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Abstract

We study groupoids satisfying the identities x · xy = y and
x · yz = xy · xz. Particularly, we focus our attention at subdirectly
irreducible ones, find a description and charecterize small ones.
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1. Introduction

A left symmetric left distributive groupoid (shortly an LSLD groupoid)
is a non-empty set equipped with a binary operation (usually denoted
multiplicatively) satisfying the equations:
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and it is partly supported by the grant GAČR 201/05/0002.
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x · xy = y(left symmetry)
x · yz = xy · xz.(left distributivity)

An LSLDI groupoid is an idempotent LSLD groupoid, i.e., an LSLD groupoid
satisfying the equation xx = x. For example, given a group G, the derived
operation x ∗ y = xy−1x, usually called the core of G, is left symmetric,
left distributive and idempotent. LSLDI groupoids were introduced in [10]
and they (and their applications) were studied by several authors mainly in
1970’s and 1980’s. A reader is referred to the survey [8] for details. For a
long time, it seemed that the non-idempotent case did not play any signif-
icant role in self-distributive structures (whether symmetric or not). This
was certainly true for the two-sided case, but recently, due to the book [2]
of P. Dehornoy, one-sided non-idempotent selfdistributive groupoids enjoyed
certain attention. The purpose of the present note is to continue the investi-
gations of non-idempotent LSLD groupoids started in [4] and, in particular,
to get a better insight into the structure of subdirectly irreducible ones. Our
main results are Theorems 4.2, 4.3 and 5.9.

As far as we know, the only papers concerning non-idempotent
LSLD groupoids are [4] and [9]. Subdirectly irreducible idempotent left
symmetric medial groupoids were characterized by B. Roszkowska [7]
and simple idempotent LSLD groupoids by D. Joyce [3].

Our notation is rather standard and usually follows the book [1]. A
reader can look at [5] for various notions concerning groupoids (i.e., sets
with a single binary operation).

Let G be a groupoid. For every a ∈ G, we denote La the selfmapping
of G defined by La(x) = ax for all x ∈ G and call it the left translation by
a in G. By an involution we mean a permutation of order two.

Lemma 1.1. Let G be a groupoid. Then

1. G is LSLD, iff every left translation in G is either the identity, or an
involutive automorphism of G;

2. if G is LSLD, then Lϕ(a) = ϕLaϕ
−1 for every a ∈ G and every

automorphism ϕ of G;

3. if G is LSLD, then the mapping λ : a 7→ La is a homomorphism of G
into the core of the symmetric group over G.



Left symmetric left distributive groupoids 237

Proof. (1) Left symmetry says that every left translation La satisfies
L2

a = idG. Left distributivity says that every La is an endomorphism.
(2) Since ϕLa(b) = ϕ(ab) = ϕ(a)ϕ(b) = Lϕ(a)ϕ(b) for every a, b ∈ G, we

have ϕLa = Lϕ(a)ϕ and thus Lϕ(a) = ϕLaϕ
−1.

(3) It follows from (2) for ϕ = La that Lab = LaLbL
−1
a = LaLbLa.

Example. The following are all (up to an isomorphism) two-element LSLD
groupoids (one idempotent, the other not).

S 0 1

0 0 1

1 0 1

T 0 1

0 0̃ 0

0̃ 0̃ 0

Example. The following are all (up to an isomorphism) three-element
idempotent LSLD groupoids. S1 is a right zero groupoid, S2 is a dual
differential groupoid and S3 is a commutative distributive quasigroup and it
forms the smallest Steiner triple system. S3 is simple and S2 is subdirectly
irreducible.

S1 0 1 2

0 0 1 2
1 0 1 2
2 0 1 2

S2 0 1 2

0 0 2 1
1 0 1 2
2 0 1 2

S3 0 1 2

0 0 2 1
1 2 1 0
2 1 0 2

Example. The following are all (up to an isomorphism) three-element
non-idempotent LSLD groupoids. Both are subdirectly irreducible.

T1 e 0 0̃

e e 0 0̃

0, 0̃ e 0̃ 0

T2 e 0 0̃

e e 0̃ 0

0, 0̃ e 0̃ 0

Example. We define an operation ◦ on the Prüfer 2-group Z2∞(+) by x◦y =
2x−y+a, where a ∈ Z2∞ is an element satisfying a 6= 0 = 2a. The groupoid
Z2∞(◦) is an infinite subdirectly irreducible idempotent-free LSLD groupoid.
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A non-empty subset J of a groupoid G is called a left ideal of G, if ab ∈ J
for every a ∈ G and b ∈ J . Note that the set consisting of all left ideals in
a left symmetric groupoid and the empty set is closed under intersection,
union and complements. If {a} is a left ideal of G, we call the element a
right zero.

Let G be an LSLD groupoid. We put

IdG = {x ∈ G : xx = x} and KG = {x ∈ G : xx 6= x}.
Each of IdG and KG is either empty or a left ideal of G. Further, we define
relations

pG = {(x, y) ∈ G×G : Lx = Ly}

qG = {(a, b) ∈ IdG × IdG : La|KG
= Lb|KG

} ∪ idG

ipG = {(x, xx) : x ∈ G} ∪ idG

and a mapping oG : G → G by oG(x) = xx.

Lemma 1.2. Let G be an LSLD groupoid. Then

1. pG and qG are congruences of G and ipG ⊆ pG;

2. ipG is a congruence of G, G/ipG is idempotent and ipG is the smallest
congruence such that the corresponding factor is idempotent; moreover,
every non-trivial block of ipG is isomorphic to T;

3. oG is either the identity, or an involutive automorphism of G.

Proof. (1) The relation pG is the kernel of the homomorphism λ from
Lemma 1.1(3), hence it is a congruence.

The relation qG is an equivalence, so consider a, b ∈ IdG such that
La|KG

= Lb|KG
. Then Laz|KG

= Lbz|KG
for all z ∈ G, since for every

k ∈ KG we have az · k = a(z · ak) = a(z · bk) = b(z · bk) = bz · k (because
z · bk ∈ KG). And also Lza|KG

= Lzb|KG
for all z ∈ G, because for every

k ∈ KG we have za · k = z(a · zk) = z(b · zk) = zb · k (because zk ∈ KG).
Consequently, qG is a congruence.

Finally, xy = x(x · xy) = xx · (x · xy) = xx · y for every x, y ∈ G and
thus ipG ⊆ pG.
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(2) Since xx · xx = x · xx = x for every x ∈ G, the relation ipG is
symmetric and transitive and every non-trivial block of ipG consists of two
elements and thus is isomorphic to T. Further, xz = xx · z for every z ∈ G
due to (1) and (zx, z · xx) ∈ ipG because z · xx = zx · zx; hence ipG is a
congruence. Clearly, G/ipG is idempotent and ipG is the smallest congruence
with this property.

(3) oG is an involution (or the identity) according to (2) and oG(xy) =
xy · xy = x · yy = xx · yy = oG(x)oG(y) for all x, y ∈ G.

Corollary 1.3. T is the only (up to an isomorphism) simple non-idempotent
LSLD groupoid.

Let G be a groupoid, e /∈ G and ϕ : G → G. We denote G[ϕ] the groupoid
defined on the set G ∪ {e} so that G is a subgroupoid of G[ϕ], e is a right
zero and ex = ϕ(x) for every x ∈ G.

Lemma 1.4. Let G be an LSLD groupoid, e /∈ G and ϕ : G → G. Then

1. G[ϕ] is an LSLD groupoid, iff ϕ = idG or ϕ is an involutive
automorphism of G with Lx = Lϕ(x) for all x ∈ G;

2. G[idG] and G[oG] are LSLD groupoids and G[oG][idG[oG]], G[idG]
[oG[idG]] are isomorphic.

Proof. This is a straightforward calculation.

Note that the three-element non-idempotent LSLD groupoids are isomorphic
to T[idT] and T[oT], respectively. One can check that (T[idT])[oT[idT]] is the
only four-element subdirectly irreducible non-idempotent LSLD groupoid.

The following technical lemmas become useful later.

Lemma 1.5. Let G be an LSLD groupoid and ϕ ∈ {idG, oG}. Then the set
Aϕ = {a ∈ G : La = ϕ} is either empty, or a left ideal of G.

Proof. Let a ∈ Aϕ. By Lemma 1.1 Lxa = LxLaLx for every x ∈ G. If
La = ϕ = idG, then Lxa = LxLx = idG = ϕ. If La = ϕ = oG, then
Lxa(y) = xoG(xy) = x(xy ·xy) = x(x ·yy) = oG(y) for every y ∈ G and thus
Lxa = oG = La. Hence Aϕ is a left ideal.
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Lemma 1.6. Let G be an LSLD groupoid and J a left ideal of G. Then the
relation ρJ = ((ipG)|J) ∪ idG is a congruence of G.

Proof. The claim follows from Lemma 1.2.

Lemma 1.7. Let G be an LSLD groupoid and a ∈ G a right zero. Then

1. x · ay = a · xy and xy = ax · y for all x, y ∈ G;

2. the relation νa = {(x, ax) : x ∈ G} ∪ idG is a congruence of G;
moreover, every non-trivial block of νa has two elements.

Proof. (1) is calculated as follows: x · ay = xa · xy = a · xy and ax ·
y = (ax)(a · ay) = a(x · ay) = a(a · xy) = xy. (2) Clearly, νa is both
reflexive and symmetric and it follows from (1) that νa is compatible with
the multiplication of G. We show that νa is transitive. If (x, y) ∈ νa,
(y, z) ∈ νa, x 6= y 6= z, then y = ax and z = ay = a · ax = x and thus
(x, z) ∈ νa. The rest becomes clear now.

Lemma 1.8. Let G be an LSLD groupoid and let ρ be a congruence of KG

such that (u, v) ∈ ρ implies (au, av) ∈ ρ and (ua ·z, va ·z) ∈ ρ for all a ∈ IdG

and z ∈ KG. Define a relation σ on IdG by (a, b) ∈ σ iff (au, bv) ∈ ρ for
every pair (u, v) ∈ ρ. Then ρ ∪ σ is a congruence of G.

Proof. This straightforward calculation is omitted.

2. Basic facts about subdirectly irreducible LSLD groupoids

It is well known that a groupoid G is subdirectly irreducible (shortly SI), if
and only if G possesses a smallest non-trivial congruence (called the monolith
of G), i.e., a congruence µG 6= idG such that µG ⊆ ν for every congruence
ν 6= idG on G.

Lemma 2.1. Let G be an SI non-idempotent LSLD groupoid. Then

1. if J ⊆ KG is a left ideal, then J = KG;

2. ipG is the monolith of G;
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3. La|KG
6= Lb|KG

for every a, b ∈ IdG with a 6= b; in other words,
qG = idG;

4. ϕ|KG
6= ψ|KG

for all automorphisms ϕ,ψ of G with ϕ 6= ψ.

Proof. (1) Let J ⊂ KG be a left ideal. Then J ′ = KGrJ is a left ideal too
and ρJ , ρJ ′ are non-trivial congruences, since both J and J ′ contain at least
two elements. However, ρJ ∩ρJ ′ = idG yields a contradiction with subdirect
irreducibility of G.

(2) We have µG ⊆ ipG. Put J = {u ∈ KG : (u, uu) ∈ µG}. Then J is a
left ideal, because µG is a congruence, and thus J = KG and µG = ipG.

(3) According to Lemma 1.2(1), qG is a congruence. It is trivial, because
qG ∩ ipG = idG.

(4) Assume that ϕ|KG
= ψ|KG

and we show that ϕ|IdG
= ψ|IdG

too.
Observe that ϕ|KG

= ψ|KG
iff ϕ−1|KG

= ψ−1|KG
, because every

automorphism of G maps KG onto itself. Now, given a ∈ IdG and u ∈ KG,
we have ϕ(a)u = ϕ(a)ϕϕ−1(u) = ϕ(aϕ−1(u)) and, because aϕ−1(u) =
aψ−1(u) ∈ KG, we have also ϕ(aϕ−1(u)) = ψ(aψ−1(u)) = ψ(a)u. Thus
Lϕ(a)|KG

= Lψ(a)|KG
and, by (3), ϕ(a) = ψ(a).

Proposition 2.2. Let G be a non-idempotent LSLD groupoid and H a
subgroupoid of G such that KG ⊆ H. Assume that H is subdirectly
irreducible. Then G is subdirectly irreducible, iff qG = idG.

Proof. The direct implication was proved in Lemma 2.1(3). So assume
qG = idG and let ρ be a non-trivial congruence on G. If ρ|H 6= idH , then
ipH ⊆ ρ|H . But ipG = ipH∪idG and thus ipG ⊆ ρ. Hence assume that ρ|H =
idH . If (a, b) ∈ ρ for some a, b ∈ IdG, a 6= b, then au 6= bu for some u ∈ KG

because qG = idG and we have (au, bu) ∈ ρ|KG
= idKG

, a contradiction.
If (a, u) ∈ ρ for some a ∈ IdG and u ∈ KG, then (a, uu) = (aa, uu) ∈ ρ
and, again, (u, uu) ∈ ρ|KG

= idKG
, a contradiction. Consequently, G is

subdirectly irreducible.

Corollary 2.3. Let G be a non-idempotent LSLD groupoid such that KG is
subdirectly irreducible. Then G is subdirectly irreducible, iff qG = idG.

Lemma 2.4. Let G be an SI non-idempotent LSLD groupoid and a, b ∈ G
right zeros. Then
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1. La ∈ {idG, oG};
2. a = b, iff La = Lb;

3. G contains at most two right zeros.

Proof. (1) Let νa be the congruence from Lemma 1.7. If νa = idG, then
La = idG. If νa 6= idG, then µG = ipG ⊆ νa and thus La|KG

= oG|KG
. Hence

La = oG according to Lemma 2.1(4).
The statement (2) follows from Lemma 2.1(3) and (3) is an immediate

consequence of (1) and (2).

Lemma 2.5. Let G be an SI non-idempotent LSLD groupoid and let a ∈ G
be a right zero. Then H = Gr {a} is an SI non-idempotent LSLD groupoid
and it contains no right zero b with Lb = La|H .

Proof. Clearly, H is a left ideal of G and thus a subgroupoid of G.
Moreover, if ρ is a non-trivial congruence of H, then σ = ρ ∪ {(a, a)} is a
(non-trivial) congruence of G (because La ∈ {idG, oG}) and thus ipG =
µG ⊆ σ. So ipH ⊆ ρ and H is subdirectly irreducible. Finally, if b is a
right zero in H, then it is also a right zero in G and so Lb 6= La|H by
Lemma 2.4.

Lemma 2.6. Let G be an SI non-idempotent LSLD groupoid and ϕ ∈
{idG, oG}. Then G[ϕ] is subdirectly irreducible, iff G contains no right zero
a with La = ϕ.

Proof. The direct implication follows from Lemma 2.5. On the contrary,
if G contains no right zero a with La = ϕ, then Aϕ = ∅ (by Lemmas 1.5
and 2.1(3) |Aϕ| ≤ 1, hence any element b with Lb = ϕ is a right zero), so
qG[ϕ] = id and Proposition 2.2 applies.

Corollary 2.7. Let G be an SI non-idempotent LSLD groupoid with no
right zero. Then

G, G[idG], G[oG] and G[idG][oG[idG]]

are pairwise non-isomorphic SI LSLD groupoids.
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Corollary 2.8. Let G be an SI non-idempotent LSLD groupoid and let A
be the set of right zeros in G. Then |A| ≤ 2, H = G r A is a left ideal of
G, H is an SI non-idempotent LSLD groupoid with no right zero and G is
isomorphic to exactly one of

H, H[idH ], H[oH ] and H[idH ][oH[idH ]].

3. Groupoids of involutions

Let ε be a binary relation on a non-empty set X. We denote Inv(X, ε) the
set of all permutations ϕ of X such that ϕ2 = idX and (x, y) ∈ ε implies
(ϕ(x), ϕ(y)) ∈ ε. It is easy to see that Inv(X, ε) is a subgroupoid of the core
of the symmetric group over X and thus it is an idempotent LSLD groupoid.

An equivalence ε is called a pairing (a semipairing, resp.), if every block
of ε consists of (at most, resp.) two elements. Let α(m) = |Inv(m, ε)|, where
ε is a pairing on a cardinal number m (α(m) is defined for even and infinite
cardinals only).

Proposition 3.1. α(2) = 2, α(4) = 6 and α(m) = 2α(m − 2) + (m − 2)
α(m−4) for every even 6 ≤ m<ω. Further, α(m)=2m for every infinite m.

Proof. Assume that m is finite even and the blocks of ε are the sets
{2k, 2k + 1}2, k = 0, . . . , m

2 − 1. The claim is trivial for m ∈ {2, 4}, so
assume m ≥ 6. Let Ik = {ϕ ∈ Inv(m, ε) : ϕ(0) = k} for 0 ≤ k ≤ m − 1.
Then Inv(m, ε) =

⋃m−1
k=0 Ik and Ik’s are pairwise disjoint. If ϕ ∈ I0, then

ϕ(1) = 1. If ϕ ∈ I1, then ϕ(1) = 0. Consequently, |I0| = |I1| = α(m − 2).
On the other hand, if ϕ ∈ Ik for k ≥ 2, then ϕ(1) = k′, where k′ 6= k is such
that (k, k′) ∈ ε, and thus ϕ(k) = 0, ϕ(k′) = 1. Hence |Ik| = α(m − 4) and
|Inv(m, ε)| = 2α(m− 2) + (m− 2)α(m− 4).

If m is infinite, consider all involutions of the form (x1 y1)(x2 y2) . . . ,
where {x1, y1}, {x2, y2}, . . . are pairwise different blocks of ε. They belong
to Inv(m, ε) and thus α(m) ≥ 2m. Hence α(m) = 2m.

2 4 6 8 10 12 14 16 18 20

α(m) 2 6 20 76 312 1384 6512 32400 168992 921184
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For every semipairing ε on X there is a unique mapping oε ∈ Inv(X, ε) such
that (x, oε(x)) ∈ ε and oε(x) = x iff {x} is a one-element block of ε. It is easy
to see that idX and oε are right zeros in Inv(X, ε) and that idX ∗ϕ = ϕ and
oε ∗ ϕ = ϕ for every ϕ ∈ Inv(X, ε). Let Inv−(X, ε) = Inv(X, ε)r {idX , oε}.
Clearly, it is either empty, or a left ideal of Inv(X, ε).

Finally, let Aut2(G) = {ϕ ∈ Aut(G) : ϕ2 = id}. If G is an LSLD
groupoid, then Aut2(G) is a subgroupoid of Inv(G, ipG), Lx ∈ Aut2(G)
for every x ∈ G and the mapping x 7→ Lx is a homomorphism of G into
Aut2(G). Let Aut−2 (G) = Aut2(G) ∩ Inv−(G, ipG).

Proposition 3.2. Let G be an SI non-idempotent LSLD groupoid with at
least one idempotent element. Then the mapping

η : IdG → Aut2(KG), a 7→ La|KG

is an injective homomorphism.

Proof. It follows from Lemmas 1.1 and 2.1(3).

Corollary 3.3. Let G be an SI LSLD groupoid with |KG| = m 6= 0. Then

|IdG| ≤ α(m) and |G| ≤ α(m) + m.

It will be shown in the next section that the upper bound on |IdG| is best
possible.

4. A description of subdirectly irreducible LSLD groupoids

Lemma 4.1. Let K be an idempotent-free LSLD groupoid and I a sub-
groupoid of Aut2(K). Put G = I ∪ K. Then the following conditions are
equivalent.

1. The operations of I and K can be extended onto G so that G becomes
an LSLD groupoid with ϕ · u = ϕ(u) for all ϕ ∈ I, u ∈ K.

2. LuϕLu ∈ I for all ϕ ∈ I, u ∈ K.
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Moreover, if the conditions are satisfied, the operation of G is uniquely
determined and u · ϕ = LuϕLu for all ϕ ∈ I, u ∈ K.

Proof. Clearly, uϕ ∈ I = IdG for every u ∈ K, ϕ ∈ I. Since u(ϕv) =
(uϕ)(uv) for every u, v ∈ K, ϕ ∈ I, we have Lu(ϕ(v)) = (uϕ)(Lu(v)) and
thus uϕ = Luϕ(Lu)−1 = LuϕLu. Indeed, this is possible, iff LuϕLu ∈ I for
all ϕ ∈ I, u ∈ K. We omit the straightforward calculation showing that the
resulting groupoid G is LSLD.

The groupoid G from Lemma 4.1 will be denoted by I tK. The groupoid
Aut2(K) tK will be called the full extension of K and denoted Full(K).

I tK ψ v

ϕ ϕψϕ ϕ(v)

u LuψLu uv

Theorem 4.2. Let G be an SI non-idempotent LSLD groupoid. Then there
exists an injective homomorphism η : G → Full(KG) such that

η(u) = u for every u ∈ KG and η(a) = La|KG
for every a ∈ IdG.

Thus G is isomorphic (via η) to the subgroupoid η(IdG) tKG of Full(KG).

Proof. It is straightforward to check that η is a homomorphism and it is
injective according to Proposition 3.2.

Remark. Let K be an idempotent-free LSLD groupoid and assume the set
S of SI subgroupoids G of Full(K) with KG = K. The set S is non-empty,
iff Full(K) ∈ S; in this case, the set S has minimal elements, say H1, . . . ,Hk,
and it follows from Proposition 2.2 that G ∈ S, iff G is a subgroupoid of
Full(K) and Hi ⊆ G for at least one 1 ≤ i ≤ k.

Theorem 4.3. The following conditions are equivalent for an idempotent-
free LSLD groupoid K:

1. There exists an SI LSLD groupoid G with KG = K.

2. The groupoid Full(K) is SI.
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3. The groupoid Full−(K) is SI.

4. If ρ is a non-trivial Aut2(K)-invariant congruence of K, then ipK ⊆ ρ.

Proof. The implication (1) ⇒ (2) follows from Proposition 2.2, (2) ⇒ (3)
follows from Lemma 2.5 and (3) ⇒ (1) is trivial.

Now, assume that (4) is true and let σ be a non-trivial congruence of
Full(K). If σ|K 6= idK , then ipK ⊆ σ by (4) and thus Full(K) is SI. So
assume that ρ = σ|K = idK . If (ϕ,ψ) ∈ σ for some ϕ,ψ ∈ Aut2(K),
ϕ 6= ψ, then there is at least one u ∈ K with ϕ(u) 6= ψ(u) and we have
(ϕ(u), ψ(u)) ∈ ρ, a contradiction. Thus (ϕ, u) ∈ σ for some ϕ ∈ Aut2(K),
u ∈ K. In this case, (ϕ, uu) ∈ σ and so (u, uu) ∈ ρ, a contradiction again.

Finally, assume (2) and consider a non-trivial Aut2(K)-invariant congru-
ence ρ of K. Define a relation σ on Aut2(K) by (ϕ,ψ) ∈ σ iff (ϕ(u), ψ(v)) ∈ ρ
for every pair (u, v) ∈ ρ. According to Lemma 1.8, ρ ∪ σ is a congruence of
Full(K) and so ipK ⊆ ρ.

A groupoid K satisfying the conditions of Theorem 4.3 will be called pre-SI.

Example. Let ε be a pairing on a non-empty set K. We equip the set K
with an operation such that Lu = oε for every u ∈ K. Clearly, K is an
idempotent-free LSLD groupoid and Aut2(K) = Inv(K, ε). Using Theorem
4.3, we prove that K is pre-SI and thus G = Full(K) is an SI LSLD groupoid
of size α(|KG|) + |KG| (cf. Corollary 3.3).

Let ρ be a non-trivial Aut2(K)-invariant congruence on K. We claim
that ipK = oε ⊆ ρ. Indeed, if (u, oK(u)) ∈ ρ for some u ∈ K, then for
every v ∈ K the involution ϕ = (u v)(oK(u) oK(v)) belongs to Aut2(K)
and thus (v, oK(v)) ∈ ρ. Thus ipK ⊆ ρ. On the other hand, if (u, v) ∈ ρ,
u 6= v 6= oK(u), then the involution ψ = (v oK(v)) belongs to Aut2(K) and
thus (u, o(v)) = (ψ(u), ψ(v)) ∈ ρ and so (v, o(v)) ∈ ρ.

Example. Consider the following four-element groupoid K.

K 0 0̃ 1 1̃

0, 0̃ 0̃ 0 1̃ 1

1, 1̃ 0 0̃ 1̃ 1
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One can check that K is an LSLD groupoid, Aut2(K) =
{idK , (0 0̃), (1 1̃), (0 0̃)(1 1̃)} and the relation ρ = {(0, 0̃), (0̃, 0)} ∪ idK is
an Aut2(K)-invariant congruence of K. However, ipK 6⊆ ρ and thus K is
not pre-SI.

5. Few idempotent elements

In this section, let G be a finite SI non-idempotent LSLD groupoid with
IdG 6= ∅ and r, s, α, β will denote non-negative integers.

Let n = |IdG| and 2m = |KG|. We put K1(a) = {u ∈ KG : au = u},
K2(a) = {u ∈ KG : au = uu} and K3(a) = KG r (K1(a) ∪K2(a)) for every
a ∈ IdG.

Lemma 5.1. |K1(a)|, |K2(a)| are even numbers and |K3(a)| is divisible
by 4.

Proof. |K1(a)| is even, because u ∈ K1(a), iff uu ∈ K1(a) (and analogously
for |K2(a)|). Furthermore, the sets {v, vv, av, a · vv}, v ∈ K3(a), are four-
element and pairwise disjoint.

Let r(a) = 1
2 |K1(a)| and s(a) = 1

2 |K2(a)|. Hence m − r(a) − s(a) is a
(non-negative) even number.

Lemma 5.2. r(xa) = r(a) and s(xa) = s(a) for all a ∈ IdG, x ∈ G.

Proof. If v ∈ K1(a), then xa · xv = x · av = xv and so xv ∈ K1(xa).
Conversely, if w ∈ K1(xa), then xw = x(xa · w) = (x · xa)(xw) = a · xw
and so xw ∈ K1(a). Thus Lx maps bijectively K1(a) onto K1(xa) and, in
particular, r(a) = |K1(a)| = |K1(xa)| = r(xa). Analogously, s(a) = s(xa).

Let I(r, s) = {a ∈ IdG : r(a) = r, s(a) = s}. Indeed, if I(r, s) 6= ∅, then
m − r − s is a non-negative even number. It follows from Lemma 5.2 that
I(r, s) is either empty, or a left ideal of G.

Lemma 5.3.

1. If r ≥ m and I(r, s) 6= ∅, then r = m, s = 0 and |I(r, s)| = 1.

2. If s ≥ m and I(r, s) 6= ∅, then r = 0, s = m and |I(r, s)| = 1.
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Proof. (1) Since m ≥ r + s, we have r = m and s = 0. Consequently,
I(r, s) = I(m, 0) = {a ∈ IdG : au = u for every u ∈ KG}, and hence
|I(r, s)| = 1 by Lemma 2.1(3). (2) is analogous.

Let K(r, s, α, β) be the set of all u ∈ KG such that |{a ∈ I(r, s) : u ∈
K1(a)}| = α and |{a ∈ I(r, s) : u ∈ K2(a)}| = β.

Lemma 5.4. Either K(r, s, α, β) = ∅, or K(r, s, α, β) = KG.

Proof. Assume that J = K(r, s, α, β) 6= ∅. We prove that J is a left ideal.
Since a · xu = xu iff xa · u = u for every u ∈ J , x ∈ G, a ∈ IdG, we have
Lx({b ∈ I(r, s) : b · xu = xu}) = {c ∈ I(r, s) : cu = u} (use the fact that
I(r, s) is a left ideal) and, in particular, |{b ∈ I(r, s) : xu ∈ K1(b)}| = α.
Similarly, |{b ∈ I(r, s) : xu ∈ K2(b)}| = β and thus xu ∈ J . Consequently,
J = KG by Lemma 2.1(1).

Consequently, for every r, s there is a unique pair (α, β) such that K(r, s, α, β)
= KG and K(r, s, α′, β′) = ∅ for all (α′, β′) 6= (α, β).

Lemma 5.5. If K(r, s, α, β) = KG, then αm = rt and βm = st, where
t = |I(r, s)|.

Proof. Since |{a ∈ I(r, s) : au = u}| = α and |{a ∈ I(r, s) : au = uu}| = β
for every u ∈ KG, we have |L| = 2αm, where L = {(a, u) ∈ I(r, s) ×KG :
au = u}. On the other hand, |L| = 2rt by the definition of I(r, s). Thus
αm = rt. Considering the set {(a, u) ∈ I(r, s) ×KG : au = uu}, a similar
proof yields βm = st.

Lemma 5.6. If K(r, s, α, β) = KG, I(r, s) 6= ∅ and the numbers m and
t = |I(r, s)| are relatively prime, then just one of the following cases takes
place:

1. r = s = α = β = 0.

2. r = m, s = 0, α = 1, β = 0 and t = 1.

3. r = 0, s = m, α = 0, β = 1 and t = 1.

Proof. By Lemma 5.5, αm = rt and βm = st. If r = s = 0, then obviously
α = β = 0. If r ≥ 1, then m divides r and thus r ≥ m. If s ≥ 1, then m
divides s and thus s ≥ m. In both cases, Lemma 5.3 applies.
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Proposition 5.7. If I(r, s) 6= ∅, r + s ≥ 1 and the numbers m and t =
|I(r, s)| are relatively prime, then G contains a right zero.

Proof. Choose α, β such that K(r, s, α, β) = KG. It follows from Lemma
5.6 that t = 1 and thus I(r, s) consists of a right zero.

Proposition 5.8. If m is not divisible by any prime number p ∈ {2, . . . , n−
2, n}, then either G contains a right zero, or n = 3, m is even and u 6= au 6=
uu for all a ∈ IdG, u ∈ KG.

Proof. If n = 1, then IdG = {a} and a is a right zero; so we may assume
that n ≥ 2. Obviously, if I(r, s) = ∅ for all r, s with r + s ≥ 1, then
u 6= au 6= uu for all a ∈ IdG, u ∈ KG, and thus m is divisible by 2 according
to Lemma 5.1. Consequently, 2 = n− 1 and thus n = 3.

So assume that there are r, s such that r + s ≥ 1 and t = |I(r, s)| ≥ 1.
If m and t are relatively prime, then Lemma 5.7 yields the result. If p is
a prime dividing both m and t, then p ≤ t ≤ n, and therefore p = n − 1,
t = n− 1 and the only a ∈ IdG r I(r, s) is a right zero.

Theorem 5.9. Let G be a finite SI non-idempotent LSLD groupoid with
|KG| = 2m ≥ 4 and let p be the least prime divisor of m. If |IdG| < p,
then either IdG contains precisely three elements which are not right zeros,
or every element of IdG is a right zero and thus |IdG| ≤ 2 and KG is
subdirectly irreducible.

Proof. Let H = GrA, where A is the set of all right zeros of G. According
to Corollary 2.8, H is an SI LSLD groupoid with no right zeros. However, if
IdH 6= ∅, then H contains a right zero by Proposition 5.8, a contradiction.
The rest follows from Corollary 2.8 too.

6. Small subdirectly irreducible LSLD groupoids

In this section we apply the theory developed above to search for small SI
non-idempotent LSLD groupoids. The procedure for finding all SI LSLD
groupoids G with m > 0 non-idempotent elements follows.

1. We find all m
2 -element LSLDI groupoids.

2. We find all m-element idempotent-free LSLD groupoids by extending
groupoids found in the first step and check which of them are pre-SI
(using Theorem 4.3).
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3. For each pre-SI groupoid K found in the second step, we characterize
subgroupoids I of Aut−2 K with the property 4.1(2) and check which
I tK are subdirectly irreducible.

4. Each SI LSLD groupoid found in the third step can be extended by
idG, oG, none or both (see Corollary 2.7).

Two non-idempotents. Let G be an SI LSLD groupoid with |KG| = 2.
Then KG ' T and IdG is either empty, or isomorphic to a subgroupoid of
Aut2(T) = Inv(T, ipT) = {idT, oT}. Hence

T, T[idT], T[oT] and T[idT][oT[idT]]

are the only (up to an isomorphism) SI LSLD groupoids with two non-
idempotent elements.

Four non-idempotents. Let G be an SI LSLD groupoid with |KG| = 4.
Then KG/ipKG

is isomorphic to S, the only two-element LSLDI groupoid.
Clearly, the following groupoids K1, K2, K3 are the only (up to an
isomorphism) 4-element idempotent-free LSLD groupoids:

K1 0 0̃ 1 1̃

0, 0̃ 0̃ 0 1̃ 1

1, 1̃ 0̃ 0 1̃ 1

K2 0 0̃ 1 1̃

0, 0̃ 0̃ 0 1 1̃

1, 1̃ 0 0̃ 1̃ 1

K3 0 0̃ 1 1̃

0, 0̃ 0̃ 0 1̃ 1

1, 1̃ 0 0̃ 1̃ 1

K1 and K2 are pre-SI, K3 is not (see the last example in the fourth section).
Hence KG is isomorphic to one of K1, K2. Now, we designate a = (0 0̃),
b = (1 1̃), c = (0 1)(0̃ 1̃), d = (0 1̃)(0̃ 1) the elements of I = Aut−2 (K1) =
Aut−2 (K2). The multiplication table of I is

I a b c d

a a b d c

b a b d c

c b a c d

d b a c d
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Thus I contains three non-trivial subgroupoids I1 = {a, b}, I2 = {c, d} and
I3 = {a, b, c, d}. Neither K1 nor K2 is SI. Since both I1tK1, I1tK2 contain
the left ideal {0, 0̃}, they are not SI. In I2tK1, the element c is a right zero,
because Lx = oK1 for every x ∈ K1, and thus LxcLx = c; so I2 tK1 is not
SI by Corollary 2.8. On the other hand, it is easy to check that I2 t K2,
I3 tK1 and I3 tK2 are SI.

Proposition 6.1. There are 12 (up to an isomorphism) SI LSLD groupoids
with four non-idempotent elements:

I3 tK1, I2 tK2, I3 tK2

and their extensions by right zeros.

Six non-idempotents. Let G be an SI LSLD groupoid with |KG| = 6.
Then KG/ipKG

is isomorphic to one of S1, S2, S3 (see the list of three-
element LSLDI groupoids in the introduction). S2 cannot be isomorphic to
KG/ipKG

, because the ipKG
-block corresponding to the element 0 of S2 is

always a proper left ideal inside KG (every automorphism of G preserves
this block), a contradiction with Lemma 2.1(1). Now, one can check that
the following groupoids K4, K5, K6, K7 are the only (up to an isomorphism)
6-element idempotent-free LSLD groupoids such that their factorgroupoid
over ip is one of S1, S3.

K4 0 0̃ 1 1̃ 2 2̃

0, 0̃ 0̃ 0 1̃ 1 2̃ 2

1, 1̃ 0̃ 0 1̃ 1 2̃ 2

2, 2̃ 0̃ 0 1̃ 1 2̃ 2

K5 0 0̃ 1 1̃ 2 2̃

0, 0̃ 0̃ 0 1 1̃ 2 2̃

1, 1̃ 0 0̃ 1̃ 1 2 2̃

2, 2̃ 0 0̃ 1 1̃ 2̃ 2

K6 0 0̃ 1 1̃ 2 2̃

0, 0̃ 0̃ 0 1̃ 1 2 2̃

1, 1̃ 0 0̃ 1̃ 1 2̃ 2

2, 2̃ 0̃ 0 1 1̃ 2̃ 2

K7 0 0̃ 1 1̃ 2 2̃

0, 0̃ 0̃ 0 2̃ 2 1̃ 1

1, 1̃ 2̃ 2 1̃ 1 0̃ 0

2, 2̃ 1̃ 1 0̃ 0 2̃ 2
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K4 and K5 are pre-SI, K6 and K7 aren’t. Hence KG is isomorphic to one
of K4, K5. One can compute that I = Inv−(K4, ipK4) = Aut−2 (K4) =
Aut−2 (K5) contains the following non-trivial subgroupoids:

I1 = {(x x̃) : x = 0, 1, 2},

I2 = {(x x̃)(y ỹ) : x, y = 0, 1, 2, x 6= y},

I3,1 = {(x y)(x̃ ỹ) : x, y = 0, 1, 2, x 6= y},

I3,2 = {(0 1̃)(0̃ 1), (0 2̃)(0̃ 2), (1 2)(1̃ 2̃)},

I3,3 = {(0 1̃)(0̃ 1), (1 2̃)(1̃ 2), (0 2)(0̃ 2̃)},

I3,4 = {(0 2̃)(0̃ 2), (1 2̃)(1̃ 2), (0 1)(0̃ 1̃)},

I3 = {(x y)(x̃ ỹ), (x ỹ)(x̃ y) :x, y=0, 1, 2, x 6= y}=I3,1 ∪ I3,2 ∪ I3,3 ∪ I3,4,

I4,1 = {(x ỹ)(x̃ y)(z z̃) : {x, y, z} = {0, 1, 2}},

I4,2 = {(0 1)(0̃ 1̃)(2 2̃), (0 2)(0̃ 2̃)(1 1̃), (1 2̃)(1̃ 2)(0 0̃)},

I4,3 = {(0 1)(0̃ 1̃)(2 2̃), (1 2)(1̃ 2̃)(0 0̃), (0 2̃)(0̃ 2)(1 1̃)},

I4,4 = {(0 2)(0̃ 2̃)(1 1̃), (1 2)(1̃ 2̃)(0 0̃), (0 1̃)(0̃ 1)(2 2̃)},

I4 = {(x ỹ)(x̃ y)(z z̃), (x y)(x̃ ỹ)(z z̃) :{x, y, z}={0, 1, 2}}=I4,1∪· · · ∪I4,4,

I3,i ∪ I4,i, i = 1, 2, 3, 4,

all unions of I1, I2, I3, I4.

Clearly, |I1| = |I2| = |I3,i| = |I4,i| = 3, i = 1, . . . , 4 and |I3| = |I4| = 6. Now,
none of K4, K5 is SI. The following table shows, which of J tK4, J tK5

(J a subgroupoid of I) are subdirectly irreducible. (An empty space means
it does not satisfy the condition 4.1(2).)
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t I1 I2 I3,1 I3,2, I3,3, I3,4 I3 I4,1 I4,2, I4,3, I4,4 I4

K4 − − − − + − − +
K5 − − + +

t I3,1 ∪ I4,1 I3,i ∪ I4,i I1 ∪ I2 Ii ∪ Ij Ii ∪ Ij ∪ Ik I

i = 2, 3, 4 i 6= j, {i, j} 6= {1, 2} i 6= j 6= k 6= i

K4 − − − + + +
K5 − + + +

Proposition 6.2. There are 96 (up to an isomorphism) SI LSLD groupoids
with six non-idempotent elements: the 24 without right zeros described in the
table above and their extensions by right zeros.

The following table displays the number of SI LSLD groupoids with 2, 4 and
6 non-idempotent elements and a respective number of idempotent elements.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 2 1

0 0 1 2 3 4 2

0 0 0 0 0 0 4 8 4 8 16 8 6 12 6 4 8 4 2 4 2

More non-idempotents.

Lemma 6.3. Let G be an SI LSLD groupoid with |KG| = 8. Then KG/ipKG

is isomorphic to one of R1, R2.

R1 0 1 2 3

0 0 1 2 3
1 0 1 2 3
2 0 1 2 3
3 0 1 2 3

R2 0 1 2 3

0 0 1 3 2
1 0 1 3 2
2 1 0 2 3
3 1 0 2 3
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Proof. For every u ∈ KG, let t(u) be the number of v ∈ KG such that
uv ∈ {v, vv}. We have t(u) = t(xu) for every x ∈ G (because xy · z = z
iff y · xz = xz), hence the set {u ∈ KG : t(u) = t} is a left ideal of G
for every t. Consequently, there is t such that t(u) = t for every u ∈ KG

(see Lemma 2.1(1)) and thus all left translations in R = KG/ipKG
have the

same number t
2 of fixed points. Let us denote the elements of R by 0,1,2,3.

Clearly, t
2 ≥ 1 is an even number. If t

2 = 4, then R is the right zero band
R1. Otherwise t

2 = 2 and we may assume that 0, 1 are the only fix points of
L0, i.e., L0 = (2 3). Then 1 · 0 = (0 · 1)(0 · 0) = 0(1 · 0) (left distributivity)
and hence 1 ·0 is a fix point of L0. Therefore 1 ·0 = 0 and so L1 = L0. Now,
L2·0 = L2L0L2 = L2L1L2 = L2·1. Since L2(0), L2(1) 6= 2 and L0 = L1 6= L3

(because L0(3) 6= L3(3)), we have {2 · 0, 2 · 1} = {0, 1}. Hence L2 = (0 1),
because it has two fixed points. Analogously also L3 = (0 1).

Proposition 6.4. There is no SI idempotent-free LSLD groupoid with 8
elements.

Proof. Since both R1, R2 contain proper left ideals, so does any 8-element
SI idempotent-free LSLD groupoid, a contradiction with Lemma 2.1(1).

Lemma 6.5. Let G be an SI LSLD groupoid with |KG| = 10. Then KG/ipKG

is isomorphic to one of R3, R4.

R3 0 1 2 3 4

0 0 1 2 3 4
1 0 1 2 3 4
2 0 1 2 3 4
3 0 1 2 3 4
4 0 1 2 3 4

R4 0 1 2 3 4

0 0 2 1 4 3
1 3 1 4 0 2
2 4 3 2 1 0
3 2 4 0 3 1
4 1 0 3 2 4

Proof. Proceed similarly as in the proof of Lemma 6.3.

Proposition 6.6. There is no SI idempotent-free LSLD groupoid with 10
elements.
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Proof. Assume that K = {0, 0̃, 1, 1̃, 2, 2̃, 3, 3̃, 4, 4̃} is an idempotent-free
LSLD groupoid, where blocks of ipK are the sets {k, k̃} for every k = 0, . . . , 4.
Then K/ipK ' R4 and without loss of generality we put 0 · 1 = 2̃, 0 · 3 = 4̃,
1 ·2 = 4̃, 1 ·0 = 3̃. Then 1̃ · 0̃ = 3, 1̃ · 2̃ = 4 and thus 2 ·0 = 4̃, 2 ·1 = 3̃, because
L0 is an automorphism. Also 3 · 0 = 2̃, 2 · 1 = 4̃, 4 · 0 = 1̃, 4 · 2 = 3̃, because
L2 is an automorphism, and the operation on K is determined. We see that
ρ = {0, 1, 2, 3, 4}2 ∪ {0̃, 1̃, 2̃, 3̃, 4̃}2 is a congruence on K and ρ ∩ ipK = idK .
Hence K is not subdirectly irreducible.

Proposition 6.7. The following groupoid is the smallest SI idempotent-free
LSLD groupoid with more than two elements.

K8 0 0̃ 1 1̃ 2 2̃ 3 3̃ 4 4̃ 5 5̃

0, 0̃ 0̃ 0 1 1̃ 4̃ 4 5̃ 5 2̃ 2 3̃ 3

1, 1̃ 0 0̃ 1̃ 1 5̃ 5 4̃ 4 3̃ 3 2̃ 2

2, 2̃ 4̃ 4 5̃ 5 2̃ 2 3 3̃ 0̃ 0 1̃ 1

3, 3̃ 5 5̃ 4 4̃ 2 2̃ 3̃ 3 1 1̃ 0 0̃

4, 4̃ 2̃ 2 3 3̃ 0̃ 0 1 1̃ 4̃ 4 5 5̃

5, 5̃ 3 3̃ 2̃ 2 1̃ 1 0 0̃ 4 4̃ 5̃ 5

Proof. Subdirect irreducibility of K8 can be checked easily from the
multiplication table and non-existence of a smaller one was proved above.

7. The group generated by left translations

In the last section, we find another criterion for recognizing that a groupoid
is not SI or pre-SI.

Let G be an LSLD groupoid. We denote L(G) the subgroup of Aut(G)
generated by all left translations in G. For a subset N of L(G) we define a
relation ρN by (x, y) ∈ ρN , iff there exists ϕ ∈ N such that ϕ(x) = y.

Lemma 7.1. Let G be an LSLD groupoid and N a normal subgroup of
L(G). Then ρN is a congruence of G.
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Proof. Clearly, ρN is an equivalence on G. Let (x, y) ∈ ρN and z ∈ G.
We have yz = ϕ(x)z = Lϕ(x)Lx(xz) = ϕLxϕ−1Lx(xz), and so (xz, yz) ∈ ρN

via the automorphism ϕLxϕ−1Lx ∈ N . Further, zy = zϕ(x) = zϕ(z · zx) =
LzϕLz(zx), and so (zx, zy) ∈ ρN via the automorphism LzϕLz ∈ N .

Proposition 7.2. Let G be an SI non-idempotent or a pre-SI idempotent-
free LSLD groupoid and let N be a non-trivial normal subgroup of L(G).
Then for every u ∈ G there exists ϕ ∈ N such that ϕ(u) = uu.

Proof. If G is SI non-idempotent, then ipG ⊆ ρN , because ρN is a non-
trivial congruence. If G is pre-SI idempotent-free, one must check (in a
view of Theorem 4.3) that ρN is also Aut2(G)-invariant. If (x, y) ∈ ρN ,
ϕ(x) = y, and ψ ∈ Aut2(G), then (ψϕψ−1)(ψ(x)) = ψϕ(x) = ψ(y), and
thus (ψ(x), ψ(y)) ∈ ρN via the automorphism ψϕψ−1 ∈ N .

Example. Recall the groupoid K3 from the previous section. It is easy to
calculate that L(K3) = {id, (0 0̃), (1 1̃), (0 0̃)(1 1̃)}, and thus N = {id, (0 0̃)}
is a normal subgroup. However, there is no ϕ ∈ N such that ϕ(1) = 1̃, hence
K3 is not pre-SI by Proposition 7.2.

Remark. Let G be a simple LSLD groupoid. Then the subgroup of L(G)
generated by all LxLy, x, y ∈ G, is a smallest non-trivial normal sub-
group of L(G) and thus L(G) is subdirectly irreducible. This is a result of
H. Nagao [6] and it can be proved similarly. However, due to Corollary 1.3,
it is interesting in the idempotent case only.
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