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Abstract

We give a method to extend Bell exponential polynomials to
negative indices. This generalizes many results of this type such as
the extension to negative indices of Stirling numbers or of Bernoulli
numbers.
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1. Introduction

Several classical sequences have a ”natural” extension to negative indices
which preserves algebraic relations. For example, the binomial polynomials
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(

x

k

)

=
x(x − 1)...(x − k + 1)

k!

allows to define the binomial coefficients

(

n

k

)

for n ∈ Z, k ∈ N.

The sequence (x)n = x(x−1)...(x−n+1), n ∈ N, is extended to negative
integers by

(x)−n =
1

(x + 1)...(x + n)

so that the relation

(x)n(x − n)m = (x)n+m

remains valid for n ∈ Z and m ∈ Z.

The factorial sequence γ(n) = n! is classically extended in [3] by

γ(−n) =
(−1)n−1

(n − 1)!
, n > 0 .

In [1], extensions of the Stirling numbers of the second kind, S(n, k),
and of the first kind, s(n, k), are obtained for negative n. We remark
that Stirling numbers are values of Bell exponential polynomials,
Bn,k(a1, a2, ...), n, k ∈ N, on particular sequences. We give an extension
of the Bell polynomials for n, k ∈ Z. This allows us to recover Branson’s
result and much more. We thank the referee for his remarks.

2. Notations and definitions

C is a commutative field, of characteristic zero. For a sequence u : Z → C,
let us note:

suppu = {n, u(n) 6= 0} ,

ordu = inf suppu ,



Extension of classical sequences to negative integers 77

s(C) = {u, ord u > −∞} ,

s0(C) = {u, ord u ≥ 0} ,

ek the sequence defined by ek(n) = δn,k , k ∈ Z .

For u ∈ s0(C), let us denote:

(1) gu(X) =

∞
∑

n=0

u(n)
Xn

n!

the associated Hurwitz series (or exponential) to u.

For u ∈ s0(C) and v ∈ s0(C), the product gu(X) · gv(X) = gω(X)
defines the Hurwitz product ω = ux v of sequences u and v, and

(2) (ux v)(n) =
n

∑

j=0

(

n

j

)

u(j)v(n − j) .

Let us denote by A = A(C) the Hurwitz algebra of sequences of s0(C)
provided with the usual addition and Hurwitz product. The order, ord , is
a valuation on A.

Let us denote T the shift operator on A:

(3) (Tu)(n) = u(n + 1)

and q the operator of multiplication by n:

(4) (qu)(n) = nu(n) .
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Then

gTu(X) =
d

dX
gu(X) ,(5)

gqu(X) = X
d

dX
gu(X)(6)

where
d

dX
stands for the operator of formal differentiation.

Let us define for k ∈ Z, gek
(X) =

Xk

γ(k)
. If we impose the validity of (5)

and γ(−1) = 1, we obtain

(7) γ(n) =















n! for n ≥ 0

(−1)−n−1

(−n − 1)!
for n < 0

what allows us to define the Hurwitz series
∑

n

u(n)
Xn

γ(n)
of a sequence u of

finite order (positive or negative), and to define the Hurwitz product of two
sequences u and v of s(C)

(8) (ux v)(n) =
∑

i+j=n

γ(n)

γ(i)γ(j)
u(i)v(j) ,

actually

⌈

n

k

⌋

=
γ(n)

γ(k)γ(n − k)
, n ∈ Z, k ∈ Z is the Roman coefficient [3].

s(C), provided with the generalized Hurwitz product (8) is the fraction
fields of the ring A.

Let u be a sequence of strictly positive order; the composition of series
(gv◦gu)(X) = gω(X) allows to define the composition of sequences, ω = v◦u.
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For k ∈ N

(9) (ek ◦ u)(n) = Bn,k(u)

is Bell partial exponential polynomial [2]. It is a polynomial in u(1),
u(2), . . . , u(n), . . . with coefficients in Z.

For v ∈ s0(C) ,

(v ◦ u)(n) =

n
∑

k=1

Bn,k(u)v(k) .

Proposition 2.1. The set Ω of sequences of order one is a group for the
composition. The inverse u of u corresponds to the series gu(X) reciprocal
of the series gu(X).

Examples 2.2. Let “a” be the sequence defined by ga(X) = eX − 1 ; then
ga(X) = log(1 + X) then











Bn,k(a) = S(n, k)

Bn,k(a) = s(n, k)

are the Stirling numbers.

Let (t)q be the sequence (t)q(n) = t(t − 1)...(t − n + 1) and tq be the
sequence tq(n) = tn. Then

tq = (t)q ◦ a ,

(t)q = tq ◦ a

Yq(u, t) = tq ◦ u is the sequence of Bell exponential polynomials [2] and

Yn(a, t) =

n
∑

k=1

S(n, k)tk = Pn(t)

is the nth Bell polynomial.
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Remark 2.3. By application of the operators T and q (they are derivations
in the Hurwitz algebra A(C)), we can obtain various classical relations on
the Bell exponential polynomials and the Stirling numbers.

3. Extension of Bell partial exponential polynomials

Let u be a sequence of order one and k a rational integer; let us define for
k ∈ N

g(ek◦u)(X) =



















gk
u(X)

γ(k)

1

γ(−k)Xk

[

X

gu(X)

]k

and so

g(e−k◦u)(X) =
∑

n

Bn,−k(u)
Xn

γ(n)
.

Let us recall the definition of the generalized Bernoulli numbers:

[

X

gu(X)

]k

=

∞
∑

n=0

b(k)
n (u)

Xn

n!

then:

• for n < −k, Bn,−k(u) = 0

• for n ≥ 0, Bn,−k(u) =
(−1)k−1(k − 1)!n!

(n + k)!
b
(k)
n+k(u)

• for 0 < n ≤ k, B−n,−k(u) =
(−1)n+k(n − 1)!(k − 1)!

(k − n)!
b
(k)
k−n(u)

Theorem 3.1. Let u be a sequence of order one and 0 < n ≤ k, then

B−n,−k(u) = (−1)n+kBk,n(u)

where u is the inverse (for composition) of u.
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Proof. The Bn,k(u) are rational functions in the variables u1, u2, ... with
coefficients in Q. One can always suppose the un algebraically free on Q

and Q(u1, u2, ...) embedded in the field of complex numbers C. One can

also suppose that lim |un|
1/n < +∞, so that one can represent the b

(k)
n (u)

by Cauchy’s formula:

b
(k)
k−n

(k − n)!
=

1

2iπ

∫

C

(

z

gu(z)

)k
dz

zk−n+1
, 0 < n ≤ k

C circle with radius ε > 0 and center 0.

By the change of variable z = gu(t), and after integration, we obtain

b
(k)
k−n

(k − n)!
=

k

2iπn

∫

C′

gn
u
(t)

dt

tk+1

=
k

n
n!
Bk,n(u)

k!

from which we get the relation of the theorem.

Corollary 3.2. For 0 < n ≤ k ,

S(−n,−k) = (−1)n+ks(k, n)

s(−n,−k) = (−1)n+kS(k, n) .

Remark 3.3. We check that:

(X)−n =
1

(X + 1)...(X + n)

=
∑

k≥0

s(−n,−k)X−k =
∑

k≥0

S(−n,−k)(X)−k .
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More generally, if one considers the Bell exponential polynomials associated
with a sequence u of order one:

Yn(u, t) =
∑

k≥0

Bn,k(u)tk

one can extend them to negative integers by the series:

Y−n(u, t) =
∑

k≥0

B−n,−k(u)t−k =
∑

k≥n

(−1)n+kBk,n(u)t−k .

For Bernoulli polynomials, with D =
d

dX
and Bq the sequence of the

classical Bernoulli numbers:

Bn(X) = gBq (D) · Xn = (Bq xXq)(n) ,

B−n(X) = gBq (D) · X−n =
∑

k≥0

(

−n

k

)

BkX
−n−k

since gBq (D) =
D

eD − 1
, B−n(X) satisfies:

B−n(X + 1) − B−n(X) = −nX−n−1 .

Remark 3.4. For k, n strictly positive integers

S(q, k) =
1

k!
axk =

1

k!
(1q − e0)

xk

where axk denote powers calculated in the Hurwitz algebra. From this we
get:

S(n, k) =
1

k!

k
∑

j=1

(

k

j

)

(−1)k−jjn

which allows to define an extension to the negative integers n and positive
integers k.
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To obtain an analogue for the Stirling numbers of second kind s(n, k), we
can consider

(X)−n =
1

(X + 1)...(X + n)
=

∑

k≥0

s(−n, k)Xk

and hence

s(−n, k) = (−1)n+k−1S(−k, n) .
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