Discussiones Mathematicae
General Algebra and Applications 25(2005) 235-257

SUBDIRECTLY IRREDUCIBLE
NON-IDEMPOTENT LEFT SYMMETRIC
LEFT DISTRIBUTIVE GROUPOIDS*

EMIL JERABEK!, TOMAS KEPKA? AND DAVID STANOVSKY?

! Mathematical Institute, Academy of Sciences
Prague, Czech Republic

2 Charles University in Prague, Czech Republic

e-mail: jerabek@math.cas.cz
e-mail: kepka@karlin.mff.cuni.cz
e-mail: stanovsk@karlin.mff.cuni.cz

Abstract

We study groupoids satisfying the identities =z - zy = y and
x - yz = zy - vz. Particularly, we focus our attention at subdirectly
irreducible ones, find a description and charecterize small ones.
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1. INTRODUCTION

A left symmetric left distributive groupoid (shortly an LSLD groupoid)
is a non-empty set equipped with a binary operation (usually denoted
multiplicatively) satisfying the equations:

*The work is a part of the research project MSM 0021620839 financed by MSMT CR
and it is partly supported by the grant GACR 201/05/0002.



236 E. JERABEK, T. KEPKA AND D. STANOVSKY

(left symmetry) Ty =1y
(left distributivity) T-Yz =TY - T2,

An LSLDI groupoidis an idempotent LSLD groupoid, i.e., an LSLD groupoid
satisfying the equation za = x. For example, given a group G, the derived
operation z * y = xy 'z, usually called the core of G, is left symmetric,
left distributive and idempotent. LSLDI groupoids were introduced in [10]
and they (and their applications) were studied by several authors mainly in
1970’s and 1980’s. A reader is referred to the survey [8] for details. For a
long time, it seemed that the non-idempotent case did not play any signif-
icant role in self-distributive structures (whether symmetric or not). This
was certainly true for the two-sided case, but recently, due to the book [2]
of P. Dehornoy, one-sided non-idempotent selfdistributive groupoids enjoyed
certain attention. The purpose of the present note is to continue the investi-
gations of non-idempotent LSLD groupoids started in [4] and, in particular,
to get a better insight into the structure of subdirectly irreducible ones. Our
main results are Theorems 4.2, 4.3 and 5.9.

As far as we know, the only papers concerning non-idempotent
LSLD groupoids are [4] and [9]. Subdirectly irreducible idempotent left
symmetric medial groupoids were characterized by B. Roszkowska [7]
and simple idempotent LSLD groupoids by D. Joyce [3].

Our notation is rather standard and usually follows the book [1]. A
reader can look at [5] for various notions concerning groupoids (i.e., sets
with a single binary operation).

Let G be a groupoid. For every a € GG, we denote L, the selfmapping
of G defined by L,(x) = az for all x € G and call it the left translation by
a in G. By an involution we mean a permutation of order two.

Lemma 1.1. Let G be a groupoid. Then

1. G is LSLD, iff every left translation in G is either the identity, or an
involutive automorphism of G;

2. if G is LSLD, then Lyg) = ©Lap™ ' for every a € G and every
automorphism ¢ of G;

3. if G is LSLD, then the mapping A : a — Ly is a homomorphism of G
into the core of the symmetric group over G.



LEFT SYMMETRIC LEFT DISTRIBUTIVE GROUPOIDS 237

Proof. (1) Left symmetry says that every left translation L, satisfies
L? = idg. Left distributivity says that every L, is an endomorphism.

(2) Since pLa(b) = p(ab) = p(a)p(b) = Lyq)@(b) for every a,b € G, we
have oL, = L,(q)p and thus Ly,) = @L,p™ L.

(3) Tt follows from (2) for ¢ = L, that Ly = LoLyL,' = LyLyL,. ™

Example. The following are all (up to an isomorphism) two-element LSLD
groupoids (one idempotent, the other not).

S|0 1
0{0 1
110 1

Example. The following are all (up to an isomorphism) three-element
idempotent LSLD groupoids. S; is a right zero groupoid, S, is a dual
differential groupoid and S3 is a commutative distributive quasigroup and it
forms the smallest Steiner triple system. S3 is simple and S is subdirectly
irreducible.

Example. The following are all (up to an isomorphism) three-element
non-idempotent LSLD groupoids. Both are subdirectly irreducible.

Example. We define an operation o on the Priifer 2-group Zao (+) by xoy =
2x —y+a, where a € Zsw is an element satisfying a # 0 = 2a. The groupoid
Zs(0) is an infinite subdirectly irreducible idempotent-free LSLD groupoid.
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A non-empty subset J of a groupoid G is called a left ideal of G, if ab € J
for every a € G and b € J. Note that the set consisting of all left ideals in
a left symmetric groupoid and the empty set is closed under intersection,
union and complements. If {a} is a left ideal of G, we call the element a
right zero.

Let G be an LSLD groupoid. We put

Idg={ze€G:2x =2} and Kg={x€G:zx #z}.

Each of Idg and K¢ is either empty or a left ideal of G. Further, we define
relations

pe ={(z,y) € G xG: L, =Ly}
qgc = {(a,b) € Idg x Idg : LQ‘KG = Lb|KG} Uidg
ipg = {(z,zz) : x € G} Uidg

and a mapping og : G — G by og(z) = zx.

Lemma 1.2. Let G be an LSLD groupoid. Then

1. pa and qo are congruences of G and ipc C pa;

2. ipg is a congruence of G, G/ipg is idempotent and ipg is the smallest
congruence such that the corresponding factor is idempotent; moreover,
every non-trivial block of ipg is isomorphic to T;

3. og is either the identity, or an involutive automorphism of G.

Proof. (1) The relation pg is the kernel of the homomorphism A from
Lemma 1.1(3), hence it is a congruence.

The relation qg is an equivalence, so consider a,b € Idg such that
Lok = Lp|k,. Then Lg.|k, = Lp:|k, for all z € G, since for every
k € Kg we have az - k = a(z - ak) = a(z - bk) = b(z - bk) = bz - k (because
z-bk € Kg). And also L.4|k, = L.k, for all z € G, because for every
k € Kg we have za -k = z(a - zk) = z(b- zk) = zb- k (because zk € K¢).
Consequently, gg is a congruence.

Finally, zy = x(z - zy) = zz - (x - zy) = xx - y for every z,y € G and
thus ipg C pa.
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(2) Since zx - zx = z - xx = x for every x € G, the relation ipg is
symmetric and transitive and every non-trivial block of ipg consists of two
elements and thus is isomorphic to T. Further, zz = xx - z for every z € G
due to (1) and (zx, z - zz) € ipg because z - xzx = zx - zx; hence ipg is a
congruence. Clearly, G/ipg is idempotent and ipq is the smallest congruence
with this property.

(3) oG is an involution (or the identity) according to (2) and og(zy) =
xy-xy =x-yy = xx - yy = og(x)og(y) for all z,y € G. [ |

Corollary 1.3. T is the only (up to an isomorphism) simple non-idempotent
LSLD groupoid.

Let G be a groupoid, e ¢ G and ¢ : G — G. We denote G|p] the groupoid
defined on the set G U {e} so that G is a subgroupoid of G[y], e is a right
zero and ex = p(x) for every x € G.

Lemma 1.4. Let G be an LSLD groupoid, e ¢ G and ¢ : G — G. Then

1. Gly] is an LSLD groupoid, iff ¢ = idg or ¢ is an involutive
automorphism of G with Ly = Ly, for all x € G;

2. Glidg] and Glog] are LSLD groupoids and Glog]lidgios)], Glidg]

[0Glide]] are isomorphic.

Proof. This is a straightforward calculation. [

Note that the three-element non-idempotent LSLD groupoids are isomorphic

to T[idt] and T[ot], respectively. One can check that (T[idr])[or[ia,] is the

only four-element subdirectly irreducible non-idempotent LSLD groupoid.
The following technical lemmas become useful later.

Lemma 1.5. Let G be an LSLD groupoid and ¢ € {idg,0g}. Then the set
Ay, ={a € G: L, =} is either empty, or a left ideal of G.

Proof. Let a € A,. By Lemma 1.1 L,y = LyLo,L, for every x € G. If
L, = ¢ = idg, then Ly, = L,L;, = idg = . If Ly = ¢ = og, then
L.o(y) = vog(zy) = x(zy-vy) = x(z - yy) = og(y) for every y € G and thus
Lyq = 0Gg = Lg. Hence A, is a left ideal. [
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Lemma 1.6. Let G be an LSLD groupoid and J a left ideal of G. Then the
relation py = ((ipc)|s) Uidag is a congruence of G.

Proof. The claim follows from Lemma 1.2. [

Lemma 1.7. Let G be an LSLD groupoid and a € G a right zero. Then

1. z-ay=a-zy and zy = ax -y for all z,y € G;

2. the relation v, = {(z,ax) : v € G} Uidg is a congruence of G;
moreover, every non-trivial block of v, has two elements.

Proof. (1) is calculated as follows: x -ay = za -2y = a -2y and az -
y = (az)(a - ay) = a(r - ay) = ala - zy) = zy. (2) Clearly, v, is both
reflexive and symmetric and it follows from (1) that v, is compatible with
the multiplication of G. We show that v, is transitive. If (z,y) € vg,
(y,2) € Vg, x # y # 2, then y = ax and z = ay = a - ar = x and thus
(x,z) € vg. The rest becomes clear now. ]

Lemma 1.8. Let G be an LSLD groupoid and let p be a congruence of Kq
such that (u,v) € p implies (au,av) € p and (ua-z,va-z) € p for alla € Idg
and z € Kg. Define a relation o on Idg by (a,b) € o iff (au,bv) € p for
every pair (u,v) € p. Then pUo is a congruence of G.

Proof. This straightforward calculation is omitted. [ ]

2. BASIC FACTS ABOUT SUBDIRECTLY IRREDUCIBLE LSLD GROUPOIDS

It is well known that a groupoid G is subdirectly irreducible (shortly SI), if
and only if G possesses a smallest non-trivial congruence (called the monolith

of G), i.e., a congruence ug # idg such that pug C v for every congruence
v #idg on G.

Lemma 2.1. Let G be an SI non-idempotent LSLD groupoid. Then

1. if J C K¢ is a left ideal, then J = Kg;

2. ipg is the monolith of G;
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3. Lolk, # Lk for every a,b € Idg with a # b; in other words,
ge = idg;

4. |k, # Y|k, for all automorphisms @, of G with ¢ # 1.

Proof. (1) Let J C K¢ be a left ideal. Then J' = Kg . J is a left ideal too
and py, py are non-trivial congruences, since both J and J’ contain at least
two elements. However, p;yNpy = idg yields a contradiction with subdirect
irreducibility of G.

(2) We have pg C ipg. Put J ={u € Kg : (u,uu) € pg}. Then J is a
left ideal, because ug is a congruence, and thus J = Kg and ug = ipg.

(3) According to Lemma 1.2(1), g¢ is a congruence. It is trivial, because
qc Nipg = idg.

(4) Assume that ¢|k, = ¥|k, and we show that ¢|;q, = V|14, too.
Observe that ¢|x, = |k, iff ¢l k., = ¢ k., because every
automorphism of G maps K¢ onto itself. Now, given a € Idg and v € Kg,
we have ¢(a)u = p(a)pp 1 (u) = ¢lap~'(u)) and, because ap'(u) =
ap~H(u) € Kg, we have also p(ap~t(u)) = ¥(ap~ (u)) = ¥(a)u. Thus
an(a)|KG = L¢(a)|KG and, by (3)7 @(a) = w(a) u

Proposition 2.2. Let G be a non-idempotent LSLD groupoid and H a
subgroupoid of G such that Kg C H. Assume that H is subdirectly
wrreducible. Then G is subdirectly irreducible, iff g = idg.

Proof. The direct implication was proved in Lemma 2.1(3). So assume
gc = idg and let p be a non-trivial congruence on G. If p|g # idg, then
ipg C plg. But ipg = ipgUidg and thus ipg C p. Hence assume that p|g =
idg. If (a,b) € p for some a,b € Idg, a # b, then au # bu for some u € Kg
because ¢ = idg and we have (au,bu) € p|g, = idk,, a contradiction.
If (a,u) € p for some a € Idg and u € Kg, then (a,uu) = (aa,uu) € p
and, again, (u,uu) € p|g, = idg,, a contradiction. Consequently, G is
subdirectly irreducible. [

Corollary 2.3. Let G be a non-idempotent LSLD groupoid such that K¢g is
subdirectly irreducible. Then G is subdirectly irreducible, iff q¢ = idg.

Lemma 2.4. Let G be an SI non-idempotent LSLD groupoid and a,b € G
right zeros. Then
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1. L, € {idg,06};
2. a=0b, iff Ly = Ly;

3. G contains at most two right zeros.

Proof. (1) Let v, be the congruence from Lemma 1.7. If v, = idg, then
L, =idg. If v, # idg, then pg = ipg C v, and thus Ly|k, = og|k. Hence
L, = o according to Lemma 2.1(4).

The statement (2) follows from Lemma 2.1(3) and (3) is an immediate
consequence of (1) and (2). |

Lemma 2.5. Let G be an SI non-idempotent LSLD groupoid and let a € G
be a right zero. Then H = G ~{a} is an SI non-idempotent LSLD groupoid
and it contains no right zero b with Ly = Lg|p.

Proof. Clearly, H is a left ideal of G and thus a subgroupoid of G.
Moreover, if p is a non-trivial congruence of H, then o = pU {(a,a)} is a
(non-trivial) congruence of G (because L, € {idg,0s}) and thus ipg =
e C o. So ipg € p and H is subdirectly irreducible. Finally, if b is a
right zero in H, then it is also a right zero in G and so Ly # Lg|g by
Lemma 2.4. [

Lemma 2.6. Let G be an SI non-idempotent LSLD groupoid and ¢ €
{ida,oc}. Then Gly| is subdirectly irreducible, iff G contains no right zero
a with Ly = ¢.

Proof. The direct implication follows from Lemma 2.5. On the contrary,
if G contains no right zero a with L, = ¢, then A, = 0 (by Lemmas 1.5
and 2.1(3) |Ay| < 1, hence any element b with Ly = ¢ is a right zero), so
qdqjy) = td and Proposition 2.2 applies. [

Corollary 2.7. Let G be an SI non-idempotent LSLD groupoid with no
right zero. Then

G, Glidg], Glog| and Glidc|[ogiae)]

are pairwise non-isomorphic SI LSLD groupoids.
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Corollary 2.8. Let G be an SI non-idempotent LSLD groupoid and let A
be the set of right zeros in G. Then |A| < 2, H = G \ A is a left ideal of
G, H is an SI non-idempotent LSLD groupoid with no right zero and G is
isomorphic to exactly one of

H, Hlidy], Hlon| and Hlidn]lom{id,]-

3. GROUPOIDS OF INVOLUTIONS

Let € be a binary relation on a non-empty set X. We denote Inv(X,¢) the
set of all permutations ¢ of X such that ¢? = idyx and (z,y) € ¢ implies
(p(z), p(y)) € €. It is easy to see that Inv(X, ¢) is a subgroupoid of the core
of the symmetric group over X and thus it is an idempotent LSLD groupoid.

An equivalence ¢ is called a pairing (a semipairing, resp.), if every block
of € consists of (at most, resp.) two elements. Let a(m) = |Inv(m, )|, where
¢ is a pairing on a cardinal number m («(m) is defined for even and infinite
cardinals only).

Proposition 3.1. a(2) = 2, a(4) = 6 and a(m) = 2a(m — 2) + (m — 2)
a(m—4) for every even 6 < m<w. Further, a(m)=2" for every infinite m.

Proof. Assume that m is finite even and the blocks of £ are the sets
{2k,2k + 1}, k = 0,...,2 — 1. The claim is trivial for m € {2,4}, so
assume m > 6. Let I = {¢ € Inv(m,¢e) : p(0) = k} for 0 < k < m — 1.
Then Inv(m,e) = UZL:_OI I, and Ij’s are pairwise disjoint. If ¢ € Iy, then
o(1) = 1. If p € I, then (1) = 0. Consequently, |Iy| = || = a(m — 2).
On the other hand, if ¢ € I} for k > 2, then ¢(1) = k¥, where k' # k is such
that (k, k") € e, and thus p(k) = 0, ¢(k¥') = 1. Hence |I;| = a(m — 4) and
Inv(m, e)| = 2a(m — 2) + (m — 2)a(m — 4).

If m is infinite, consider all involutions of the form (x; y1)(z2 y2). ..,
where {z1,y1},{z2,y2},... are pairwise different blocks of €. They belong
to Inv(m,e) and thus a(m) > 2™. Hence a(m) = 2™. |

2 4 6 8 10 12 14 16 18 20
a(m) |2 6 20 76 312 1384 6512 32400 168992 921184




244 E. JERABEK, T. KEPKA AND D. STANOVSKY

For every semipairing € on X there is a unique mapping o. € Inv(X, ) such
that (z,0:(x)) € € and o.(x) = x iff {x} is a one-element block of €. It is easy
to see that idx and o, are right zeros in Inv(X, ¢) and that idx * ¢ = ¢ and
0e x @ = ¢ for every ¢ € Inv(X,¢). Let Inv™ (X, ¢) = Inv(X,e) \ {idx,0:}.
Clearly, it is either empty, or a left ideal of Inv(X,¢).

Finally, let Aut(G) = {¢ € Aut(G) : p? = id}. If G is an LSLD
groupoid, then Auts(G) is a subgroupoid of Inv(G,ipg), Ly € Auta(G)
for every x € G and the mapping x +— L, is a homomorphism of G into
Auty(G). Let Aut, (G) = Auta(G) NInv™ (G, ipg).

Proposition 3.2. Let G be an SI non-idempotent LSLD groupoid with at
least one idempotent element. Then the mapping

n:Idg — Aute(Kg), a— Lq| kg

1 an injective homomorphism.

Proof. It follows from Lemmas 1.1 and 2.1(3). |

Corollary 3.3. Let G be an SI LSLD groupoid with |Kg| =m # 0. Then
[Idg| < a(m) and |G| < alm)+m.

It will be shown in the next section that the upper bound on |Idg| is best
possible.

4. A DESCRIPTION OF SUBDIRECTLY IRREDUCIBLE LSLD GROUPOIDS

Lemma 4.1. Let K be an idempotent-free LSLD groupoid and I a sub-
groupoid of Auty(K). Put G = I UK. Then the following conditions are
equivalent.

1. The operations of I and K can be extended onto G so that G becomes
an LSLD groupoid with ¢ -u = p(u) for allp € I, u € K.

2. LypLy €1 forallpel, ue K.
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Moreover, if the conditions are satisfied, the operation of G is uniquely
determined and v - ¢ = Ly,pL, for all p € I, u € K.

Proof. Clearly, up € I = Idg for every u € K, ¢ € I. Since u(pv) =
(up)(uv) for every u,v € K, ¢ € I, we have L,(p(v)) = (up)(Ly(v)) and
thus up = Lyp(Ly,)~! = Ly@L,. Indeed, this is possible, iff L,oL, € I for
all p € I, u € K. We omit the straightforward calculation showing that the
resulting groupoid G is LSLD. [

The groupoid G from Lemma 4.1 will be denoted by I U K. The groupoid
Aute(K) U K will be called the full extension of K and denoted Full(K).

TIUK| o v

© oY p(v)
U LyyL, v

Theorem 4.2. Let G be an SI non-idempotent LSLD groupoid. Then there
exists an injective homomorphism n : G — Full(Kg) such that

n(u) =u for everyu € Kg  and n(a) = Lq|k, for every a € Idg.
Thus G is isomorphic (via n) to the subgroupoid n(Idg)U K¢ of Full(Kq).

Proof. 1t is straightforward to check that n is a homomorphism and it is
injective according to Proposition 3.2. [

Remark. Let K be an idempotent-free LSLD groupoid and assume the set
S of SI subgroupoids G of Full(K) with Kg = K. The set S is non-empty,
iff Full(K) € S; in this case, the set S has minimal elements, say Hy, ..., Hy,
and it follows from Proposition 2.2 that G € S, iff G is a subgroupoid of
Full(K) and H; C G for at least one 1 < i < k.

Theorem 4.3. The following conditions are equivalent for an idempotent-
free LSLD groupoid K :

1. There exists an SI LSLD groupoid G with Kg = K.

2. The groupoid Full(K) is SI.
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3. The groupoid Full™ (K) is SI.

4. If p is a non-trivial Aute(K)-invariant congruence of K, then ipg C p.

Proof. The implication (1) = (2) follows from Proposition 2.2, (2) = (3)
follows from Lemma 2.5 and (3) = (1) is trivial.

Now, assume that (4) is true and let o be a non-trivial congruence of
Full(K). If o|x # idk, then ipx C o by (4) and thus Full(K) is SI. So
assume that p = o|g = idg. If (p,9) € o for some p,1p € Aute(K),
@ # 1), then there is at least one u € K with ¢(u) # ¥ (u) and we have
(p(u),1(u)) € p, a contradiction. Thus (p,u) € o for some ¢ € Auty(K),
u € K. In this case, (p,uu) € o and so (u,uu) € p, a contradiction again.

Finally, assume (2) and consider a non-trivial Auty (K )-invariant congru-
ence p of K. Define a relation o on Aute(K) by (¢, ) € o iff (p(u), ¢ (v)) € p
for every pair (u,v) € p. According to Lemma 1.8, p U o is a congruence of
Full(K') and so ipx C p. |

A groupoid K satisfying the conditions of Theorem 4.3 will be called pre-SI.

Example. Let € be a pairing on a non-empty set K. We equip the set K
with an operation such that L, = oc for every u € K. Clearly, K is an
idempotent-free LSLD groupoid and Auty(K) = Inv(K,¢). Using Theorem
4.3, we prove that K is pre-SI and thus G = Full(K) is an SI LSLD groupoid
of size a(|K¢q|) + |Kq| (cf. Corollary 3.3).

Let p be a non-trivial Aute(K)-invariant congruence on K. We claim
that ipx = 0. C p. Indeed, if (u,0x(u)) € p for some v € K, then for
every v € K the involution ¢ = (u v)(ox(u) ox(v)) belongs to Aute(K)
and thus (v,0x(v)) € p. Thus ipx C p. On the other hand, if (u,v) € p,
u # v # o (u), then the involution ¢ = (v ox (v)) belongs to Aute(K) and
thus (u,o(v)) = (¢¥(u),¥(v)) € p and so (v, 0(v)) € p.

Example. Consider the following four-element groupoid K.

K |00 11
0,0/0 0 1 1
1,1/0 0 1 1
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One can check that K is an LSLD groupoid, Auty(K) =
{idg, (0 0),(1 1), (0 0)(1 1)} and the relation p = {(0,0), (0,0)} U idx is
an Auty(K)-invariant congruence of K. However, ipx ¢ p and thus K is
not pre-SI.

5. FEW IDEMPOTENT ELEMENTS

In this section, let G be a finite SI non-idempotent LSLD groupoid with
Idg # 0 and r, s, a, 3 will denote non-negative integers.

Let n = |Idg| and 2m = |Kg|. We put Ki(a) = {u € K¢g : au = u},
Ks(a) ={u € K¢ : au = uu} and K3(a) = Kg ~ (Ki(a) U K3(a)) for every
a € Idq.

Lemma 5.1. |Ki(a)|, |K2(a)| are even numbers and |Ks(a)| is divisible
by 4.

Proof. |Ki(a)|is even, because u € Kj(a), iff uu € K;(a) (and analogously
for |K2(a)|). Furthermore, the sets {v,vv,av,a - vv}, v € K3(a), are four-
element and pairwise disjoint. [

Let r(a) = 3|Ki(a)| and s(a) = %|Ks(a)|. Hence m — r(a) — s(a) is a
(non-negative) even number.

Lemma 5.2. r(za) = r(a) and s(xa) = s(a) for all a € Idg, x € G.

Proof. If v € Ki(a), then za-zv = z-av = zv and so zv € Kj(za).
Conversely, if w € Kj(za), then zw = z(za - w) = (z - za)(zw) = a - zw
and so zw € Kj(a). Thus L, maps bijectively K(a) onto Ki(za) and, in
particular, r(a) = |Kj(a)| = |K1(za)| = r(za). Analogously, s(a) = s(za).

|
Let I(r,s) = {a € Idg : r(a) = r,s(a) = s}. Indeed, if I(r,s) # 0, then
m — r — s is a non-negative even number. It follows from Lemma 5.2 that
I(r,s) is either empty, or a left ideal of G.

Lemma 5.3.

1. If r >m and I(r,s) # 0, thenr =m, s =0 and |I(r,s)| = 1.

2. If s>m and I(r,s) # 0, thenr =0, s =m and |I(r,s)| = 1.
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Proof. (1) Since m > r + s, we have r = m and s = 0. Consequently,
I(r,s) = I(m,0) = {a € Idg : au = u for every u € Kqg}, and hence
|I(r,s)] = 1 by Lemma 2.1(3). (2) is analogous. |

Let K(r,s,a, ) be the set of all u € K¢ such that [{a € I(r,s) : u €
Ki(a)}| =a and [{a € I(r,s) : u € Ky(a)}| = 0.

Lemma 5.4. Fither K(r,s,a,3) =0, or K(r,s,«a,3) = Kg.

Proof. Assume that J = K(r,s,«, 3) # (. We prove that J is a left ideal.
Since a - xu = zu iff xa-u = u for every u € J, x € G, a € Idg, we have
Ly({b € I(r,s) : b-au = zu}) = {c € I(r,s) : cu = u} (use the fact that
I(r,s) is a left ideal) and, in particular, [{b € I(r,s) : zu € K1(b)}| = «.
Similarly, |{b € I(r,s) : zu € K3(b)}| = § and thus zu € J. Consequently,
J = K¢ by Lemma 2.1(1). |

Consequently, for every r, s there is a unique pair («, ) such that K(r, s, «, 3)
= K¢ and K(r,s,o/, ") = 0 for all (¢/,5") # («, 3).

Lemma 5.5. If K(r,s,«a,3) = Kg, then am = rt and fm = st, where
t=1I(r,s)|.

Proof. Since [{a € I(r,s):au=u}| =« and |{a € I(r,s) : au = uu}| =
for every u € K¢, we have |L| = 2am, where L = {(a,u) € I(r,s) x Kg :
au = u}. On the other hand, |L| = 2rt by the definition of I(r,s). Thus
am = rt. Considering the set {(a,u) € I(r,s) x Kg : au = uu}, a similar
proof yields fm = st. [

Lemma 5.6. If K(r,s,«a,3) = Kg, I(r,s) # 0 and the numbers m and
t = |I(r,s)| are relatively prime, then just one of the following cases takes
place:

l.r=s=a=0=0.
2.r=m,s=0,a=1,8=0andt=1.
3.r=0,s=m,a=0,8=1andt=1.

Proof. By Lemma 5.5, am = rt and fm = st. If r = s = 0, then obviously

a=pF=0. If r > 1, then m divides r and thus » > m. If s > 1, then m
divides s and thus s > m. In both cases, Lemma 5.3 applies. [
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Proposition 5.7. If I(r,s) # 0, r +s > 1 and the numbers m and t =
|I(r,s)| are relatively prime, then G contains a right zero.

Proof. Choose a, 3 such that K(r,s,a,3) = Kg. It follows from Lemma
5.6 that ¢ = 1 and thus I(r, s) consists of a right zero. |

Proposition 5.8. If m is not divisible by any prime number p € {2,...,n—
2,n}, then either G contains a right zero, or n = 3, m is even and u # au #
uu for all a € Idg, u € Kq.

Proof. If n =1, then Idg = {a} and a is a right zero; so we may assume
that n > 2. Obviously, if I(r,s) = 0 for all r,s with r + s > 1, then
u # au # wu for all a € Idg, u € Kg, and thus m is divisible by 2 according
to Lemma 5.1. Consequently, 2 =n — 1 and thus n = 3.

So assume that there are r, s such that r +s > 1 and t = |I(r,s)| > 1.
If m and t are relatively prime, then Lemma 5.7 yields the result. If p is
a prime dividing both m and ¢, then p < ¢t < n, and therefore p = n — 1,
t =n—1 and the only a € Idg ~\ I(r,s) is a right zero. |

Theorem 5.9. Let G be a finite SI non-idempotent LSLD groupoid with
|Kg| = 2m > 4 and let p be the least prime divisor of m. If |Idg| < p,
then either Idg contains precisely three elements which are not right zeros,
or every element of Idg is a right zero and thus |Idg| < 2 and Kg is
subdirectly irreducible.

Proof. Let H= G~ A, where A is the set of all right zeros of G. According
to Corollary 2.8, H is an SI LSLD groupoid with no right zeros. However, if
Idy # 0, then H contains a right zero by Proposition 5.8, a contradiction.
The rest follows from Corollary 2.8 too. ]

6. SMALL SUBDIRECTLY IRREDUCIBLE LSLD GROUPOIDS

In this section we apply the theory developed above to search for small SI
non-idempotent LSLD groupoids. The procedure for finding all SI LSLD
groupoids G with m > 0 non-idempotent elements follows.

1. We find all F-element LSLDI groupoids.
2. We find all m-element idempotent-free LSLD groupoids by extending

groupoids found in the first step and check which of them are pre-SI
(using Theorem 4.3).
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3. For each pre-SI groupoid K found in the second step, we characterize
subgroupoids I of Aut;, K with the property 4.1(2) and check which
I U K are subdirectly irreducible.

4. Each SI LSLD groupoid found in the third step can be extended by
idg, og, none or both (see Corollary 2.7).

Two non-idempotents. Let G be an SI LSLD groupoid with |Kq| = 2.
Then Ko ~ T and Idg is either empty, or isomorphic to a subgroupoid of
Auty(T) = Inv(T, ipt) = {idT,or}. Hence

are the only (up to an isomorphism) SI LSLD groupoids with two non-
idempotent elements.

Four non-idempotents. Let G be an SI LSLD groupoid with |K¢g| = 4.
Then K¢ /ipk,, is isomorphic to S, the only two-element LSLDI groupoid.
Clearly, the following groupoids Kj, Kj, K3 are the only (up to an

E. JERABEK, T. KEPKA AND D. STANOVSKY

T, T[idT], T[OT] and T[idTHOT[idT]]

isomorphism) 4-element idempotent-free LSLD groupoids:

Ky |0 0 1 Ky |0 1 K3 |0 0
0,0/0 0 1 0,00 1 0,0/0 0
1,1[0 0 1 1,1/0 0 1 1 1,110 0

K and K are pre-SI, K3 is not (see the last example in the fourth section).
Hence K¢ is isomorphic to one of K;, Ky. Now, we designate a = (0 0 ,
b=(11),c=(01)(01),d=(01)0 1) the elements of I = Aut, (K;) =
Aut; (K3). The multiplication table of I is

ITla b c d
ala b d c
bla b d c
clb a ¢ d
dlb a ¢ d
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Thus I contains three non-trivial subgroupoids I1 = {a,b}, Io = {¢,d} and
Is ={a,b,c,d}. Neither K nor K is SI. Since both I; LI K, I LI K3 contain
the left ideal {0,0}, they are not SI. In I, LI K1, the element ¢ is a right zero,
because L, = ok, for every x € K, and thus LycL, = c; so Iy Ll K is not
SI by Corollary 2.8. On the other hand, it is easy to check that I LI Ko,
I3 U K7 and I3 L K5 are SI.

Proposition 6.1. There are 12 (up to an isomorphism) SI LSLD groupoids
with four non-idempotent elements:

IsUKy, IbUKy, I3l Ky

and their extensions by right zeros.

Six non-idempotents. Let G be an SI LSLD groupoid with |K¢g| = 6.
Then K¢ /ipk,, is isomorphic to one of Sy, Sa, S3 (see the list of three-
element LSLDI groupoids in the introduction). Se cannot be isomorphic to
K¢ /ipk,,, because the ipg,,-block corresponding to the element 0 of Sy is
always a proper left ideal inside K (every automorphism of G preserves
this block), a contradiction with Lemma 2.1(1). Now, one can check that
the following groupoids Ky, K5, Kg, K7 are the only (up to an isomorphism)
6-element idempotent-free LSLD groupoids such that their factorgroupoid
over ip is one of S, Sg.

K,|0 011 2 2 Ks[0 0112 2
0,0/]0 01T 12 2 0,0{0 01 1 2 2
1,10 01T 12 2 ,L1lo 0 1 1 2 2
2,200 01 1 2 2 220 01 1 2 2

3
]
o
—
—
\)
[\

K.[00 112 2

0,0/0 02 21 1

(a]
vCD
S DA
[a)
[
—
[\)
[\)

0112 2 1,112 2 1 1 0 0

!
!
!
!

2,2/0 01 1 2 2 2,21 100 2 2
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K, and K5 are pre-Sl, K4 and K7 aren’t. Hence K¢ is isomorphic to one
of K4, K5. One can compute that I = Inv™ (K4, ipk,) = Aut, (K4) =
Aut; (K5) contains the following non-trivial subgroupoids:

L={(7):2=01,2),
L={(z2)(yy) :2,y=012 z#y}

I3y ={(z y)(Ty) : 2,y =0,1,2, x #y},

Iz ={(01)(01),(02)(02),(12)(12)},

Iz ={(01)(01),(12)(T2),(02)(02)},

Ia={(02)(02),(12)(12),(0 (0 D)},
L={(zy)(Zy),(zy)(Ty)z,y=0,1,2, x #yt=1I31 Ulz2UIl33UI34,

Ly ={(z 9)(@ y)(z 2) : {z,y, 2} = {0,1,2}},

Iy = {(0 1)(01)(22),(02)(0 2)(1 1), (1 2)(T 2)(0 0)},

Iy = {(0 (0 1)(22),(1 2)(T 2)(0 0), (0 2)(0 2)(1 1)},

Iy = {(02)(02)(1 1), (1 2)(T 2)(00), (0 1)(0 1)(2 2)},

Is ={(z y)(Z y)(z 2), (x y)(@ Y)(z 2) :{z,y,2} ={0,1,2} } =141 U- - - Ulyy,
I3,’L' U I4,’L'7 1= 1> 27 3747
all unions of Iy, I, I, I4.

Clearly, ’Il‘ = ‘IQ’ = ’1371" = ‘14’1" = 3, 1= 1,. . .,4 and ‘13’ = ‘14‘ = 6. NOW,
none of K4, K5 is SI. The following table shows, which of J U Ky, J U K5
(J a subgroupoid of I) are subdirectly irreducible. (An empty space means
it does not satisfy the condition 4.1(2).)
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U (1 Ip I3sn Is2,133,134 I3 Iyn la2, 143,144 Iy
Ky| - — = - + - — +
U1 ULy I, Uly; L UD LU LULUL 1
1=2,3,4 i#7, iy #{L2} i#jFkFA
Ky - - - + + +
K5 - + + +

Proposition 6.2. There are 96 (up to an isomorphism) SI LSLD groupoids
with six non-idempotent elements: the 24 without right zeros described in the
table above and their extensions by right zeros.

The following table displays the number of SI LSLD groupoids with 2, 4 and
6 non-idempotent elements and a respective number of idempotent elements.

345 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

2 3 4 2
0 0 048 48 16 8 6 12 6 4 8 4 2 4 2

o o = O
S O N
O = =N

More non-idempotents.

Lemma 6.3. Let G be an SI LSLD groupoid with |Kq| = 8. Then Kq/ipk,,
1s isomorphic to one of Ry, Ro.

R0 1 2 3 Ry |0 1 2 3
0]0 1 2 3 0101 3 2
1101 2 3 1 /01 3 2
2101 2 3 2|1 0 2 3
3101 2 3 311 0 2 3
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Proof. For every u € K¢, let t(u) be the number of v € K¢ such that
wv € {v,vv}. We have t(u) = t(zu) for every z € G (because zy -z = 2
iff y -2z = xz), hence the set {u € Kg : t(u) = t} is a left ideal of G
for every t. Consequently, there is ¢ such that t(u) = t for every u € Kg
(see Lemma 2.1(1)) and thus all left translations in R = Kg/ipk, have the
same number % of fixed points. Let us denote the elements of R by 0,1,2,3.
Clearly, % > 1 is an even number. If % = 4, then R is the right zero band
Ry. Otherwise % = 2 and we may assume that 0,1 are the only fix points of
Lo, ie., Lop=(23). Then1-0=(0-1)(0-0) =0(1-0) (left distributivity)
and hence 1-0 is a fix point of Ly. Therefore 1-0 = 0 and so L1 = Lg. Now,
L2.0 = L2LOL2 == L2L1L2 = L2.1. Since LQ(O), Lg(l) 75 2 and LO = Ll 75 L3
(because Ly(3) # L3(3)), we have {2-0,2-1} = {0,1}. Hence Ly = (0 1),
because it has two fixed points. Analogously also L3 = (0 1). ]

Proposition 6.4. There is no SI idempotent-free LSLD groupoid with 8
elements.

Proof. Since both R;, Ry contain proper left ideals, so does any 8-element
ST idempotent-free LSLD groupoid, a contradiction with Lemma 2.1(1). m

Lemma 6.5. Let G be an SI LSLD groupoid with |Kg| = 10. Then Kq/ipk,,
1s isomorphic to one of R3, Ry.

R3O0 1 2 3 4 Ry|0 1 2 3 4
0101 2 3 4 010 2 1 4 3
1 (01 2 3 4 1 (3 1 4 0 2
2101 2 3 4 214 3 210
3101 2 3 4 312 40 31
4101 2 3 4 411 0 3 2 4
Proof. Proceed similarly as in the proof of Lemma 6.3. [

Proposition 6.6. There is no SI idempotent-free LSLD groupoid with 10
elements.
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Proof. Assume that K = {0, 0,1,1,2,2,3,3,4 Zi is an idempotent- free
LSLD groupoid, where blocks of ipx are the sets {k, k} for every k = 0, .

Then K/ipx ~ R4 and without loss of generality we put 0-1 = 2,0- 3 = 4
1- 2—4 1-0=3. Then 1- 0—3 1-2 = 4 and thus 2- 0—4 2- 1—3 because
Ly is an automorphism. Also 3-0 = 2, 2-1= 4, 4-0= 1, 4-2= 3, because
Lg is an automorphism, and the operation on K is determined. We see that

Hence K is not subdlrectly 1rreduc1ble. [

Proposition 6.7. The following groupoid is the smallest SI idempotent-free
LSLD groupoid with more than two elements.

Kg|(0 0112 2 3 3 4 455

0,0f0 01 1 445 5 2 2 3 3

1,110 0 1 1 55 4 4 3 3 2 2

2,214 45522330011

3,3/ 54 42 2331100

4,412 23300114455

5913 3 2 211004 45 5

Proof. Subdirect irreducibility of Kg can be checked easily from the
multiplication table and non-existence of a smaller one was proved above. ®

7. THE GROUP GENERATED BY LEFT TRANSLATIONS

In the last section, we find another criterion for recognizing that a groupoid
is not SI or pre-SI.

Let G be an LSLD groupoid. We denote L(G) the subgroup of Aut(G)
generated by all left translations in G. For a subset N of L(G) we define a
relation py by (z,y) € pn, iff there exists ¢ € N such that p(z) =

Lemma 7.1. Let G be an LSLD groupoid and N a normal subgroup of
L(G). Then py is a congruence of G.
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Proof. Clearly, py is an equivalence on G. Let (z,y) € py and z € G.
We have yz = ()2 = Ly Lo(22) = Ly~ ' Ly(22), and so (22,yz) € pn
via the automorphism ¢L,o 'L, € N. Further, zy = zp(z) = 2p(z - zz) =
L.pL.(zx), and so (zx, zy) € py via the automorphism L,pL, € N. [

Proposition 7.2. Let G be an SI non-idempotent or a pre-SI idempotent-
free LSLD groupoid and let N be a non-trivial normal subgroup of L(G).
Then for every u € G there exists ¢ € N such that o(u) = uu.

Proof. If G is SI non-idempotent, then ipg C py, because py is a non-
trivial congruence. If G is pre-SI idempotent-free, one must check (in a
view of Theorem 4.3) that py is also Auty(G)-invariant. If (z,y) € pn,
(@) = y, and § € Auty(G), then (Yt )(¥(x)) = Yip(x) = B(y), and
thus (¢(z),v¢(y)) € pn via the automorphism 1y~ € N. |

Example. Recall the groupoid K3 from the previous section. It is easy to
calculate that L(K3) = {id, (0 0), (1 1), (0 0)(1 1)}, and thus N = {id, (0 0)}
is a normal subgroup. However, there is no ¢ € N such that ¢(1) = 1, hence
K3 is not pre-SI by Proposition 7.2.

Remark. Let G be a simple LSLD groupoid. Then the subgroup of L(G)
generated by all L,L,, x,y € G, is a smallest non-trivial normal sub-
group of L(G) and thus L(G) is subdirectly irreducible. This is a result of
H. Nagao [6] and it can be proved similarly. However, due to Corollary 1.3,
it is interesting in the idempotent case only.
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