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Abstract

We present a simple condition under which a bounded lattice L
with sectionally antitone involutions becomes an MV-algebra. In this
case, L is distributive. However, we get a criterion characterizing
distributivity of L in terms of antitone involutions only.
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The aim of our paper is to continue the treatements from [4]. We will use
the same terminology and notation.

A mapping f : A → A is called an involution if f(f(x)) = x for each
x ∈ A. Let (A;≤) be an ordered set. A mapping f : A → A is antitone if
x ≤ y implies f(y) ≤ f(x) for all x, y ∈ A.

Let L = (L;∨,∧,0,1) be a bounded lattice where 0 or 1 denotes the
least or greatest element of L, respectively. L is said to have sectionally
antitone involutions if for every x ∈ L there is an antitone involution on the
interval [x,1]; i.e., a mapping which assigns to each a ∈ [x,1] an element
ax ∈ [x,1] with axx = a and a ≤ b entails bx ≤ ax. The interval [x,1] is
called a section.
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Unfortunately, antitone involutions on corresponding sections are only
partial operations on the whole set L. Moreover, every lattice L with
sectionally antitone involutions has so many of these partial operations as
many of elements it has. It prevent to define a type of these algebras in the
sense of universal algebra. The way how to avoid these problems was settled
in [4]: introduce a new binary operation ” ◦ ” on L as follows

x ◦ y = (x ∨ y)y.

Since x ∨ y ∈ [y,1], the definition is correct and ” ◦ ” is everywhere defined
on L. Call ” ◦ ” the assigned operation of L. The following was proved in
[4] (see also [3]):

Proposition. Let L = (L;∨,∧,0,1) be a bounded lattice.

(a) If L has sectionally antitone involutions then the assigned operation ◦
satisfies the folowing axioms:

(1) 1 ◦ x = x, x ◦ 1 = 1, 0 ◦ x = 1;

(2) (x ◦ y) ◦ y = (y ◦ x) ◦ x;

(3) (((x ◦ y) ◦ y) ◦ z) ◦ (x ◦ z) = 1.

(b) If ◦ is an operation on L satisfying (1), (2) and (3) then L is a lattice
with sectionally antitone involutions where for each a ∈ [x,1] we have
ax = a◦x. Moreover, x ≤ y if and only if x◦y = 1 and x∨y = (x◦y)◦y.

Due to the foregoing Proposition, we can identify a lattice L = (L;∨,∧,0,1)
with sectionally antitone involutions with an algebra L = (L;∨,∧, ◦,0,1)
where ” ◦ ” satisfies simple identities (1), (2) and (3). From now on,
whenever we will speak about such lattices, we will in fact consider the
aforementioned algebra. Of course, this algebra is of type (2, 2, 2, 0, 0)
and, since its axioms are only identities, the class of sectionally antitone
involutioned lattices (considered in this type) forms a variety.

Let us recall from [2] that by an MV-algebra is meant an algebra
A = = (A;⊕,¬,0) of type (2, 1, 0) satisfying the axioms
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(MV1) a⊕ (b⊕ c) = (a⊕ b)⊕ c,

(MV2) a⊕ b = b⊕ a,

(MV3) a⊕ 0 = a,

(MV4) ¬¬a = a,

(MV5) a⊕ ¬0 = ¬0,

(MV6) ¬(¬a⊕ b)⊕ b = ¬(¬b⊕ a)⊕ a.

We usually denote ¬0 by 1 and we read (MV5) as

a⊕ 1 = 1.

Let L = (L;∨,∧, ◦,0,1) be a lattice with sectionally antitone involutions.
Introduce a new binary operation ⊕ on L as follows

(∗) x⊕ y := (x ◦ 0) ◦ y

and a new unary operation ¬ by the rule

¬x := x ◦ 0

(hence x⊕ y = ¬x ◦ y).

Lemma 1. Let L = (L;∨,∧, ◦,0,1) be a lattice with sectionally antitone
involutions and ⊕ be defined by (∗). Then ⊕ is commutative if and only if
the assigned operation ◦ satisfies the identity

(WE) x ◦ (y ◦ 0) = y ◦ (x ◦ 0).

Proof. Suppose (WE). Then, by (3) of Proposition, (a ◦ 0) ◦ 0 = a∨ 0 = a
and hence,

x⊕y = (x◦0)◦y = (x◦0)◦((y◦0)◦0) = (y◦0)◦((x◦0)◦0) = (y◦0)◦x = y⊕x.

Conversely, let ⊕ be commutative, then
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x ◦ (y ◦ 0) = ((x ◦ 0) ◦ 0) ◦ (y ◦ 0)¬x⊕ ¬y = ¬y ⊕ ¬x

= ((y ◦ 0) ◦ 0) ◦ (x ◦ 0) = y ◦ (x ◦ 0)

proving (WE).

More generally, consider a section [p,1] of L and introduce a binary operation
⊕p on [p,1] as follows

(∗∗) x⊕p y = (x ◦ p) ◦ y for x, y ∈ [p,1]

and ¬px = x◦p. We can consider an algebra ([p,1];⊕p,¬p, p) for each p ∈ L
and the so-called derived algebra A(L) = (L;⊕,¬,0).

Theorem 1. Let L = (L;∨,∧, ◦,0,1) be a lattice with sectionally antitone
involutions. The derived algebra A(L) = (L;⊕,¬,0) is an MV-algebra if
and only if ⊕p is commutative on every section [p,1].

Proof. Let L = (L;∨,∧, ◦,0,1) be a lattice with sectionally antitone invo-
lutions. As it was shown by Lemma 2 in [4], the derived operations ⊕ and
¬ satisfy the axioms (MV3), (MV4), (MV5) and (MV6). Suppose now that
⊕p defined by (∗∗) is commutative for each p ∈ L. Similarly as in Lemma 1
it yields that the so-called Exchange Property (see [1])

(A) x ◦ (y ◦ z) = y ◦ (x ◦ z)

holds for x, y ∈ [z,1]. Consider now arbitrary x, y, z ∈ L. Then y◦z = (y∨z)z

thus y ◦ z ∈ [z,1], i.e., z ≤ y ◦ z. Hence y ◦ z = z ∨ (y ◦ z). This yields

((x ◦ z) ◦ z) ◦ (y ◦ z) = (x ∨ z) ◦ (y ◦ z)(x ∨ z ∨ (y ∨ z)z)(y∨z)z

= (x ∨ (y ∨ z)z)(y∨z)z
= x ◦ (y ∨ z)z = x ◦ (y ◦ z).
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Also z ≤ x ◦ z and, by means of (A), we conclude

x ◦ (y ◦ z) = ((x ◦ z) ◦ z) ◦ (y ◦ z) = (x ◦ z)⊕z (y ◦ z)

= (y ◦ z)⊕z (x ◦ z) = ((y ◦ z) ◦ z) ◦ (x ◦ z) = y ◦ (x ◦ z)

thus the Exchange Property holds for arbitrary x, y, z ∈ L. By Lemma 1 we
immediately see that ⊕ (i.e., ⊕0) is commutative. Further,

(x⊕ y)⊕ z = z ⊕ (x⊕ y) = (z ◦ 0) ◦ ((x ◦ 0) ◦ y)

= (z ◦ 0) ◦ ((x ◦ 0) ◦ ((y ◦ 0) ◦ 0)) = (x ◦ 0) ◦ ((z ◦ 0) ◦ ((y ◦ 0) ◦ 0))

= (x ◦ 0) ◦ ((y ◦ 0) ◦ ((z ◦ 0) ◦ 0)) = (x ◦ 0) ◦ ((y ◦ 0) ◦ z) = x⊕ (y ⊕ z)

thus ⊕ satisfies both (MV1) and (MV2) and hence the derived algebra A(L)
is an MV-algebra.

Conversely, let A(L) be an MV-algebra (where x ⊕ y = (x ◦ 0) ◦ y and
¬x = x ◦ 0). By Theorem 10 in [5] the assigned operation ◦ satisfies the
Exchange Property and hence for any p ∈ L and x, y ∈ [p,1] we obtain

x⊕p y = (x ◦ p) ◦ y = (x ◦ p) ◦ (y ∨ p) = (x ◦ p) ◦ ((y ◦ p) ◦ p)

= (y ◦ p) ◦ ((x ◦ p) ◦ p) = (y ◦ p) ◦ (x ∨ p) = (y ◦ p) ◦ x = y ⊕p x

whence ⊕p is commutative for each p ∈ L.

If L = (L;∨,∧, ◦,0,1) is a lattice with sectionally antitone involutions and
A(L) is the derived algebra then, whenever A(L) is an MV-algebra, L is
distributive (see e.g., [5]). However, distributivity of L does not imply that
A(L) is an MV-algebra:
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Example. Consider the lattice as shown in Figure 1
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Figure 1

where the operation ◦ is given by the table

◦ 0 x y 1
0 1 1 1 1
x x 1 y 1
y y x 1 1
1 0 x y 1

Then L is a distributive lattice with sectionally antitone involutions but

x⊕ y = (x ◦ 0) ◦ y = x ◦ y = y 6= x = y ◦ x = (y ◦ 0) ◦ x = y ⊕ x

thus the derived algebra A(L) does not satisfy (MV2).
In what follows, we will characterize distributivity of L in terms of the

assigned operation ◦.

Lemma 2. Let L = (L;∨,∧, ◦,0,1) be a lattice with sectionally antitone
involutions. The following conditions are equivalent:

(a) L is distributive;

(b) L does not contain M3 or N5 with the greatest element equal to 1;

(c) L does not contain M3 or N5 with the least element equal to 0.

Proof. (b)⇒(a) and (c)⇒(a) are trivial. Suppose that L contains either
M3 or N5 with elements denoted as shown in Figure 2.
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Figure 2

Consider the section [x,1] and the involution w 7→ wx in [x,1]. Since every
antitone involution is an antiautomorphism, it yields that L contains also
M3 or N5 with the elements yx, ax, bx, cx and 1 = xx, i.e., (a)⇒(b) is valid.
However, if L contains M3 or N5 with the greatest element equal to 1, we
can apply the involution w 7→ w0 in the whole [0,1] to obtain M3 or N5

with the least element 10 = 0. Thus (b)⇒(c).

Theorem 2. Let L = (L;∨,∧, ◦,0,1) be a lattice with sectionally antitone
involutions. The following conditions are equivalent:

(I) L is distributive;

(II) y ◦ x = x and z ◦ x = x and (y ◦ w) ◦ (x ◦ w) = (z ◦ w) ◦ (x ◦ w) imply
y = z;

(III) y ◦ x = z ◦ x and (y ◦ 0) ◦ (x ◦ 0) = (z ◦ 0) ◦ (x ◦ 0) imply y = z.

Proof. L is distributive if and only if it satisfies the so-called cancellation
law

(CL) x ∨ y = x ∨ z and x ∧ y = x ∧ z imply y = z.

(i) Due to (b) of Lemma 2, we need only consider the case x∨y = 1 = x∨z.
By the Proposition it means (y ◦ x) ◦ x = 1 = (z ◦ x) ◦ x. However, y ◦ x,
z ◦ x ∈ [x,1] and the involution w 7→ wx in [x,1] is a bijection, thus the
previous condition can be reduced to

(+) y ◦ x = x and z ◦ x = x.

Now, consider w = x ∧ y ∧ z. Then x, y, z ∈ [w,1] and by the Proposition
and De Morgan laws
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x ∧ y = (xw ∨ yw)w = ((y ◦ w) ◦ (x ◦ w)) ◦ w;

now since the element in brackets is above w, we conclude

(y ◦ w) ◦ (x ◦ w) = (z ◦ w) ◦ (x ◦ w).

Analogously for

x ∧ z = ((z ◦ w) ◦ (x ◦ w)) ◦ w.

But (y ◦ w) ◦ (x ◦ w), (z ◦ w) ◦ (x ◦ w) ∈ [x ◦ w,1] and the corresponding
involution in [x ◦ w,1] is a bijection, i.e., x ∧ y = x ∧ z if and only if

(++) (y ◦ w) ◦ (x ◦ w) = (z ◦ w) ◦ (x ◦ w).

Altogether, (+), (++) and (CL) get (I) ⇔ (II).

(ii) Due to (c) of Lemma 2, it is enough to consider only the case x∧y =
0 = x ∧ z. Hence, x ∨ y = (y ◦ x) ◦ x, x ∨ z = (z ◦ x) ◦ x and x ∨ y = x ∨ z
will get y ◦ x = z ◦ x and, due to the Proposition and De Morgan laws, we
can transform x ∧ y = (x0 ∨ y0)0, x ∧ z = (x0 ∨ z0)0 thus x ∧ y = 0 = x ∧ z
if and only if (y ◦ 0) ◦ (x ◦ 0) = (z ◦ 0) ◦ (x ◦ 0). Altogether, these yield (I)
⇔ (III).

Applying the cancellation law with comparable elements y ≤ z, we obtain
analogously:

Theorem 3. Let L = (L;∨,∧, ◦,0,1) be a lattice with sectionally antitone
involutions. The following conditions are equivalent:

(I) L is modular;

(II) y ◦ x = x, z ◦ x = x, y ≤ z and (y ◦ w) ◦ (x ◦ w) = (z ◦ w) ◦ (x ◦ w)
imply y = z;

(III) y ◦ x = z ◦ x, y ≤ z and (y ◦ 0) ◦ (x ◦ 0) = (z ◦ 0) ◦ (x ◦ 0) imply y = z.



Distributivity of bounded lattices with ... 163

References

[1] J.C. Abbott, Semi-boolean algebra, Matem. Vestnik 4 (1967), 177–198.

[2] R.L.O. Cignoli, I.M.L. D’Ottaviano and D. Mundici, Algebraic Foundations of
Many-valued Reasoning, Kluwer, Dordrecht/Boston/London 2000.

[3] I. Chajda, Lattices and semilattices having an antitone involution in
every upper interval, Comment. Math. Univ. Carol (CMUC) 44 (4) (2003),
577–585.
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