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Abstract

We introduce the concepts of pre-implication algebra and
implication algebra based on orthosemilattices which generalize the
concepts of implication algebra, orthoimplication algebra defined by
J.C. Abbott [2] and orthomodular implication algebra introduced
by the author with his collaborators. For our algebras we get new
axiom systems compatible with that of an implication algebra. This
unified approach enables us to compare the mentioned algebras and
apply a unified treatment of congruence properties.
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1. Introduction

J.C. Abbott [1] introduced a concept of implication algebra in the sake to
formalize the logical connective implication in the classical propositional
logic. An implication algebra is a groupoid A = (A; ·) satisfiying the axioms

(I1) (x · y) · x = x (contraction)

(I2) (x · y) · y = (y · x) · x (quasi-commutativity)

(I3) x · (y · z) = y · (x · z) (exchange).
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The binary operation clearly formalizes the connective implication (x ⇒ y

is denoted by x · y) and, as pointed out in [1], every property of the classical
implication can be derived by using of (I1), (I2) and (I3). Among other
results, J.C. Abbott [1] showed that in every implication algebra a binary
relation ≤ can be introduced by the setting x ≤ y if x · y = 1 where 1 is an
algebraic constant of A given by the derived identity x · x = y · y. Futher,
(A;≤) is an ordered set with a greatest element 1 which becomes a ∨−
semilattice with respect to the induced order ≤. Moreover, x∨ y = (x · y) · y
and for every p ∈ A, the interval [p, 1] is a Boolean algebra where the
complement ap in [p, 1] of an element a ∈ [p, 1] is ap = a · p.

Conversely, having a ∨− semilattice with a greatest element 1 where
for any element p the interval [p, 1] is a Boolean algebra, one can define
x · y = (x ∨ y)y (the complement of x ∨ y in the interval [y, 1]) and the
resulting groupoid is an implication algebra in the sense of [1].

Several attempts were made to generalize the concept of the implication
algebra for nonclassical logics. G.M. Hardegree [6, 7] did it for logics suitable
for quantum mechanics and based on orthomodular lattices. His so-called
quasi-implication algebra is presented by the axioms

(x · y) · x = x (which is (I1))

(x · y) · (x · z) = (y · x) · (y · z)

((x · y) · (y · x)) · x = ((y · x) · (x · y)) · y.

This quasi-implication algebra induces a ∨-semilattice with 1 where every
interval [p, 1] is an orthomodular lattice but the converse construction is
possible only if it has also a least element. Another attempt was done by
J.C. Abbott [2]. He obtained a very simple axiom system (compatible with
that of implication algebra) which works under the so-called compatibility
condition. A similar implication algebra working without the compatibility
condition was treated by the author and his collaborators in [5]. When
ortholattices are considered instead of orthomodular ones, we derive an
orthoimplication algebra, see [4]. In fact, the Hardegree quasi-implication
algebra is based on the so-called ”Sasaki implication” and that of Abbott
[2] on ”Dishkant implication.” The comparision of both approaches can be
found in the paper by Norman D. Megill and Mladen Pavičić [10]. An
outstanding feature of the Hardegree’s system is that it is complete but this
has not been proven for the Abbott’s system. A detailed description of these
concepts can be also found in [10].
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The aim of this paper is to unify our approach from [4, 5] toward that of
[1] which enables us to study congruence properties common for all of these
implication algebras.

In the sake of brevity, we will write often xy instead of x · y.

2. Orthoimplication algebras

Definition 1. A groupoid A = (A; ·) satisfying the identities (I1) (contrac-
tion) and (I2) (quasi-commutativity) will be called a pre-implication algebra.

Hence, an implication algebra is a pre-implication algebra satisfying the
exchange identity.

Theorem 1. Let A = (A; ·) be a pre-implication algebra. Then A satisfies

the identity x·x = y·y, i.e., there is an algebraic constant 1 such that x·x = 1
and A satisfies the identities 1 ·x = x, x · 1 = 1 and x · (x · y) = x · y.

Proof. Applying (I1) twice, we get

(A) x(xy) = ((xy)x)(xy) = xy.

Applying (I1), (I2) and this identity, we have

xx = ((xy)x)x = (x(xy))(xy) = (xy)(xy).

Hence, using this and (I2),

xx = (xy)(xy) = ((xy)y)((xy)y) = ((yx)x)((yx)x = (yx)(yx) = yy

thus there is a constant, say 1, such that x · x = 1 is an identity of A.
Using (I1) and (A), we get 1 ·x = (xx)x = x and x · 1 = x(xx) = xx = 1.

Lemma 2. Let A = (A; ·) be a pre-implication algebra. Introduce a binary

relation ≤ on A as follows:

x ≤ y if and only if x · y = 1.

Then ≤ is reflexive, antisymmetrical and x ≤ 1 for every x ∈ A.
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Proof. By Theorem 1, x·x = 1 for each x ∈ A thus ≤ is reflexive. Suppose
x ≤ y and y ≤ x. Then

x · y = 1, y · x = 1 and x = 1 · x = (yx)x = (xy)y = 1 · y = y,

i.e., it is antisymmetric. Finally, x · 1 = 1 gives x ≤ 1 for each x ∈ A.

In what follows, we will change several names of implication algebras already
introduced. We are motivated by the facts that the original names do not
correspond to the assigned lattice properties.

For example, the name orthoimplication algebra was used by
J.C. Abbott [2] for the implication algebra derived from an orthomodu-
lar lattice. We are going to show that our orthoimplication algebra defined
below corresponds really to an orthosemilattice and hence that of Abbott
will be called an orthomodular implication algebra in the sequel.

Definition 2. By an orthoimplication algebra is meant a pre-implication
algebra satisfying the identity

(((xy)y)z)(xz) = 1 (antitony identity).

Lemma 3. Let A = (A, ·) be an orthoimplication algebra and ≤ is defined

as in Lemma 2. Then ≤ is an order on A and for every a, b, c ∈ A,

a ≤ b implies bc ≤ ac (antitony of ≤).

Proof. By Lemma 2, we need only to show transitivity of ≤. Suppose
x ≤ y and y ≤ z. Then xy = 1, yz = 1 and

xz = 1(xz) = (yz)(xz) = ((1y)z)(xz) = (((xy)y)z)(xz) = 1

due to the antitony identity. Thus x ≤ z and hence ≤ is an order on A.

Suppose a, b, c ∈ A and a ≤ b. Then ab = 1 and hence (ab)b = 1 · b = b.
This yields

(bc)(ac) = (((ab)b)c)(ac) = 1

by the antitony identity thus we have bc ≤ ac.
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Call ≤ the induced order of A = (A, ·).

Corollary 4. Every orthoimplication algebra satisfies the identity x(yx)=1.

Proof. By Lemma 2, y ≤ 1 and, due to Lemma 3, x = 1 · x ≤ y · x whence
x(yx) = 1.

Lemma 5. Let A = (A, ·) be an orthoimplication algebra. Then

(a) a ≤ (ab)b, b ≤ (ab)b;

(b) if a, b ≤ c then (ab)b ≤ c.

Proof. (a) Applying quasi-commutativity and Corollary 4, we derive

a((ab)b) = a((ba)a) = 1 thus a ≤ (ab)b,

analogously b((ab)b) = 1 yields b ≤ (ab)b.

Suppose a, b ≤ c. Then, by Lemma 3, cb ≤ ab and hence (ab)b ≤
(cb)b = (bc)c = 1 · c = c.

Corollary 6. Let A=(A, ·) be an orthoimplication algebra. Then a ∨ b =
(ab)b is the supremum of a, b w.r.t. the induced order ≤.

Remark. This justifies the name antitony identity. Since x ≤ x ∨ y, the
identity properly says (x ∨ y)z ≤ xz which means a right antitony of ≤.

Theorem 7. Let A = (A, ·) be an orthoalgebra. Then A is a ∨−semilattice

with a greatest element 1 with respect to the induced order. For each p ∈ A,

the interval [p, 1] is an ortholattice where the orthocomplement ap of a ∈ [p, 1]
in this interval is ap = a · p.

Proof. By Lemma 2 and Corollary 6, A becomes a ∨−semilattice with a
greatest element 1 where a∨ b = (ab)b. Let p ∈ A and a ∈ [p, 1]. By Lemma
2 and Lemma 3, a ≤ 1 and hence ap = ap ≥ 1p = p thus ap ∈ [p, 1] and,
due to Lemma 3, the mapping a 7→ ap is antitone. Moreover, app = (ap)p =
a∨ p = a thus it is an antitone involution, i.e., a bijection of [p, 1] onto itself
with pp = 1 and 1p = p and hence for a, b ∈ [p, 1]

(ap ∨ bp)p is the infimum of a, b
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with respect to ≤, i.e., a∧p b = (ap ∨ bp)p is the operation meet in [p, 1] and
([p, 1],∨,∧p) is a lattice. Futher,

a ∨ ap = a ∨ (ap) = ((ap)a)a = aa = 1

thus a ∧p ap = (ap ∨ a)p = 1p = p, i.e., ap is an orthocomplement of a in
[p, 1].

We are going to introduce a concept of orthosemilattice which is a
generalization of the concept of generalized orthomodular lattice introduced
in [9], see also [8].

Definition 3. A semilattice (A,∨) with a greatest element 1 is called an
orthosemilattice if for each p ∈ A the interval [p, 1] is an ortholattice with
respect to the induced order.

Let (A,∨) be an orthosemilattice, p ∈ A and a ∈ [p, 1]. From now on,
we will denote by ap the orthocomplement of a in [p, 1].

It means that in every orthosemilattice (A,∨) a set of mappings
a 7→ ap(p ∈ A) is given, each defined on an interval [p, 1] such that it is
an orthocomplementation on [p, 1].

We are going to prove the converse of Theorem 2. As noted in the
introduction, such a converse was proved by J.C. Abbott for implication
algebras and the so-called semi-Boolean algebras but an analogous result
was not reached by Hardegree [6] in the general case.

Theorem 8. Let (A,∨) be an orthosemilattice. Define the binary operation

x · y = (x ∨ y)y. Then A = (A, ·) is an orthoimplication algebra.

Proof. Let x, y, z ∈ A. Then

(xy)x = ((x ∨ y)y ∨ x)x = ((x ∨ y)y ∨ (x ∨ y))x = 1x = x;

(xy)y = ((x ∨ y)y ∨ y)y = (x ∨ y)yy = x ∨ y = y ∨ x

= (y ∨ x)xx = ((y ∨ x)x ∨ x)x = (yx)x;

(((xy)y)z)(xz) = ((x ∨ y)z)(xz) = ((x ∨ y ∨ z)z ∨ (x ∨ z)z)(x∨y)z

= ((x ∨ z)z)(x∨z)z

= 1.
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Remark. We have set up an uniform approach to implication algebras.
Namely, if a pre-implication algebra satisfies:

(i) the exchange identity then it is an implication algebra which
corresponds to a ∨-semilattice with 1 where every interval [p, 1] is
a Boolean algebra (see [1]);

(ii) the identity x((yx)z) = xz then it is an orthomodular implication
algebra which corresponds to a ∨-semilattice with 1 where every
interval [p, 1] is an orthomodular lattice (see [2]);

(iii) the antitony identity then it is an orthoimplication algebra which
corresponds to a ∨-semilattice with 1 where every interval [p, 1] is an
ortholatice.

It is worth noticing that in the both Abbott’s cases (i) and (ii), the
axioms hold on a Boolean algebra or an orthomodular lattice, respectively.
Contrary to this, the axioms of an orthoimplication algebra holds on an
orthosemilattice as shown above but not on an ortholattice in general. In
particular, the second axiom of the orthoimplication algebra fails e.g. on
the hexagon O6.

3. Congruence properties

The uniform approach enables us to investigate several congruence
properties in the same way. Let us note that some of them were already
treated in [1] or [4] for particular cases.

Since pre-implication algebras are defined by the identities (I1) and (I2),
the class V of all pre-implication algebras forms a variety which includes
a subvariety of orthoimplication algebras and it has a subvariety of
orthomodular implication algebras and its subvariety is a variety of
implication algebras.

Denote by ConA the congruence lattice of an algebra A; i.e. ConA is
the set of all congruences on A ordered by set inclusion where the operation
meet coincides with set intersection.

Recall that an algebra A is called congruence distributive if the
congruence lattice ConA is distributive; further, A is congruence

3-permutable if Θ ◦ Φ ◦ Θ = Φ ◦ Θ ◦ Φ for every Θ, Φ ∈ ConA. If it
is the case then, of course, Θ∨Φ = Θ ◦Φ ◦Θ holds in ConA. A variety V is
congruence distributive or congruence 3-permutable if every member A ∈ V
has the corresponding property.
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Theorem 9. The variety V of pre-implication algebras is congruence

distributive.

Proof. It is well-known that V is congruence distributive if and only if
there exist so-called Jónsson terms, i.e., ternary terms t0, . . . , tn such that
t0(x, y, z) = x, tn(x, y, z) = z, ti(x, y, x) = x for each i ∈ {0, . . . , n} and
ti(x, x, z) = ti+1(x, x, z) for i even and ti(x, z, z) = ti+1(x, z, z) for i odd.

Take n = 3, t0(x, y, z) = x, t3(x, y, z) = z and

t1(x, y, z) = (y(zx))x, t2(x, y, z) = (xy)z.

Then clearly t0(x, y, x) = t3(x, y, x) = x,

t1(x, y, x) = (y(xx))x = (y1)x = 1x = x,

t2(x, y, x) = (xy)x = x.

For i even, t0(x, x, z) = x = (x(zx))x = t1(x, x, z),

t2(x, x, z) = (xx)z = 1z = z = t2(x, x, z).

For i odd, t1(x, z, z) = (z(zx))x = (zx)x = (xz)z = t2(x, z, z).

Theorem 10. The variety V of pre-implication algebras is congruence

3-permutable.

Proof. It is well-known that this congruence condition is characterized by
the existence of ternary terms t1, t2 satisfying the identities

t1(x, z, z) = x, t1(x, x, z) = t2(x, z, z), t2(x, x, z) = z.

One can consider t1(x, y, z) = (zy)x and t2(x, y, z) = (xy)z.

It is an easy excercise to verify the desired identities.

Let Θ ∈ A where A is a pre-implication algebra. The congruence class [1]Θ
will be called a congruence kernel of Θ.
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Theorem 11. Let A be a pre-implication algebra. Then every congruence

on A is determined by its kernel, i.e., if Θ,Φ ∈ ConA and [1]Θ = [1]Φ then

Θ = Φ.

Proof. Suppose Θ,Φ ∈ ConA with [1]Θ = [1]Φ. Let 〈x, y〉 ∈ Θ. Then
〈xy, 1〉 = 〈xy, yy〉 ∈ Θ thus xy ∈ [1]Θ = [1]Φ, i.e., 〈xy, 1〉 ∈ Φ and hence
〈(xy)y, y〉 = 〈(xy)y, 1y〉 ∈ Φ. Analogously it can be shown 〈(yx)x, x〉 ∈ Φ.
Since (xy)y = (yx)x, we conclude 〈x, y〉 ∈ Φ proving Θ ⊆ Φ. The converse
inclusion can be shown analogously.

Theorem 11 gives rise to rhe natural question how to characterize congruence
kernels in pre-implication algebras. We will do this in two different ways,
i.e., by the so-called deductive system and by a closedness with respect to
the corresponding terms.

Definition 4. Let A = (A, ·) be a pre-implication algebra. A subset I ⊆ A

with 1 ∈ I is called a deductive system of A if it satisfies the conditions

(d1) x ∈ I and yz ∈ I imply (xy)z ∈ I;

(d2) xy ∈ I and yx ∈ I imply (xz)(yz) ∈ I and (zx)(zy) ∈ I.

Remark. Take x = y in (d1), one obtains

(MP) x ∈ I and xz ∈ I imply z ∈ I

which is a rule analogous to Modus Ponens in the deductive logic. It justifies
the name deductive system for such a subset.

Lemma 12. Let A = (A, ·) be a pre-implication algebra. If I ⊆ A is a

congruence kernel then it is a deductive system of A.

Proof. Suppose I = [1]Θ for some Θ ∈ ConA. If x ∈ I and yz ∈ I then
〈x, 1〉 ∈ Θ and 〈yz, 1〉 ∈ Θ thus (xy)z Θ (1y)z = yz Θ 1 giving 〈(xy)z, 1〉 ∈
Θ, i.e., (xy)z ∈ I. Hence, I satisfies (d1).

If xy ∈ I and yx ∈ I then, similarly as in the proof of Theorem 11,
one can derive 〈x, y〉 ∈ Θ. Hence also 〈xz, yz〉 ∈ Θ and 〈zx, zy〉 ∈ Θ which
yields (xz)(yz) ∈ I and (zx)(zy) ∈ I proving that I satisfies (d2).
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Theorem 13. Let A = (A; ·) be an orthoimplication algebra. Then I ⊆ A

is a congruence kernel if and only if I is a deductive system; then it is a

kernel of ΘI given by the setting

(S) 〈x, y〉 ∈ ΘI if xy ∈ I and yx ∈ I.

Proof. Define ΘI on A by (S). If x ∈ I then 1 · x = x ∈ I and x · 1 = 1 ∈ I

thus 〈x, 1〉 ∈ ΘI . If 〈x, 1〉 ∈ ΘI then x = 1 · x ∈ I, hence I = [1]ΘI
. All we

need to show is that ΘI ∈ ConA. Evidently, ΘI is reflexive and symmetrical.

Suppose 〈x, y〉 ∈ ΘI and 〈y, z〉 ∈ ΘI . Then xy ∈ I, yz ∈ I and, by
(d1), also ((xy)y)z ∈ I. By the antitony identity, (((xy)y)z) · (xz) = 1 ∈ I.
Applying (MP) (see the foregoing Remark) we conclude xz ∈ I. Analogously
it can be shown zx ∈ I, i.e. 〈x, z〉 ∈ ΘI . Hence, ΘI is transitive, i.e. an
equivalence on A.

Suppose 〈a, b〉 ∈ ΘI and 〈c, d〉 ∈ ΘI . By using of (d2) we easily
derive 〈ac, bd〉 ∈ ΘI and 〈bc, bd〉 ∈ ΘI . Due to transitivity of ΘI , one has
〈ac, bd〉 ∈∈ ΘI . Thus ΘI ∈ ConA. We have shown that every deductive
system I is a kernel of the congruence ΘI . The converse implication follows
by Lemma 12.

Definition 5. Let A = (A; ·) be a pre-implication algebra and t(x1, . . . , xn,

y1, . . . , ym) be a term functions of A (in two sorts of variables). A subset
B ⊆ A is said to be y-closed with respect to t if t(a1, . . . , an, b1, . . . , bm) ∈ B

for every b1, . . . , bm ∈ B and a1, . . . , an ∈ A.

Lemma 14. Let A = (A; ·) be a pre-implication algebra and t(x1, . . . , xn,

y1, . . . , ym) be a term function of A such that t(x1, . . . , xn, 1, . . . , 1) = 1 is

an identity of A. Let I ⊆ A be a congruence kernel. Then I is y-closed

w.r.t. t.

Proof. Suppose I = [1]Θ for some Θ ∈ ConA. Let a1, . . . , an ∈ A, b1, . . . ,

bm ∈ I. Then 〈bi, 1〉 ∈ Θ for i = 1, . . . ,m and hence

t(a1, . . . , an, b1, . . . , bm) Θ t(a1, . . . , an, 1, . . . , 1) = 1

proving t(a1, . . . , an, b1, . . . , bm) ∈ [1]Θ = I.
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Notation. In what follows, we will fix the following term functions of
pre-implication algebras:

t1(x, y) = x · y

t2(x1, x2, y1, y2) = (x1x2)[y2((y1x1)x2)]

t3(x1, x2, y) = (x1x2)(x1(yx2))

t4(x1, x2, x3, y) = [(x1x2)(x1(yx3))] · [(x1x2)(x1x3)]

t5(x1, x2, x3, y) = [(x1x2)((yx3)x2)] · [(x1x2)(x3x2)].

It is immediately clear that ti(x1, . . . , xn, 1, . . . , 1) = 1 for i = 1, . . . , 5 and,
by Lemma 14, every congruence kernel of each pre-implication algebra is
y-closed w.r.t. t1, . . . , t5. We are going to prove also the converse:

Theorem 15. Let A = (A; ·) be an orthoimplication algebra. Then I ⊆ A

with 1 ∈ I is a congruence kernel if and only if I is y-closed with respect to

t1, . . . , t5.

Proof. Due to Lemma 14 and Theorem 13, we need only to show that if
I ⊆ A with 1 ∈ I is y-closed with respect to t1, . . . , t5 then I is a deductive
system of A.

Take x1 = x2 = x in t2, we obtain t(x, y1, y2) = (y2((y1x))x. Of course,
if I is y-closed w.r.t. t2 then I is also y-closed w.r.t. t. Suppose a ∈ I and
ab ∈ I. Then b = 1 · b = ((ab)(ab))b = t(b, a, ab) ∈ I thus I satisfies the
condition (MP).

Suppose now x ∈ I. Then

(B)

(xy)y = (yx)x = t1(yx, x) ∈ I and

(yz)[((xy)y)((xy)z)] = t2(y, z, (xy)y) ∈ I.

Suppose now x ∈ I and yz ∈ I. By using of (MP), we derive from (B) also
((xy)y)((xy)z) ∈ I and, due to (xy)y ∈ I, we obtain (xy)z ∈ I. Hence, I

satisfies (d1).
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Now, let xy ∈ I and yx ∈ I. Then

(zx)[z((yx)x)] = t3(z, x, yx) ∈ I and

[(zx)(z((xy)y] · [(zx)(zy)] = t4(z, x, y, xy) ∈ I.

Since (xy)y = (yx)x, we apply (MP) to conclude (zx)(zy) ∈ I.

Further, (xz)(((yx)x)z) = t2(x, z, yx, 1) ∈ I and (yx)x = (xy)y thus
also (xz)(((xy)y)z) ∈ I and

[(xz)(((xy)y)z)]((xz)(yz)) = t5(x, z, y, xy) ∈ I.

Due to (MP), we conclude (xz)(yz) ∈ I. Hence, I satisfies also (d2) and by
Theorem 13, I is a congruence kernel.

Remark. In spite of Theorem 11, I is a congruence kernel in an orthoim-
plication algebra A if and only if it is the kernel of ΘI i.e. if I = [1]Θ z
then

〈x, y〉 ∈ Θ if and only if xy ∈ I and yx ∈ I.
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