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Abstract

The class of all M-solid varieties of a given type 7 forms a
complete sublattice of the lattice L£(7) of all varieties of algebras
of type 7. This gives a tool for a better description of the lattice
L(7) by characterization of complete sublattices. In particular, this
was done for varieties of semigroups by L. Poldk ([10]) as well as by
Denecke and Koppitz ([4], [5]). Denecke and Hounnon characterized
M-solid varieties of semirings ([3]) and M-solid varieties of groups
were characterized by Koppitz ([9]). In the present paper we will
do it for varieties of m-semigroups. An n-semigroup is an algebra of
type (n), where the operation satisfies the [i, j]-associative laws for
1 <4< j < n, introduced by Dortnte ([2]). It is clear that the notion
of a 2-semigroup is the same as the notion of a semigroup. Here we
will consider the case n > 3.
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1. INTRODUCTION

Let 7 be a fixed type of algebras, with fundamental operation symbols f;
of arity m;, for i« € I. A hypersubstitution of type 7 is a mapping which
associates to every operation symbol f; an n;-ary term o(f;) of type 7. Let
W-(X) be the set of all terms of type 7 on an alphabet X := {z1 z2,x3,...}.
By W-(X,) (Xp :={21,,...,2,}) we denote the set of all n-ary terms, n > 1.
For 1 < m,n € N we define an operation S, : W, (X,) x W (X,)" —
W.(X,,) inductively as follows: For (t1,...,t,) € W, (X,,)" we put:

(i) SP(xit1,... ty) :=1t; for 1 <i<m;

(ii) Sﬁl(fi(sl,...,Sni),tl,...,tn) = fl‘(S;%(Sl,tl,...,tn),...,Sg’l(Sni,tl,
cutp)) for i€l sy,..., sy, € Wi(X,) where S} (si,ti,...,t,),

ooy S (S, t1, .., ty) Will be assumed to be already defined.

Any hypersubstitution o can be uniquely extended to a mapping & on

W, (X) inductively as follows:
(i) ow] :== wforw € X;

(ii) G[fi(tl,...,tm)] = S%(U(fz),a[tl],,a[tnl]) for i € I,th...,tni
€ Wi (X,,) where a[ti],...,0[tn,] will be assumed to be already
defined.

A binary operation oj, can be defined on the set Hyp(7) of all hypersub-
stitutions of type 7, by letting o1 oy, 09 = 01 o 02, where o is the usual
composition of functions. The set Hyp(7) is closed under this associative
operation. It also contains an identity element for op, namely the identity
hypersubstitution o;4 which maps every f; to fi(z1,...,%n,). Thus Hyp(r)
is a monoid.

Now let M be any submonoid of Hyp(7). A variety V is called M-solid
if for every 0 € M and every identity u ~ v in V, the identity o[u] ~ 7[v]
holds in V. When M is the whole monoid Hyp(7), an M-solid variety
is called a solid variety. Two hypersubstitutions o1, o9 are said to be
V-equivalent if for every operation symbol f; of type 7, o1(fi) = oa(fi)
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is an identity in V. In this case we write o1 ~y o2. In [11] it was proved
that if o1[s] ~ @1[t] is an identity in V for given terms s,t € W,(X) and
o1 ~y o9 then o2[s] ~ 02[t] is an identity in V. Therefore, at most one
element from each equivalence class of ~y is needed to test the M-solidity.
The motivation of studying M-solid varieties comes from following result
of Denecke and Reichel in [6]. For each monoid M of Hyp(r), the collection
of all M-solid varieties of type 7 forms a complete lattice, which is a complete
sublattice of the lattice £(7) of all varieties of type 7. This lattice £(7) is
in general large and complicated, and difficult to study, and the M-solid
sublattices give us a way to study at least some of its sublattices. Thus
it may be useful to study the monoid Hyp(7) and its submonoids M and
the corresponding M-solid varieties, both in general and for specific type
7, and the intersection of the lattice of all M-solid varieties with a fixed
variety of type 7. For specific types, much work has been done for type 7 =
(2), and in particular for varieties of semigroups. L. Poldk ([10]) has given
a characterization of the lattice of solid semigroup varieties, and various
authors have studied M-solid semigroup varieties for various choices of M.
Moreover, for type 7 = (2,2), in [3], all solid varieties of semirings are
determined and, for type 7 = (2,1,0), J. Koppitz ([9]) determined M-solid
varieties of groups. More informations about hypersubstitutions, one can
find in [8].
Our goal in this paper is a similar investigation for type (n), for n > 3. Only
a few solid varieties of type (n) have been known (see [1] and [7]). We will
consider the concept of an n-semigroup, which is a natural extension of the
concept of a semigroup. An n-semigroup is an algebra of type (n), where
the n-ary operation satisfies the [i, j]-associative laws

1o i1 (X oo Tin—1) T - - - Top—1 R
1. Zj1(Xj ... Tjgpn—1)Tjqn ... Tan—1, for 1 <i<j<n.

Each n-group is an n-semigroup (see Dérnte [2]). Each semigroup (S;-)
induce an n-semigroup in the following way: Let f, : S — S be defined
by fn(ai,ae,...,ay) :=ai-as-...-a, (we use the binary operation - of the
given semigroup). Since - is associative, f, satisfies the [i, j|-associative laws
for 1 <i<j<m,ie., (S;f,) is an n-semigroup. Clearly, in the case n = 2
we have the [1,2]-associative law (x1z2)xs ~ x1(x223). So the notion of a
2-semigroup is the same as the notion of a semigroup.

We also introduce the monoids NPer(n) and Pre(n) and give a
characterization of all N Per(n)-solid as well as all Pre(n)-solid varieties of
semigroups.
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2. HYPERSUBSTITUTIONS OF TYPE (n)

In this section we present some background information about hypersubsti-
tutions and varieties of type (n), and introduce the special monoids we shall
be studying. We assume throughout a fixed type (n), with n > 3, so we have
one n-ary operation symbol which we shall denote by f. For ¥ any set of
identities of type (n), we will denote by Mod(X) the variety determined by
the set 2 and by IdV we denote the set of all identities which hold in a given
variety V. Because of the [i, j]-associative laws, 1 < i < j < n, a term over a
variety of n-semigroups can be regarded as a word of the length (n—1)r+1
for a suitable natural number r. By [(¢t) we denote the length of a given
term ¢ € W,)(X) and var(t) means the set of variables occurring in ¢. By
cv(t) we mean the cardinality of var(t). For example, if t = f(x1,...,21)
then [(t) = n, var(t) = {z1}, and cv(t) = 1. An identity u ~ v is said
to be normal if u = v or both terms u and v are different from a variable.
Since any hypersubstitution ¢ in Hyp(n) is completely determined by what
it does to f, we will denote by o; the hypersubstitution which maps f to
the term ¢. For convenience, we list here some sets of terms and varieties of
type (n) that we shall discuss later:

W(:Lf)(Xn) be the set of all t € W,)(X,) containing a subword s with

n=1(s) > cv(s);

Wb (X) = {t € Wy (X) | 1(t) > co(t)};

Vn = MOd{:L‘l 1T X141 X4 2T 543 - - - T2n—1 | 1<i< 2n—3};

Wi = Mod{t ~ z" | t € W(,y(Xp), n = 1(t) > cv(t)};
V, = ‘7” N Wn
It is easy to verify that there is no nontrivial solid variety of n-semigroups.

Theorem 1. For each natural number n > 3 there is not nontrivial solid
variety of n-semigroups.

Proof. Let V be a solid variety of n-semigroups. Then o4,[(x1...2p)
Tptl e Top—1] R Ogy|T1 oo Tp1(Tp - .. Top—1)] € [dV ie., Tyt = xo € 1[dV
and V is the trivial variety of type (n). [ |
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A hypersubstitution o is called a pre-hypersubstitution if o(f) is not a
variable. The set Pre(n) of all pre-hypersubstitutions forms a submonoid
of the monoid Hyp(n) of all hypersubstitutions of type (n). A variety of
n-semigroups is called presolid if it is M-solid for M = Pre(n). Note
that any solid variety is also presolid. By S, we will denote the set of
all bijections on the set {1,...,n}. For m € S,, the hypersubstitution o
with o(f) = f(¥za),---sTr(n)) Will be denoted by 0. We will use the
following notations of sets of hypersubstitutions:

Pre(n) := Hyp(n) \ {0z, | 1 <i < n} the set of all pre-hypersubstitutions;
Per(n) :={ox | m € Sp};

Nper(n) :={oy |t € ng; (Xn)}U{oia}-

Proposition 2. For 2 <n € N, Nper(n) forms a monoid.

Proof. We have to check that o1 o 09 € Nper(n) for any o1,09 €
Nper(n). For this let 01,09 € Nper(n). Then there are r, t € W(:LS (X,) such
that o1(f) = r and o2(f) = ¢. In particular, r contains a subword s with
n =1(s) > cv(s). Further, 71 [t] contains a subterm S} (r, x;,, ..., x;,). Since
r contains a subword s with n = I(s) > cv(s), the term S} (r,x;,,...,%;,)
contains a subword s with n = I(5) > cv(s). Consequently, &1[t] contains
the subword s with n = I(5) > cv(5), i.e., 01 op 02(f) = 01[t] € W(ZS(Xn)
and thus o1 o, 09 € Nper(n). |

3. PRESOLID VARIETIES OF n-SEMIGROUPS

We begin the investigations of presolid varieties of n-semigroups by looking
for a variety that contains all presolid varieties.

Proposition 3. Let 3 < n € N and V be any Pre(n)-solid variety of
n-semigroups. Then V C V.

Proof. Let m € S, with 7(1) =2, 7(2) = 1 and 7(k) = k for 3 < k < n.
If we apply o, to the [1,n]-associative law we get z,i1xex173...
TpTpt2 -« Top—1 N TL1L3 -+ - Tpp1TnTn+2Tn43 - - - Ton—1 € IdV since V is
Pre(n)-solid. By suitable substitution we get z1...%xo,—1 & T2...TpT]
Tptl...Top—1 € IdV. If n > 4 then the application of o, to the [3,4]-
associative law gives Tox1X4T3T5 ... Ton_1 & ToT1T3T5TLTE - - - Top—1 € IdV.
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Both identities together provide z1...Top—1 = X1...T;—1Ti11Tiq2
TiTits...Top—1 € IdV for 1 <i<mn—2. Let p € S,, with p(2n—1) = 2n—2,
p(2n —2) = 2n —1 and p(k) = k for 1 < k < 2n — 3. Dually, then the
application of o, to the [1, n]-associative law as well as to the [n —3,n — 2]
associative law (if n > 4) provides identities from which we can derive
Tl Xopel R T] .« Tim1Tip1Ti42TTi43 « - - Top—1 € IdV forn <i<2n-—3.
Finally, we have

T1...T2n—1

~

~N Tl Tp—1Tp41Tn42TnTnp+3 - - - T2n—1

~

NI T4l Tn—2Tn—1Tn42LnTn43 - - - L2n—1

~

NI T4l Tn—2TnTn—1Tn+2Tn43 - - - L2n—1

~

RX1.. Tn2TnTn+l1Tn—1Tn+2Tn+3 - .- Lon—1, L.€.,

T1.e Tl L] - T2 Tyt 1Tn—1Tn42Tn+3 - - - Lop—1 € 1dV.

Altogether we have x1...%Top_1 &= 1 ... Ti—1%i41%i42%;Ti43 . - - Top—1 € 1dV
for 1 <i<2n-—3. [ |

Now we will determine identities satisfying by presolid varieties.

Lemma 4. Let 4 < n € 2N and V be any Pre(n)-solid variety of
n-semigroups. Then x1...%Topn—1 = Tr(1) .- Tr(2n—1) for all m € So,_1.

Proof. Let m € So,_qwith 7(1) = 2, n(2) = 1 and n(k) = k for
3 <k < 2n—1. If we apply o, to the [1,n]-associative law we get
Tpt1T2T1T3 - . . Tnlnt2 - . Loan—1 ~ TITIL3...Tntl1TnTnt2 ... Top—1 € IdV
since V' is Pre(n)-solid and by suitable substitution we obtain

(1) T1...Z2p—1 " T2...TpT1Tnt1-.-T2n—1 € Idv.

By Proposition 3 we have V C ‘N/n Using the identities of ‘7'” we get
L9 .. . TpX1Tptl . Top—1 = ToT1T3...Top—1 € IdV (since m is a even
number). Together with (1) we obtain 1 ... xo,_1 R x2x123 . .. Top_1 € IdV.
It is easy to see that one can derive z1...T2,-1 & Tr(1) ... Tr(2,—1) for all

T € Sop_1 from x1...ZTop_1 & X22123 ... To,—1 and the identities of V,,. m
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Lemma 5. Let3<neN,2n—1<pe (n—1)N+1 and V be a variety
of n-semigroups with V- C V,,. Then for each m € S, holds

Tr(1) -+ Tr(p) B T1...Tp € 1dV or

Tr(1) - Tr(p) N T2T173 ... Tp € [dV.

Proof. Let m € 5,. We consider the term Z.(1) ... 2, and move step by
step Tp, Tp—1, . - -, 3 to the p (p— 1)t ... 3" position using the identities
of Vn Then we have on the first both positions xixy or xox1. This shows
Tr1) - Tr(p) X T1...Tp € 1AV OF Ty ... Tr(p) R T2x123...0p € [AV. ™

It is easy to check that Nper(n) C Pre(n). So, any presolid variety has to
be Nper(n)-solid. Next we find the lattice of all Nper(n)-solid varieties of
n-semigroups.

Lemma 6. Let 3 < n € N and V be any variety of n-semigroups with

V CV,. Then for eacht € W&’;(X) holds t =~ z™ € IdV.

Proof. Let t € ng; (X). Then there is a variable w € X that occurs
at least two times in t. If I(t) = n then I(t) > cv(t) and t ~ z" € IdV
since V. C W,,. Suppose now that [(t) > n. Using the identities of Vi
we can move w on the first and the second position, respectively, i.e., t &
wwug ... uyg) with ug, ...,y € X. Since zimz3... .20 & 2" € IdV we
have wwus . .. up—1(Up . ..ul(t)) ~ " e IdV,ie., t~ 22" e IdV. [

Lemma 7. Let 3 <n € N and V' be any nontrivial variety of n-semigroups
with V. C W,,. Then only normal identities hold in V.

Proof. Assume that a non-normal identity u ~ v holds in V. Then u # v
and one of the terms u and v is a variable. Without loss of generality let u be
a variable. Since V' is a nontrivial variety the term v (# u) is not a variable.
Then by substitution we get y ~ 3"} € IdV where I(v) > 1. Clearly,
I(v) = r(n—1)+1 for some natural number r > 1. From 2y~ ! ~ 2" € IdV
it follows y" D+ &~ 2n e 14V, ie., y'@) ~ 2" € IdV. But y ~ ') and
y' @) ~ 2" provide = ~ y, and V is the trivial variety, a contradiction. [

Proposition 8. Let 3 <n € N. A nontrivial variety V' of n-semigroups is
Nper(n)-solid iff V- C W,,.
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Proof. Assume that V is Nper(n)-solid. We have t; := xlxg_l € ng (Xn),

i.e., 0y, € Nper(n) and its application to the [1, 3]-associative law gives

(1) mlscg_leﬁ ~ rizhy ' € IdV.
Further, we have ty := :Uzacg’_l € W?’S(Xn), i.e., o, € Nper(n) and its
application to the [1,2]-associative law gives

(2) xn+1x23 R $3JI2_1$ZI_% € 1dV.

. 1 (2) .
Then one obtains zy"~! = zy" 12" = wz""! € IdV, ie., we have

zy" ! ~ 2" € IdV. Dually, we can show that 2" 'y ~ 2" € IdV. Let
now t € W, (Xy,) with n = I(t) > cv(t). Then there are ui,...,u, € X
such that ¢ = w; ... uy. Since I(t) > cv(t) there are i,j € {1,...,n} with
¢ < j such that u; = u;. Then the term s := x1...2;_17;7j41... 7, belongs

to W(’;LS (Xn), i.e., o5 € Nper(n). Without loss of generality let i # 1. Then

the application of o, to the [1, j]-associative law gives x1...2j_12%j41 ...
TnTn41 - Tntj—2Tn4i—1Tn+j -+ - T2n—1 = L1 ...Tj-1TiTp4j .. L2n—1- Then
Tpt1 & {21, ., 21,2, Tngj, ..., Top—1} since 1 < i < j # 1. So, we
substitute xp41 by 2y, and get x1...7; 1T%pyj.. Top—1 X T1...
TjA1TiTjp1 - TnTyyq - Tntj—2Tnti—1Tntj - - - T2n—1. 16 IS easy to check
that one can derive @y...%j; 1%Z;Tj11 ... TnTy g - Tntj—2Tnti—1Tniyj - - -
Top_1 ~ 2" using zy" ! ~ " ly ~ 2" € IdV, i.e., one gets x; ST
TiTpyj...Top—1 ~ 2" € IdV. Consequently, if we substitute z;by u; for
1 <i<nwegetu...uy ® 2" € IdV, e, t = 2" € IdV. Altogether,
V CW,. .

Suppose now that V. C W,,. Let ¢ € W(TZ;(X”) Then ¢ contains a
subterm s with n = [(s) > cv(s) and there are words w and v (the empty
word A is also possible for u as well as for v) such that ¢ = usv. Since
s &~ z" € IdV we have t =~ uz"v € IdV. The repeated application of
zy" a2 ly & 2" € IdV to uz™v gives finally uz"v ~ 2", ie., t &= 2" €
IdV. This shows that any o € Nper(n) is V-equivalent to o,n.

Let u~ v € IdV. If u = v then clearly Gun[u] = 0yn[v] € [dV. If u # v
and u & v is a normal identity of V' then there are natural numbers r,s > 1
such that Ez? [u] ~ u?r and Ezrf [v] ~ U?S where u; (v1) is the first letter
in v (in v). From xy" ! ~ 2" € IdV it follows 2" ~ 2" € IdV and thus
ut =P € IdV, ie., oy [u] ~ 0yn[v] € IdV. Since only normal identities
are satisfied in V' by Lemma 7 we can conclude that V' is Nper(n)-solid. m
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After the following lemma we are able to characterize all presolid varieties
of n-semigroups.

Lemma 9. Let 3 < n € 2N+ 1, V be a variety of n-semigroups with
V C V,, and o € Per(n). Then there holds

8[:61 . a;i(a;iﬂ . xi+n)xi+n+1 .. .xzn_ﬂ R X1...Top_1 € 1AV
for0<i<n-—1.

Proof. Let m € S,. Without loss of generality let ¢ = 0. Then
(1) Tr(1) -+ Tr(n)Tntl - - T2n—1 X T1...Top—1 € IdV or

(2) Tr(1) -+ Ta(n)Tn+l - T2n—1 X T9X1x3...Top—-1 € Idv by Lemma 5.
We put y1 = x1...2, in case (1) (y1 := xoz123...7, in case (2)) and
Yj = Tptj—1 for 2 < j < n. Using the identities of V,, it is easy to check
that Y1) Yrn) = T1...T2p-1 € IdV in case (1) and yr(1) .- Yr(n) ~
Tpt1T2T1X3 . TpTpta ... Ton—1 € IdV in case (2), respectively. Further,
we have 11722123 ... TnTnt2 ... Ton—1 N T1Tp122L3 - . - TpTp42 - - - T2n—1
R T1X9T3 . . - TpTpt1Tnt2 - - - Top—1 € 1dV (since n is an odd number). This
shows that or[(z1...2n)Tnt1.. . Ton—1] =~ S5, _1(0x(f), S5, _1(0x(f),
T1y.-- ,J:‘n), Tnitly--- ,.%2”71) R T1...Top_1 € IdV. |

Theorem 10. Let n > 3 be a natural number and V' be a nontrivial variety
of n-semigroups. Then V is Pre(n)-solid iff the following statements hold:

(i) VCVy

(i) Ifz)-- - Trn) = 1...7, € IdV for some m € Sy, then Trog)---

Tros(n) R Ty(1) -+ - Ts(n) € LAV for all s € Sp;
(iii) Ifn € 2N then x1...T2p—1 = Tr(1) - - - Tr(2n—1) for all m € Sap_1.

Proof. Suppose that V is Pre(n)-solid. Then V' C Vi by Proposition 3.
Further, V' is Nper(n)-solid since Nper(n) C Pre(n). Then by Proposition
8 we get V C Wn Therefore, V C I7n N Wn =V, and it holds (i). Suppose
that zr)... Tz = 21...2y € IdV for some ® € S,. Further let p €
Sn. Then o, € Pre(n). Since V' is Pre(n)-solid we have o,z ...xz,] =
6'\p[x7r(1) e l‘ﬂ(n)] € IdV, ie., Trop(1) - - - Trop(n) = Tp(1) - - - Tp(n) € 1dV. This
shows (ii). Finally, (iii) it follows from Lemma 4.
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Suppose that (i)—(iii) are satisfied. Let o, € Pre(n). If oy ¢ Per(n) then
te ng (X) and t = 2" € IdV by Lemma 6, i.e., oy is V-equivalent to o,
where o,n € Nper(n). But (i) implies that V' is Nper(n)-solid by Propo-
sition 8. Thus oyn(u] = Gur[v] € IdV for all u ~ v € IdV, ie., 7ifu] ~
ot[v] € IdV for all u ~ v € IdV. Let now o € Per(n) and u ~ v € IdV. If
var(u) # var(v) then without loss of generality there is a w € var(u)\var(v).
We substitute w by 2™ and get u ~ v € IdV from u ~ v € IdV where 2" is a
subterm of w, i.e., u € ng)' (X). Then by Lemma 6 we have u ~ 2™ € IdV,
Le, ur~vr~z" e IdV. If [(u) > cv(u) or I[(v) > cv(v) then u € ng(X)
orv e ng; (X) and thus v ~ v =~ 2" € IdV by Lemma 6. Consequently, if
var(u) # var(v) or l(u) > cv(u) or l(v) > cv(v) then u =~ v = 2™ € IdV.
If, in particular, I(u) = cv(u) then u = uy...uyy) with ug, ... ) € X
and there is a m € Sy, such that o[u] ~ wurq)... Uzq). But from
u ~ z" € IdV we get by the substitution u; — wu; for 1 < i < I(u)
that wry ... urqu) =~ 2" € IdV, ie., 0yu] = 2" € IdV. If, in partic-
ular, [(v) = cv(v) then we get o4 [v] ~ 2™ € IdV in the same matter.

If I(u) > ev(u) (U(v) > cv(v)) then u € WA(X) (v € WH(X)) and

it is easy to check that o;[u] € W&’;(X) (a¢[v] € WZZ;(X)), too. Then
otlu] = 2" € IdV (o¢v] ~ 2™ € IdV) by Lemma 6. Consequently,
otlu] = 2™ ~ o4[v] € IdV. The remaining case is var(u) = var(v) and
l(u) = cv(u) and l(v) = cv(v). We put s := l(u) and {uj,...,us} =
var(u) = var(v). Because of Lemma 9 (if n € 2N + 1) and of (iii) (if
n € 2N), respectively, we have o[xy ... 2i—1(Z; ... Tifn—1)Titn - .. Ton—1] =
6'\,5[.%1 .. .a;j_l(a:j - xj+n_1)xj+n - l’Qn_l] € IdV for 1 <i < j <n. There-
fore we can assume that

v = ( N (uﬂ(l) e uw(n))uw(m_l) . uTr(Qn—l)) e uﬂ'(s—l)uﬂ'(s))

for some permutation m € Ss. Further there is a p € S, such that oy = o).
If s = 1 we have obviously o,u] = 7,[v] € IdV. If s = n then 7,[u]
Up(1) - - - Up(n) and ap[’u] ~ Urop(1) - - + Urop(n)- By (ii) from Tr(1) -+ Tr(n)
T1...Tp S 1dv it follows Zrop(1) - - - Trop(n) ~ Zp(1) -+ Lp(n)
€ IdV, ie., o,u] = G,v] € IdV. Let now s > n. Then there is a
¢ € Sg such that o.fu] =~ Ugp(1) - - - Ug(s) and o.[v] =~ Urop(1) - - - Umog(s)-

~
~
~
~
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By Lemma 5 we have o;[u] =~ wuj...us or oiu] ~ ugujus...us =: u. If
oifu] = u, ie., Ty(1) - Tg(s) = Ui...us € IdV then by the substitution
Ui = Uy for 1 <@ < s we get Urog(1) - - - Unog(s) X Un(1) - - - Un(s) € 1dV,
ie., oi[v] = v, and from u = v € IdV it follows o.[u] ~ oy[v] € IdV. If
otlu] = u, ie., ug) - - Ups) = u2uu3 . .. us then by the same substitution
we get Urop(1) « - - Umog(s) = Um(2)Un(1)Un(3) - - - Ur(s) = v, i.e., 8t[v] ~ U E
1dV. Moreover, from Lemma 5 we get

~

Ur(2) Uz (1) Urn(3) - - - Ug(s) = UL .- - Us or

uﬂ(g)uw(l)uﬂ(g) ce uﬂ(s) ~ UUIUZ . .. Ug

as well as

uﬂ_1(2)uﬂ_1(1)uﬂ_1(3) e uﬂ_1(s) ~Uy...Ug OT

Ur=1(2)Uz=1(1)Ung—1(3) - - - Ug—1(s) ~ UUIUZ ... Ug.

ie.,

U2UIUZ ... Ug = Ur(L) - - - uﬂ(s) or

UULUZ . . . Ug Ur(2)Un(1)Un(3) - - - Ur(s) -

This shows v ~ u or v ~ u as well as © ~ v or u &~ v. This implies v ~ u
or both ¥ &~ w and @ ~ v hold in V. Since u ~ v € IdV we have altogether
v~ u € IdV and thus 6¢[u] ~ 7¢[v] € IdV because of o4[u] ~ u € IdV and
oiv] = v e IdV. |

Let us apply Theorem 10 for the case n = 3. We obtain the following
characterization of all presolid varieties of 3-semigroups.

Corollary 11. A nontrivial variety of 3-semigroups is Pre(3)-solid iff
V C Mod{(zyz)wt = z(yzw)t = zy(zwt) = yzowt ~ rzwyt ~ rywtz,
ryx ~ 2%y ~ xy? ~ 23} = W and it holds the following condition:

(*) If 217273 R Tr())Tr(2)Tr3) € 1AV for some 7w € {(12),(13),(23)}

then x1x9T3 & T,1)Tp2)Tp3) € 1AV for all p € S3.
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Proof. Suppose that V' is Pre(3)-solid. Then the conditions (i) and (ii) of
Theorem 10 are satisfied. From (i) it follows that zyzwt ~ yzrwt ~ rzwyt ~
rywtz € 1dV and xyz ~ 2%y ~ vy ~ 23 € IdV. Hence V. C W. Using (ii)
we can verify condition (x): If 7 = (13), i.e., x129w3 ~ w3222y € IdV then
xox1Ty ~ woxsxy € IdV (for s = (12)). Both identities provide zixox3 =~
T1T3T2 = T2T3T] =~ TX1X3 =~ TX3T1 r1T3x2 € Iav. If # = (12), i.e.,
r1Tow3 & xowixs € IdV then xix3we ~ xowsxy; € IdV (for s = (23)). If

(23), i.e., x1xow3 ~ w1x3T2 € IdV then xowix3 ~ x3x112 € IdV (for
(12)). In the latter two cases, we conclude in the same matter as before.

QR

Suppose now that V' C W and (x) is satisfied. Since V' C W, the
condition (i) of Theorem 10 holds. We have now to show that also condition
(ii) is satisfied. For this let 7 € S3. If m# € {(1),(12),(13),(23)} then the
condition is satisfied by (x). If 7 = (123), i.e., 12923 ~ zoxsxy € IdV then
we have to check that also xor123 =~ 32001 € IdV, T32971 =~ 217322 € 1dV,
T1T3T9 = Tox1T3 € IdV, xow3x1 = 13129 € IdV, and x311209 = T12073 €
1dV. Obviously, these five equations are consequences of the given identity
xr1x9w3 ~ xoxgry € IdV. If m = (132) the we conclude in the same matter.
This shows (ii). Condition (iii) can be neglected since 3 is odd. Altogether,
V is Pre(3)-solid by Theorem 10. |
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