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Abstract

The class of all M -solid varieties of a given type τ forms a
complete sublattice of the lattice L(τ) of all varieties of algebras
of type τ . This gives a tool for a better description of the lattice
L(τ) by characterization of complete sublattices. In particular, this
was done for varieties of semigroups by L. Polák ([10]) as well as by
Denecke and Koppitz ([4], [5]). Denecke and Hounnon characterized
M -solid varieties of semirings ([3]) and M -solid varieties of groups
were characterized by Koppitz ([9]). In the present paper we will
do it for varieties of n-semigroups. An n-semigroup is an algebra of
type (n), where the operation satisfies the [i, j]-associative laws for
1 ≤ i < j ≤ n, introduced by Dörtnte ([2]). It is clear that the notion
of a 2-semigroup is the same as the notion of a semigroup. Here we
will consider the case n ≥ 3.
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1. Introduction

Let τ be a fixed type of algebras, with fundamental operation symbols fi

of arity ni, for i ∈ I. A hypersubstitution of type τ is a mapping which
associates to every operation symbol fi an ni-ary term σ(fi) of type τ . Let
Wτ (X) be the set of all terms of type τ on an alphabet X := {x1,x2, x3, . . .}.
By Wτ (Xn) (Xn := {x1,, . . . , xn}) we denote the set of all n-ary terms, n ≥ 1.
For 1 ≤ m, n ∈ N we define an operation Sn

m : Wτ (Xn) × Wτ (Xm)n →
Wτ (Xm) inductively as follows: For (t1, . . . , tn) ∈ Wτ (Xm)n we put:

(i) Sn
m(xi, t1, . . . , tn) := ti for 1 ≤ i ≤ n;

(ii) Sn
m(fi(s1, . . . , sni), t1, . . . , tn) := fi(Sn

m(s1, t1, . . . , tn), . . . , Sn
m(sni , t1,

. . . , tn)) for i ∈ I, s1, . . . , sni ∈ Wτ (Xn) where Sn
m(s1, t1, . . . , tn),

. . . , Sn
m(sni , t1, . . . , tn) will be assumed to be already defined.

Any hypersubstitution σ can be uniquely extended to a mapping σ̂ on

Wτ (X) inductively as follows:

(i) σ̂[w] := wforw ∈ X;

(ii) σ̂[fi(t1, . . . , tni)] := Sni
m (σ(fi), σ̂[t1], . . . , σ̂[tni ]) for i ∈ I, t1, . . . , tni

∈ Wτ (Xm) where σ̂[t1], . . . , σ̂[tni ] will be assumed to be already

defined.

A binary operation ◦h can be defined on the set Hyp(τ) of all hypersub-
stitutions of type τ , by letting σ1 ◦h σ2 = σ̂1 ◦ σ2, where ◦ is the usual
composition of functions. The set Hyp(τ) is closed under this associative
operation. It also contains an identity element for ◦h, namely the identity
hypersubstitution σid which maps every fi to fi(x1, . . . , xni). Thus Hyp(τ)
is a monoid.

Now let M be any submonoid of Hyp(τ). A variety V is called M -solid
if for every σ ∈ M and every identity u ≈ v in V , the identity σ̂[u] ≈ σ̂[v]
holds in V . When M is the whole monoid Hyp(τ), an M -solid variety
is called a solid variety. Two hypersubstitutions σ1, σ2 are said to be
V -equivalent if for every operation symbol fi of type τ , σ1(fi) ≈ σ2(fi)
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is an identity in V . In this case we write σ1 ∼V σ2. In [11] it was proved
that if σ̂1[s] ≈ σ̂1[t] is an identity in V for given terms s, t ∈ Wτ (X) and
σ1 ∼V σ2 then σ̂2[s] ≈ σ̂2[t] is an identity in V . Therefore, at most one
element from each equivalence class of ∼V is needed to test the M -solidity.

The motivation of studying M -solid varieties comes from following result
of Denecke and Reichel in [6]. For each monoid M of Hyp(τ), the collection
of all M -solid varieties of type τ forms a complete lattice, which is a complete
sublattice of the lattice L(τ) of all varieties of type τ . This lattice L(τ) is
in general large and complicated, and difficult to study, and the M -solid
sublattices give us a way to study at least some of its sublattices. Thus
it may be useful to study the monoid Hyp(τ) and its submonoids M and
the corresponding M -solid varieties, both in general and for specific type
τ , and the intersection of the lattice of all M -solid varieties with a fixed
variety of type τ . For specific types, much work has been done for type τ =
(2), and in particular for varieties of semigroups. L. Polák ([10]) has given
a characterization of the lattice of solid semigroup varieties, and various
authors have studied M -solid semigroup varieties for various choices of M .
Moreover, for type τ = (2, 2), in [3], all solid varieties of semirings are
determined and, for type τ = (2, 1, 0), J. Koppitz ([9]) determined M -solid
varieties of groups. More informations about hypersubstitutions, one can
find in [8].
Our goal in this paper is a similar investigation for type (n), for n ≥ 3. Only
a few solid varieties of type (n) have been known (see [1] and [7]). We will
consider the concept of an n-semigroup, which is a natural extension of the
concept of a semigroup. An n-semigroup is an algebra of type (n), where
the n-ary operation satisfies the [i, j]-associative laws

x1 . . . xi−1(xi . . . xi+n−1)xi+n . . . x2n−1 ≈

x1 . . . xj−1(xj . . . xj+n−1)xj+n . . . x2n−1, for 1 ≤ i < j ≤ n.

Each n-group is an n-semigroup (see Dörnte [2]). Each semigroup (S; ·)
induce an n-semigroup in the following way: Let fn : Sn → S be defined
by fn(a1, a2, . . . , an) := a1 · a2 · . . . · an (we use the binary operation · of the
given semigroup). Since · is associative, fn satisfies the [i, j]-associative laws
for 1 ≤ i < j ≤ n, i.e., (S; fn) is an n-semigroup. Clearly, in the case n = 2
we have the [1, 2]-associative law (x1x2)x3 ≈ x1(x2x3). So the notion of a
2-semigroup is the same as the notion of a semigroup.

We also introduce the monoids NPer(n) and Pre(n) and give a
characterization of all NPer(n)-solid as well as all Pre(n)-solid varieties of
semigroups.
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2. Hypersubstitutions of type (n)

In this section we present some background information about hypersubsti-
tutions and varieties of type (n), and introduce the special monoids we shall
be studying. We assume throughout a fixed type (n), with n ≥ 3, so we have
one n-ary operation symbol which we shall denote by f . For Σ any set of
identities of type (n), we will denote by Mod(Σ) the variety determined by
the set Σ and by IdV we denote the set of all identities which hold in a given
variety V . Because of the [i, j]-associative laws, 1 ≤ i < j ≤ n, a term over a
variety of n-semigroups can be regarded as a word of the length (n−1)r +1
for a suitable natural number r. By l(t) we denote the length of a given
term t ∈ W(n)(X) and var(t) means the set of variables occurring in t. By
cv(t) we mean the cardinality of var(t). For example, if t = f(x1, . . . , x1)
then l(t) = n, var(t) = {x1}, and cv(t) = 1. An identity u ≈ v is said
to be normal if u = v or both terms u and v are different from a variable.
Since any hypersubstitution σ in Hyp(n) is completely determined by what
it does to f , we will denote by σt the hypersubstitution which maps f to
the term t. For convenience, we list here some sets of terms and varieties of
type (n) that we shall discuss later:

Wnp
(n)(Xn) be the set of all t ∈ W(n)(Xn) containing a subword s with

n = l(s) > cv(s);

W̃np
(n)(X) := {t ∈ W(n)(X) | l(t) > cv(t)};

Ṽn := Mod{x1 . . . x2n−1≈x1 . . . xi−1xi+1xi+2xixi+3 . . . x2n−1 |1≤ i≤ 2n−3};

W̃n := Mod{t ≈ xn | t ∈ W(n)(Xn), n = l(t) > cv(t)};

Vn := Ṽn ∩ W̃n.

It is easy to verify that there is no nontrivial solid variety of n-semigroups.

Theorem 1 . For each natural number n ≥ 3 there is not nontrivial solid
variety of n-semigroups.

Proof. Let V be a solid variety of n-semigroups. Then σ̂x2 [(x1 . . . xn)
xn+1 . . . x2n−1] ≈ σ̂x2 [x1 . . . xn−1(xn . . . x2n−1)] ∈ IdV,i.e., xn+1 ≈ x2 ∈ IdV
and V is the trivial variety of type (n).
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A hypersubstitution σ is called a pre-hypersubstitution if σ(f) is not a
variable. The set Pre(n) of all pre-hypersubstitutions forms a submonoid
of the monoid Hyp(n) of all hypersubstitutions of type (n). A variety of
n-semigroups is called presolid if it is M -solid for M = Pre(n). Note
that any solid variety is also presolid. By Sn we will denote the set of
all bijections on the set {1, . . . , n}. For π ∈ Sn, the hypersubstitution σ
with σ(f) = f(xπ(1), . . . , xπ(n)) will be denoted by σπ. We will use the
following notations of sets of hypersubstitutions:

Pre(n) := Hyp(n) \ {σxi | 1 ≤ i ≤ n} the set of all pre-hypersubstitutions;

Per(n) := {σπ | π ∈ Sn};

Nper(n) := {σt | t ∈ Wnp
(n)(Xn)} ∪ {σid}.

Proposition 2 . For 2 ≤ n ∈ N, Nper(n) forms a monoid.

Proof. We have to check that σ1 ◦h σ2 ∈ Nper(n) for any σ1, σ2 ∈
Nper(n). For this let σ1, σ2 ∈ Nper(n). Then there are r, t ∈ Wnp

(n)(Xn) such
that σ1(f) = r and σ2(f) = t. In particular, r contains a subword s with
n = l(s) > cv(s). Further, σ̂1[t] contains a subterm Sn

n(r, xi1 , . . . , xin). Since
r contains a subword s with n = l(s) > cv(s), the term Sn

n(r, xi1 , . . . , xin)
contains a subword s̃ with n = l(s̃) > cv(s̃). Consequently, σ̂1[t] contains
the subword s̃ with n = l(s̃) > cv(s̃), i.e., σ1 ◦h σ2(f) = σ̂1[t] ∈ Wnp

(n)(Xn)
and thus σ1 ◦h σ2 ∈ Nper(n).

3. Presolid varieties of n-semigroups

We begin the investigations of presolid varieties of n-semigroups by looking
for a variety that contains all presolid varieties.

Proposition 3 . Let 3 ≤ n ∈ N and V be any Pre(n)-solid variety of
n-semigroups. Then V ⊆ Ṽn.

Proof. Let π ∈ Sn with π(1) = 2, π(2) = 1 and π(k) = k for 3 ≤ k ≤ n.
If we apply σπ to the [1, n]-associative law we get xn+1x2x1x3 . . .
xnxn+2 . . . x2n−1 ≈ x2x1x3 . . . xn+1xnxn+2xn+3 . . . x2n−1 ∈ IdV since V is
Pre(n)-solid. By suitable substitution we get x1 . . . x2n−1 ≈ x2 . . . xnx1

xn+1 . . . x2n−1 ∈ IdV . If n ≥ 4 then the application of σπ to the [3, 4]-
associative law gives x2x1x4x3x5 . . . x2n−1 ≈ x2x1x3x5x4x6 . . . x2n−1 ∈ IdV .
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Both identities together provide x1 . . . x2n−1 ≈ x1 . . . xi−1xi+1xi+2

xixi+3 . . . x2n−1 ∈ IdV for 1 ≤ i ≤ n−2. Let ρ ∈ Sn with ρ(2n−1) = 2n−2,
ρ(2n − 2) = 2n − 1 and ρ(k) = k for 1 ≤ k ≤ 2n − 3. Dually, then the
application of σρ to the [1, n]-associative law as well as to the [n− 3, n− 2]-
associative law (if n ≥ 4) provides identities from which we can derive
x1 . . . x2n−1 ≈ x1 . . . xi−1xi+1xi+2xixi+3 . . . x2n−1 ∈ IdV for n ≤ i ≤ 2n− 3.
Finally, we have

x1 . . . x2n−1

≈ x1 . . . xn−1xn+1xn+2xnxn+3 . . . x2n−1

≈ x1 . . . xn+1xn−2xn−1xn+2xnxn+3 . . . x2n−1

≈ x1 . . . xn+1xn−2xnxn−1xn+2xn+3 . . . x2n−1

≈ x1 . . . xn−2xnxn+1xn−1xn+2xn+3 . . . x2n−1, i.e.,

x1 . . . x2n−1 ≈ x1 . . . xn−2xnxn+1xn−1xn+2xn+3 . . . x2n−1 ∈ IdV.

Altogether we have x1 . . . x2n−1 ≈ x1 . . . xi−1xi+1xi+2xixi+3 . . . x2n−1 ∈ IdV
for 1 ≤ i ≤ 2n− 3.

Now we will determine identities satisfying by presolid varieties.

Lemma 4 . Let 4 ≤ n ∈ 2N and V be any Pre(n)-solid variety of
n-semigroups. Then x1 . . . x2n−1 ≈ xπ(1) . . . xπ(2n−1) for all π ∈ S2n−1.

Proof. Let π ∈ S2n−1with π(1) = 2, π(2) = 1 and π(k) = k for
3 ≤ k ≤ 2n − 1. If we apply σπ to the [1, n]-associative law we get
xn+1x2x1x3 . . . xnxn+2 . . . x2n−1 ≈ x2x1x3 . . . xn+1xnxn+2 . . . x2n−1 ∈ IdV
since V is Pre(n)-solid and by suitable substitution we obtain

(1) x1 . . . x2n−1 ≈ x2 . . . xnx1xn+1 . . . x2n−1 ∈ IdV.

By Proposition 3 we have V ⊆ Ṽn. Using the identities of Ṽn we get
x2 . . . xnx1xn+1 . . . x2n−1 ≈ x2x1x3 . . . x2n−1 ∈ IdV (since n is a even
number). Together with (1) we obtain x1 . . . x2n−1≈x2x1x3 . . . x2n−1∈IdV .
It is easy to see that one can derive x1 . . . x2n−1 ≈ xπ(1) . . . xπ(2n−1) for all
π ∈ S2n−1 from x1 . . . x2n−1 ≈ x2x1x3 . . . x2n−1 and the identities of Ṽn.
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Lemma 5 . Let 3 ≤ n ∈ N, 2n − 1 ≤ p ∈ (n − 1)N + 1 and V be a variety
of n-semigroups with V ⊆ Ṽn. Then for each π ∈ Sp holds

xπ(1) . . . xπ(p) ≈ x1 . . . xp ∈ IdV or

xπ(1) . . . xπ(p) ≈ x2x1x3 . . . xp ∈ IdV.

Proof. Let π ∈ Sp. We consider the term xπ(1) . . . xπ(p) and move step by
step xp, xp−1, . . . , x3 to the pth, (p−1)th, . . . , 3th position using the identities
of Ṽn. Then we have on the first both positions x1x2 or x2x1. This shows
xπ(1) . . . xπ(p) ≈ x1 . . . xp ∈ IdV or xπ(1) . . . xπ(p) ≈ x2x1x3 . . . xp ∈ IdV .

It is easy to check that Nper(n) ⊆ Pre(n). So, any presolid variety has to
be Nper(n)-solid. Next we find the lattice of all Nper(n)-solid varieties of
n-semigroups.

Lemma 6 . Let 3 ≤ n ∈ N and V be any variety of n-semigroups with
V ⊆ Vn. Then for each t ∈ W̃np

(n)(X) holds t ≈ zn ∈ IdV .

Proof. Let t ∈ W̃np
(n)(X). Then there is a variable w ∈ X that occurs

at least two times in t. If l(t) = n then l(t) > cv(t) and t ≈ xn ∈ IdV

since V ⊆ W̃n. Suppose now that l(t) > n. Using the identities of Ṽn

we can move w on the first and the second position, respectively, i.e., t ≈
wwu3 . . . ul(t) with u3, . . . , ul(t) ∈ X. Since x1x1x3 . . . xn ≈ zn ∈ IdV we
have wwu3 . . . un−1(un . . . ul(t)) ≈ zn ∈ IdV , i.e., t ≈ zn ∈ IdV .

Lemma 7 . Let 3 ≤ n ∈ N and V be any nontrivial variety of n-semigroups
with V ⊆ W̃n. Then only normal identities hold in V .

Proof. Assume that a non-normal identity u ≈ v holds in V . Then u 6= v
and one of the terms u and v is a variable. Without loss of generality let u be
a variable. Since V is a nontrivial variety the term v (6= u) is not a variable.
Then by substitution we get y ≈ yl(v) ∈ IdV where l(v) > 1. Clearly,
l(v) = r(n−1)+1 for some natural number r ≥ 1. From xyn−1 ≈ zn ∈ IdV
it follows yr(n−1)+1 ≈ zn ∈ IdV , i.e., yl(v) ≈ zn ∈ IdV . But y ≈ yl(v) and
yl(v) ≈ zn provide x ≈ y, and V is the trivial variety, a contradiction.

Proposition 8 . Let 3 ≤ n ∈ N. A nontrivial variety V of n-semigroups is
Nper(n)-solid iff V ⊆ W̃n.
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Proof. Assume that V is Nper(n)-solid. We have t1 := x1x
n−1
2 ∈ Wnp

(n)(Xn),
i.e., σt1 ∈ Nper(n) and its application to the [1, 3]-associative law gives

(1) x1x
n−1
2 xn−1

n+1 ≈ x1x
n−1
2 ∈ IdV.

Further, we have t2 := x2x
n−1
3 ∈ Wnp

(n)(Xn), i.e., σt2 ∈ Nper(n) and its
application to the [1, 2]-associative law gives

(2) xn+1x
n−1
n+2 ≈ x3x

n−1
4 xn−1

n+2 ∈ IdV.

Then one obtains xyn−1
(1)≈ xyn−1zn−1

(2)≈ wzn−1 ∈ IdV , i.e., we have
xyn−1 ≈ zn ∈ IdV . Dually, we can show that xn−1y ≈ zn ∈ IdV . Let
now t ∈ W(n)(Xn) with n = l(t) > cv(t). Then there are u1, . . . , un ∈ X
such that t = u1 . . . un. Since l(t) > cv(t) there are i, j ∈ {1, . . . , n} with
i < j such that ui = uj . Then the term s := x1 . . . xj−1xixj+1 . . . xn belongs
to Wnp

(n)(Xn), i.e., σs ∈ Nper(n). Without loss of generality let i 6= 1. Then
the application of σs to the [1, j]-associative law gives x1 . . . xj−1xixj+1 . . .
xnxn+1 . . . xn+j−2xn+i−1xn+j . . . x2n−1 ≈ x1 . . . xj−1xixn+j . . . x2n−1. Then
xn+1 /∈ {x1, . . . , xj−1, xi, xn+j , . . . , x2n−1} since 1 < i < j 6= 1. So, we
substitute xn+1 by xn

n+1 and get x1 . . . xj−1xixn+j . . . x2n−1 ≈ x1 . . .
xj−1xixj+1 . . . xnxn

n+1 . . . xn+j−2xn+i−1xn+j . . . x2n−1. It is easy to check
that one can derive x1 . . . xj−1xixj+1 . . . xnxn

n+1 . . . xn+j−2xn+i−1xn+j . . .
x2n−1 ≈ zn using xyn−1 ≈ xn−1y ≈ zn ∈ IdV , i.e., one gets x1 . . . xj−1

xixn+j . . . x2n−1 ≈ zn ∈ IdV . Consequently, if we substitute xiby ui for
1 ≤ i ≤ n we get u1 . . . un ≈ zn ∈ IdV , i.e., t ≈ zn ∈ IdV . Altogether,
V ⊆ W̃n.

Suppose now that V ⊆ W̃n. Let t ∈ Wnp
(n)(Xn). Then t contains a

subterm s with n = l(s) > cv(s) and there are words u and v (the empty
word λ is also possible for u as well as for v) such that t = usv. Since
s ≈ zn ∈ IdV we have t ≈ uznv ∈ IdV . The repeated application of
xyn−1 ≈ xn−1y ≈ zn ∈ IdV to uznv gives finally uznv ≈ zn, i.e., t ≈ zn ∈
IdV . This shows that any σ ∈ Nper(n) is V -equivalent to σxn

1
.

Let u ≈ v ∈ IdV . If u = v then clearly σ̂xn
1
[u] ≈ σ̂xn

1
[v] ∈ IdV . If u 6= v

and u ≈ v is a normal identity of V then there are natural numbers r, s ≥ 1
such that σ̂xn

1
[u] ≈ unr

1 and σ̂xn
1
[v] ≈ vns

1 where u1 (v1) is the first letter
in u (in v). From xyn−1 ≈ zn ∈ IdV it follows xn ≈ zn ∈ IdV and thus
unr

1 ≈ vns

1 ∈ IdV , i.e., σ̂xn
1
[u] ≈ σ̂xn

1
[v] ∈ IdV . Since only normal identities

are satisfied in V by Lemma 7 we can conclude that V is Nper(n)-solid.
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After the following lemma we are able to characterize all presolid varieties
of n-semigroups.

Lemma 9 . Let 3 ≤ n ∈ 2N + 1, V be a variety of n-semigroups with
V ⊆ Ṽn, and σ ∈ Per(n). Then there holds

σ̂[x1 . . . xi(xi+1 . . . xi+n)xi+n+1 . . . x2n−1] ≈ x1 . . . x2n−1 ∈ IdV

for 0 ≤ i ≤ n− 1.

Proof. Let π ∈ Sn. Without loss of generality let i = 0. Then

(1) xπ(1) . . . xπ(n)xn+1 . . . x2n−1 ≈ x1 . . . x2n−1 ∈ IdV or

(2) xπ(1) . . . xπ(n)xn+1 . . . x2n−1 ≈ x2x1x3 . . . x2n−1 ∈ IdV by Lemma 5.
We put y1 := x1 . . . xn in case (1) (y1 := x2x1x3 . . . xn in case (2)) and
yj := xn+j−1 for 2 ≤ j ≤ n. Using the identities of Ṽn it is easy to check
that yπ(1) . . . yπ(n) ≈ x1 . . . x2n−1 ∈ IdV in case (1) and yπ(1) . . . yπ(n) ≈
xn+1x2x1x3 . . . xnxn+2 . . . x2n−1 ∈ IdV in case (2), respectively. Further,
we have xn+1x2x1x3 . . . xnxn+2 . . . x2n−1 ≈ x1xn+1x2x3 . . . xnxn+2 . . . x2n−1

≈ x1x2x3 . . . xnxn+1xn+2 . . . x2n−1 ∈ IdV (since n is an odd number). This
shows that σ̂π[(x1 . . . xn)xn+1 . . . x2n−1] ≈ Sn

2n−1(σπ(f), Sn
2n−1(σπ(f),

x1, . . . , xn), xn+1, . . . , x2n−1) ≈ x1 . . . x2n−1 ∈ IdV .

Theorem 10 . Let n ≥ 3 be a natural number and V be a nontrivial variety
of n-semigroups. Then V is Pre(n)-solid iff the following statements hold:

(i) V ⊆ Vn;

(ii) If xπ(1) . . . xπ(n) ≈ x1 . . . xn ∈ IdV for some π ∈ Sn then xπ◦s(1) . . .

xπ◦s(n) ≈ xs(1) . . . xs(n) ∈ IdV for all s ∈ Sn;

(iii) If n ∈ 2N then x1 . . . x2n−1 ≈ xπ(1) . . . xπ(2n−1) for all π ∈ S2n−1.

Proof. Suppose that V is Pre(n)-solid. Then V ⊆ Ṽn by Proposition 3.
Further, V is Nper(n)-solid since Nper(n) ⊆ Pre(n). Then by Proposition
8 we get V ⊆ W̃n. Therefore, V ⊆ Ṽn ∩ W̃n = Vn and it holds (i). Suppose
that xπ(1) . . . xπ(n) ≈ x1 . . . xn ∈ IdV for some π ∈ Sn. Further let ρ ∈
Sn. Then σρ ∈ Pre(n). Since V is Pre(n)-solid we have σ̂ρ[x1 . . . xn] ≈
σ̂ρ[xπ(1) . . . xπ(n)] ∈ IdV , i.e., xπ◦ρ(1) . . . xπ◦ρ(n) ≈ xρ(1) . . . xρ(n) ∈ IdV . This
shows (ii). Finally, (iii) it follows from Lemma 4.
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Suppose that (i)–(iii) are satisfied. Let σt ∈ Pre(n). If σt /∈ Per(n) then
t ∈ W̃np

(n)(X) and t ≈ zn ∈ IdV by Lemma 6, i.e., σt is V -equivalent to σxn
1
,

where σxn
1
∈ Nper(n). But (i) implies that V is Nper(n)-solid by Propo-

sition 8. Thus σ̂xn
1
[u] ≈ σ̂xn

1
[v] ∈ IdV for all u ≈ v ∈ IdV , i.e., σ̂t[u] ≈

σ̂t[v] ∈ IdV for all u ≈ v ∈ IdV . Let now σt ∈ Per(n) and u ≈ v ∈ IdV . If
var(u) 6= var(v) then without loss of generality there is a w ∈ var(u)\var(v).
We substitute w by xn and get ũ ≈ v ∈ IdV from u ≈ v ∈ IdV where xn is a
subterm of ũ, i.e., ũ ∈ W̃np

(n)(X). Then by Lemma 6 we have ũ ≈ xn ∈ IdV ,

i.e., u ≈ v ≈ xn ∈ IdV . If l(u) > cv(u) or l(v) > cv(v) then u ∈ W̃np
(n)(X)

or v ∈ W̃np
(n)(X) and thus u ≈ v ≈ xn ∈ IdV by Lemma 6. Consequently, if

var(u) 6= var(v) or l(u) > cv(u) or l(v) > cv(v) then u ≈ v ≈ xn ∈ IdV .
If, in particular, l(u) = cv(u) then u = u1 . . . ul(u) with u1, . . . , ul(u) ∈ X
and there is a π ∈ Sl(u) such that σ̂t[u] ≈ uπ(1) . . . uπ(l(u)). But from
u ≈ xn ∈ IdV we get by the substitution ui 7→ uπ(i) for 1 ≤ i ≤ l(u)
that uπ(1) . . . uπ(l(u)) ≈ xn ∈ IdV , i.e., σ̂t[u] ≈ xn ∈ IdV . If, in partic-
ular, l(v) = cv(v) then we get σ̂t[v] ≈ xn ∈ IdV in the same matter.
If l(u) > cv(u) ( l(v) > cv(v)) then u ∈ W̃np

(n)(X) (v ∈ W̃np
(n)(X)) and

it is easy to check that σ̂t[u] ∈ W̃np
(n)(X) (σ̂t[v] ∈ W̃np

(n)(X)), too. Then
σ̂t[u] ≈ xn ∈ IdV (σ̂t[v] ≈ xn ∈ IdV ) by Lemma 6. Consequently,
σ̂t[u] ≈ xn ≈ σ̂t[v] ∈ IdV . The remaining case is var(u) = var(v) and
l(u) = cv(u) and l(v) = cv(v). We put s := l(u) and {u1, . . . , us} =
var(u) = var(v). Because of Lemma 9 (if n ∈ 2N + 1) and of (iii) (if
n ∈ 2N), respectively, we have σ̂t[x1 . . . xi−1(xi . . . xi+n−1)xi+n . . . x2n−1] ≈
σ̂t[x1 . . . xj−1(xj . . . xj+n−1)xj+n . . . x2n−1] ∈ IdV for 1 ≤ i < j ≤ n. There-
fore we can assume that

u =
(
. . .

(
u1 . . . un

)
un+1 . . . u2n−1

)
. . . us−1us

)

v =
(
. . .

(
uπ(1) . . . uπ(n)

)
uπ(n+1) . . . uπ(2n−1)

)
. . . uπ(s−1)uπ(s)

)

for some permutation π ∈ Ss. Further there is a ρ ∈ Sn such that σt = σρ.
If s = 1 we have obviously σ̂ρ[u] ≈ σ̂ρ[v] ∈ IdV . If s = n then σ̂ρ[u] ≈
uρ(1) . . . uρ(n) and σ̂ρ[v] ≈ uπ◦ρ(1) . . . uπ◦ρ(n). By (ii) from xπ(1) . . . xπ(n) ≈
x1 . . . xn ∈ IdV it follows xπ◦ρ(1) . . . xπ◦ρ(n) ≈ xρ(1) . . . xρ(n)

∈ IdV , i.e., σ̂ρ[u] ≈ σ̂ρ[v] ∈ IdV . Let now s > n. Then there is a
φ ∈ Ss such that σ̂t[u] ≈ uφ(1) . . . uφ(s) and σ̂t[v] ≈ uπ◦φ(1) . . . uπ◦φ(s).
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By Lemma 5 we have σ̂t[u] ≈ u1 . . . us or σ̂t[u] ≈ u2u1u3 . . . us =: ũ. If
σ̂t[u] ≈ u, i.e., xφ(1) . . . xφ(s) ≈ u1 . . . us ∈ IdV then by the substitution
ui 7→ uπ(i) for 1 ≤ i ≤ s we get uπ◦φ(1) . . . uπ◦φ(s) ≈ uπ(1) . . . uπ(s) ∈ IdV ,
i.e., σ̂t[v] ≈ v, and from u ≈ v ∈ IdV it follows σ̂t[u] ≈ σ̂t[v] ∈ IdV . If
σ̂t[u] ≈ ũ, i.e., uφ(1) . . . uφ(s) ≈ u2u1u3 . . . us then by the same substitution
we get uπ◦φ(1) . . . uπ◦φ(s) ≈ uπ(2)uπ(1)uπ(3) . . . uπ(s) =: ṽ, i.e., σ̂t[v] ≈ ṽ ∈
IdV . Moreover, from Lemma 5 we get

uπ(2)uπ(1)uπ(3) . . . uπ(s) ≈ u1 . . . us or

uπ(2)uπ(1)uπ(3) . . . uπ(s) ≈ u2u1u3 . . . us

as well as

uπ−1(2)uπ−1(1)uπ−1(3) . . . uπ−1(s) ≈ u1 . . . us or

uπ−1(2)uπ−1(1)uπ−1(3) . . . uπ−1(s) ≈ u2u1u3 . . . us.

i.e.,

u2u1u3 . . . us ≈ uπ(1) . . . uπ(s) or

u2u1u3 . . . us ≈ uπ(2)uπ(1)uπ(3) . . . uπ(s) .

This shows ṽ ≈ u or ṽ ≈ ũ as well as ũ ≈ v or ũ ≈ ṽ. This implies ṽ ≈ ũ
or both ṽ ≈ u and ũ ≈ v hold in V . Since u ≈ v ∈ IdV we have altogether
ṽ ≈ ũ ∈ IdV and thus σ̂t[u] ≈ σ̂t[v] ∈ IdV because of σ̂t[u] ≈ ũ ∈ IdV and
σ̂t[v] ≈ ṽ ∈ IdV .

Let us apply Theorem 10 for the case n = 3. We obtain the following
characterization of all presolid varieties of 3-semigroups.

Corollary 11 . A nontrivial variety of 3-semigroups is Pre(3)-solid iff
V ⊆ Mod{(xyz)wt ≈ x(yzw)t ≈ xy(zwt) ≈ yzxwt ≈ xzwyt ≈ xywtz,
xyx ≈ x2y ≈ xy2 ≈ z3} =: W and it holds the following condition:

(∗) If x1x2x3 ≈ xπ(1)xπ(2)xπ(3) ∈ IdV for some π ∈ {(12), (13), (23)}

then x1x2x3 ≈ xρ(1)xρ(2)xρ(3) ∈ IdV for all ρ ∈ S3.
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Proof. Suppose that V is Pre(3)-solid. Then the conditions (i) and (ii) of
Theorem 10 are satisfied. From (i) it follows that xyzwt ≈ yzxwt ≈ xzwyt ≈
xywtz ∈ IdV and xyx ≈ x2y ≈ xy2 ≈ z3 ∈ IdV . Hence V ⊆ W . Using (ii)
we can verify condition (∗): If π = (13), i.e., x1x2x3 ≈ x3x2x1 ∈ IdV then
x2x1x3 ≈ x2x3x1 ∈ IdV (for s = (12)). Both identities provide x1x2x3 ≈
x1x3x2 ≈ x2x3x1 ≈ x2x1x3 ≈ x2x3x1 ≈ x1x3x2 ∈ IdV . If π = (12), i.e.,
x1x2x3 ≈ x2x1x3 ∈ IdV then x1x3x2 ≈ x2x3x1 ∈ IdV (for s = (23)). If
π = (23), i.e., x1x2x3 ≈ x1x3x2 ∈ IdV then x2x1x3 ≈ x3x1x2 ∈ IdV (for
s = (12)). In the latter two cases, we conclude in the same matter as before.

Suppose now that V ⊆ W and (∗) is satisfied. Since V ⊆ W , the
condition (i) of Theorem 10 holds. We have now to show that also condition
(ii) is satisfied. For this let π ∈ S3. If π ∈ {(1), (12), (13), (23)} then the
condition is satisfied by (∗). If π = (123), i.e., x1x2x3 ≈ x2x3x1 ∈ IdV then
we have to check that also x2x1x3 ≈ x3x2x1 ∈ IdV , x3x2x1 ≈ x1x3x2 ∈ IdV ,
x1x3x2 ≈ x2x1x3 ∈ IdV , x2x3x1 ≈ x3x1x2 ∈ IdV , and x3x1x2 ≈ x1x2x3 ∈
IdV . Obviously, these five equations are consequences of the given identity
x1x2x3 ≈ x2x3x1 ∈ IdV . If π = (132) the we conclude in the same matter.
This shows (ii). Condition (iii) can be neglected since 3 is odd. Altogether,
V is Pre(3)-solid by Theorem 10.
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Received 15 July 2005

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

