields LP ({a, p}) ⊆ LP (B), and consequently p ≤ r. Therefore
c ≤ r.

Definition. Let α be a cardinal number with 1 < α.

An ordered set (P,≤) is said to be α-Brouwerian if the relative
pseudocomplement of a with respect to B exists for each a ∈ P and each
B ⊆ P with |B| < α.

An ordered set (P,≤) is said to be α-lower-bounded if there exists a
subset B ⊆ P with |B| < α and L(B) = L(P ).

An ordered set (P,≤) is said to be α-complete if each subset B ⊆ P
with |B| < α has an infimum in P .
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We say that a subset P is α-relative-pseudocomplement-closed in an
α-Brouwerian ordered set (Q,≤) if a ∈ P , B ⊆ P and |B| < α together
imply that the relative pseudocomplement of a with respect to B in Q is an
element of P .

We say that a subset P is relative-pseudocomplement-closed in a
2-Brouwerian ordered set (Q,≤) if a, b ∈ P implies that a ∗ b ∈ P .

According to Halaš, we will speak about Brouwerian ordered sets instead of
2-Brouwerian ordered sets. Similarly to semimodularity, see [8], we obtain
a whole spectrum of reasonable generalizations.

Observation 10. For every ordered set P , the following conditions are
equivalent:

(i) P is 3-complete;

(ii) P is ℵ0-complete;

(iii) P is a topped meet-semilattice.

Proposition 11. Every α-Brouwerian α-lower-bounded ordered set is
pseudocomplemented.

Proof. Let (P,≤) be an α-Brouwerian α-lower-bounded ordered set. Then
there exists a subset B ⊆ P with |B| < α and L(B) = L(P ). Take a ∈ P .
Since (P,≤) is α-Brouwerian, the set {s ∈ P | L({a, s}) ⊆ L(B)} has a
greatest element r. Since {s ∈ P | L({a, s}) ⊆ L(B)} = {s ∈ P | L({a, s}) ⊆
L(P )}, r is the pseudocomplement of a.

Observation 12. Let α, β be cardinal numbers with 1 < β ≤ α. Then
every α-Brouwerian ordered set is β-Brouwerian because |B| < β implies
that |B| < α. In particular, every α-Brouwerian ordered set is Brouwerian.

Observation 13. Every non-empty Brouwerian ordered set possesses the
greatest element > = a ∗ a.

Using Proposition 6, the proof of the following assertion formulated in [4] is
very short.

Lemma 14. Every Brouwerian ordered set is distributive.



172 J. Niederle

Proof. From L({v, z}) ⊆ L({w}) & U({w, z}) ⊆ U({v}) we obtain that
z ≤ v ∗ w & U({w, z}) ⊆ U({v}) by Observation 8. Hence v ∗ w ∈
U({w, z}) ⊆ U({v}), and therefore L({v}) = L({v, v ∗ w}) ⊆ L({w}).
Finally v ≤ w.

It is obvious that being α-Brouwerian is an instance of being Brouwerian
even for lattices. On the other hand, every Brouwerian lattice is α-Brouwer-
ian for each α ≤ ℵ0 and every complete Brouwerian lattice is α-Brouwerian
for any cardinal number α.

Proposition 15. For each cardinal number α with 1 < α and every
non-empty ordered set P , the following conditions are equivalent:

(i) P is α-Brouwerian;

(ii) P is α-complete and Brouwerian.

Proof. (i) =⇒ (ii) Let (P,≤) be a non-empty α-Brouwerian ordered set,
B ⊆ P and |B| < α. P is Brouwerian by Observation 12. The relative
pseudocomplement r of the top element >, see Observation 13, with respect
to B is the infimum of B. Indeed, r =

∨

{s | L({s}) = L({>, s}) ⊆ L(B)} =
∨

{s | s ∈ L(B)} =
∧

B. To sum up, P is α-complete.

(ii) =⇒ (i) Let (P,≤) be an α-complete and Brouwerian ordered set. Let
a ∈ P and B ⊆ P such that |B| < α. By assumption, there exist the infimum
of B and the relative pseudocomplement a∗

∧

B. Clearly L(B) = L({
∧

B})
and consequently

L({a, s}) ⊆ L(B) ⇐⇒ L({a, s}) ⊆ L
({

∧

B
})

⇐⇒ s ≤ a ∗
∧

B

by Observation 8. By the same argument, a ∗
∧

B is the relative
pseudocomplement of a with respect to B.

Corollary 16. For every ordered set P , the following conditions are
equivalent:



Distributive ordered sets and relative ... 173

(i) P is 3-Brouwerian;

(ii) P is ℵ0-Brouwerian;

(iii) P is a Brouwerian meet-semilattice.

Proof. The assertion is obviously true if P is empty. If P is non-empty,
it follows from the preceding proposition and Observation 10.

Notice that finite Brouwerian ordered sets generalize finite distributive
lattices, so that they may be useful in such applications where finite
distributive ordered sets are too general. In contrast to lattices, finite
distributive ordered sets need not be Brouwerian.

Observation 17. The ordered set 24 \ {(0, 0, 1, 1)} is a distributive
non-Brouwerian ordered set.

Recall that finite Brouwerian lattices are precisely finite distributive lattices.

Observation 18. For every finite ordered set P and each cardinal number
α with 2 < α, the following conditions are equivalent:

(i) P is α-Brouwerian;

(ii) P is 3-Brouwerian;

(iii) P is a Brouwerian/distributive lattice.

Lemma 19. In every Brouwerian ordered set, a ≤ c & b ≤ s implies that
c ∗ b ≤ a ∗ s.

Proof. L({a, c ∗ b}) ⊆ L({c, c ∗ b}) ⊆ L({b}) ⊆ L({s}). By Observation 8,
c ∗ b ≤ a ∗ s.

Proposition 20. An α-Brouwerian dense subset of an α-Brouwerian or-
dered set is α-relative-pseudocomplement-closed in it.

Proof. The proof follows immediately from Lemma 9.
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Proposition 21. An α-relative-pseudocomplement-closed dense subset of
an α-Brouwerian ordered set is α-Brouwerian.

Proof. Let P be an α-relative-pseudocomplement-closed dense subset of
an α-Brouwerian ordered set (Q,≤). Suppose that a, r ∈ P , B ⊆ P , |B| < α
and r is the relative pseudocomplement of a with respect to B in Q. For
p ∈ P we obtain LP ({a, p}) ⊆ LP (B) ⇐⇒ LQ({a, p}) ⊆ LQ(B) ⇐⇒ p ≤
r according to Lemma 2 and Observation 8.

Lemma 22. Let (P,≤) be a Brouwerian ordered set, a, r ∈ P and B ⊆ P . If
r is the relative pseudocomplement of a with respect to B, then r =

∧

{a∗s |
s ∈ B}.

Proof. For each s ∈ B we obtain L({a, r}) ⊆ L(B) ⊆ L({s}), which
in turn yields r ≤ a ∗ s. Hence r ∈ L({a ∗ s | s ∈ B}). Conversely, for
any c ∈ L({a ∗ s | s ∈ B}) we have (∀s ∈ B)L({a, c}) ⊆ L({s}), and
consequently L({a, c}) ⊆ L(B). Therefore c ≤ r. To sum up, r is the
infimum of {a ∗ s | s ∈ B} in P .

Lemma 23. If P is a Brouwerian ordered set and B, C cuts in P , then
L({a ∗ s | a ∈ C & s ∈ U(B)}) is the relative pseudocomplement of C with
respect to {B} in DM(P ).

Proof. Let (P,≤) be a Brouwerian ordered set and B, C cuts in P . Put
R := L({a∗s | a ∈ C & s ∈ U(B)}). It suffices to verify that R∩C ⊆ B, and
whenever Q∩C ⊆ B for a cut Q, then Q ⊆ R. For each a ∈ R∩C and each
s ∈ U(B) we have a ≤ a ∗ s and therefore L({a}) = L({a, a ∗ s}) ⊆ L({s}),
which yields a ∈ B. Hence R ∩ C ⊆ B. Conversely, let Q be a cut such
that Q ∩ C ⊆ B. Then for each a ∈ C, q ∈ Q and s ∈ U(B) we obtain
L({q, a}) ⊆ Q ∩ C ⊆ B ⊆ L({s}), and therefore q ≤ a ∗ s. This in turn
yields Q ⊆ R.

Proposition 24. If P is an α-Brouwerian ordered set, then the Dedekind-
Mac Neille completion DM(P ) of P is Brouwerian, and P is α-relative-
pseudocomplement-closed in DM(P ).

Proof. Let (P,≤) be an α-Brouwerian ordered set. The first part of the
assertion follows from the preceding lemma and Observation 12. In view of
Proposition 15, DM(P ) is α-Brouwerian. Now, for c ∈ P , B ⊆ P where



Distributive ordered sets and relative ... 175

|B| < α, B = {↓b | b ∈ B} and C = ↓c, the relative pseudocomplement of C
with respect to B is

∧

{C ∗ S | S ∈ B} =
∧

{L({a ∗ s | a ∈ C & s ∈ U(S)} |
S ∈ B} =

∧

{L({a ∗ s | a ∈ ↓c & s ∈ U(↓b) | b ∈ B}} =
∧

{L({a ∗ s | a ∈
L({c}) & s ∈ U({b})}) | b ∈ B} =

∧

{↓(c ∗ b) | b ∈ B} = ↓
∧

{c ∗ b | b ∈ B}
according to Lemma 19, which is the relative pseudocomplement of c with
respect to B in P in virtue of Lemma 22.

Observation 25. In our setting, the empty ordered set is a Brouwerian
lattice, and every one-element set is a Brouwerian complete lattice.

Theorem 26. For every ordered set P and each cardinal number α with
1 < α, the following conditions are equivalent:

(i) P is α-Brouwerian;

(ii) DM(P ) is Brouwerian and P is α-relative-pseudocomplement-closed
in it;

(iii) P is an α-relative-pseudocomplement-closed doubly dense subset of a
complete Brouwerian lattice;

(iv) P is an α-relative-pseudocomplement-closed dense subset of an
α-Brouwerian lattice.

Proof. The assertion of the theorem holds for the empty ordered set in
view of Observation 25. Suppose that P is a non-empty ordered set.

(i)⇒(ii) was proved in Proposition 24.

(ii)⇒(iii) as P is doubly dense in DM(P ).

(iii)⇒(iv) follows a fortiori in view of Proposition 15.

(iv)⇒(i) follows by Proposition 21.

Corollary 27. For every ordered set P , the following conditions are
equivalent:
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(i) P is Brouwerian;

(ii) DM(P ) is Brouwerian and P is relative-pseudocomplement-closed in
it;

(iii) P is a relative-pseudocomplement-closed doubly dense subset of a com-
plete Brouwerian lattice;

(iv) P is a relative-pseudocomplement-closed dense subset of a Brouwerian
lattice.

Observation 28. For every ordered set P and each cardinal number α with
1 < α, the following conditions are equivalent:

(i) P is an α-relative-pseudocomplement-closed dense subset of an
α-Brouwerian lattice.

(ii) P is an α-relative-pseudocomplement-closed strictly dense subset of an
α-Brouwerian lattice.

Hence we can replace the assumption that P be dense by strictly dense
in condition (iv). The fact that DM(P ) is Brouwerian whenever P is
Brouwerian was proved by Erné in [2], Corollary 3.3.

We can consider a stronger notion of Brouwerianicity.

Theorem 29. For every ordered set P and each cardinal number α with
1 < α, the following conditions are equivalent:

(i) both P and G(P ) are α-Brouwerian;

(ii) G(P ) is α-Brouwerian and P is α-relative-pseudocomplement-closed
in it;

(iii) P is an α-relative-pseudocomplement-closed doubly dense generating
subset of an α-Brouwerian lattice.

Proof. The assertion of the theorem holds for the empty ordered set in
view of Observation 25. Suppose that P is a non-empty ordered set.
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(i)⇒(ii) follows by Proposition 20 as P is doubly dense in G(P ).

(ii)⇒(iii) as P is a doubly dense generating subset of G(P ).

(iii)⇒(i) follows by Proposition 21 and Lemma 5.

Corollary 30. For every ordered set P , the following conditions are
equivalent:

(i) both P and G(P ) are Brouwerian;

(ii) G(P ) is Brouwerian and P is relative-pseudocomplement-closed in it;

(iii) P is a relative-pseudocomplement-closed doubly dense generating
subset of a Brouwerian lattice.

Theorem 31. For every finite ordered set P , the following conditions are
equivalent:

(i) P is Brouwerian;

(ii) G(P ) is Brouwerian/distributive and P is relative-pseudocomplement-
closed in it;

(iii) P is a relative-pseudocomplement-closed doubly dense generating
subset of a Brouwerian/distributive lattice;

(iv) P is a relative-pseudocomplement-closed dense subset of a Brouwer-
ian/distributive lattice.

Proof. Since DM(P ) is finite and G(P ) = DM(P ), the assertion of the
theorem follows immediately from Theorems 26 and 29.

A pseudocomplemented distributive ordered set the characteristic lattice of
which is not pseudocomplemented was constructed in [9].

Theorem 32. There exists a Brouwerian ordered set the characteristic
lattice of which is not Brouwerian.
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Proof. Let 〈0, 1〉 be the closed interval in R. Put

D :=

{

[a1, a2] ∈ 〈0, 1〉 × 〈0, 1〉 | |a1 − a2| ≤
1

2

}

D

[0, 0]

[1
2
, 0]

[1, 1

2
]

[1, 1]

[1
2
, 1]

[0, 1

2
]

and

A :=

(

D r

{

[a1, a2] ∈ D | a1 =
1

2

})

∪

{[

1

2
, 0

]}

.

A

[0, 0]

[1
2
, 0]

[1, 1

2
]

[1, 1]

[0, 1

2
]
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Both D and A are equipped with the induced order from the cartesian
product.

Obviously, D is a subframe in 〈0, 1〉×〈0, 1〉, and therefore complete and
Brouwerian. Consequently, D ∼= DM(D). Further, A is doubly dense in
D and therefore DM(A) ∼= D. We shall verify that A is Brouwerian. In
view of Corollary 27, we have to show that A is relative-pseudocomplement
closed in D. Let [a1, a2], [b1, b2] ∈ A. Assume that

[a1, a2] ∗ [b1, b2] =

[

1

2
, c

]

and

c 6= 0.(1)

This implies that

a1 ∧ b1 = a1 ∧
1

2
(2)

a2 ∧ b2 = a2 ∧ c(3)

b1 ≤
1

2
(4)

b2 ≤ c(5)

and

a1 � b1 or a2 � b2.(6)

Case b1 = 1

2
.

Clearly, b2 = 0 and hence a2 = 0 by (1) and (3). Consequently, a1 ≤ 1

2

which contradicts (6).

Case b1 < 1

2
.

In virtue of (2), a1 ≤ b1 < 1

2
. This together with (6) implies that b2 < a2.

Further, c = b2 by (3). To sum up,
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[a1, a2] ∧

[

1

2
+

1

2
c, c

]

= [a1, c] = [a1, a2] ∧

[

1

2
, c

]

which implies that c = 0 contrary to (1).

Now, [1, 1

2
] ∗ ([0, 1

2
] ∨ [1

2
, 0]) = [1, 1

2
] ∗ [1

2
, 1

2
] = [1

2
, 1]. It is easy to

see that [ 1
2
, 1] is meet-irreducible and join-irreducible in D, and therefore

[1
2
, 1] /∈ G(A).

In [10], weakly pseudocomplemented ordered sets were defined for which
characteristic lattices are also weakly pseudocomplemented. If we anal-
ogously define weakly Brouwerian ordered sets, then we obtain infinitely
distributive ordered sets studied in [11].

References

[1] B.A. Davey and H.A. Priestley, Introduction to Lattices and Order,
Cambridge University Press, Cambridge 1990.
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[5] J. Larmerová and J. Rach̊unek, Translations of distributive and modular
ordered sets, Acta Univ. Palack. Olom., Math. 27 (1988), 13–23.

[6] J. Niederle, Boolean and distributive ordered sets: characterization and
representation by sets, Order 12 (1995), 189–210.

[7] J. Niederle, Identities in ordered sets, Order 15 (1999), 271–278.

[8] J. Niederle, Semimodularity and irreducible elements, Acta Sci. Math.
(Szeged) 64 (1998), 351–356.

[9] J. Niederle, On pseudocomplemented and Stone ordered sets, Order 18

(2001), 161–170.

[10] J. Niederle, On pseudocomplemented and Stone ordered sets, addendum,
Order 20 (2003), 347–349.



Distributive ordered sets and relative ... 181

[11] J. Niederle, On infinitely distributive ordered sets, Math. Slovaca 55 (2005),
495–502.
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