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Abstract

In the group theory various representations of free groups are used.
A representation of a free group of rank two by the so-called
time-varying Mealy automata over the changing alphabet is given.
Two different constructions of such automata are presented.
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1. Introduction

The theory of Mealy automata and groups generated by them is a part
of geometric group theory which describes groups acting on a rooted tree.
The study of the groups of automata was initiated in 70th years by
several outstanding mathematicians (mainly by R. Grigorchuk). It has rapidly
expanded in recent years and now plays an important role in algebra,
theory of dynamical systems, spectral theory, ergodic theory and others
(see [2]–[4], [7], [8]).

The Mealy automata considered so far had the same structure at
every moment of a discrete time-scale (the so-called fixed Mealy automata).
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A concept of a time-varying Mealy automata over a changing alphabet was
introduced for the first time in paper [9]. In papers [10], [11], it is shown that
time-varying Mealy automaton is a useful tool to describing groups acting
on level homogeneous rooted trees which are not homogeneous.

One of key problems in the theory of groups of automata is the problem
of embeddability of other known classes of groups into these groups. This
problem was solved positively for free groups. The first example of such an
automaton representation of a free group was suggested in [1]. However, the
complete proof is still unpublished. An example with the complete proof was
first presented in [5]. In paper [6] a representation of a free group of rank two
by infinite unitriangular matrices is regarded as a group of transformations
generated by fixed Mealy automata over a two-letter alphabet. In this paper
we describe a representation of a free group of rank two by time-varying
Mealy automata. Two different constructions will be presented.

2. Time-varying Mealy automata
and groups generated by them

Let N0 = {0, 1, 2, . . .} be a set of nonnegative integers. A changing alphabet
is an infinite sequence

X = (Xt)t∈N0 ,

where Xt are nonempty, finite sets (sets of letters). A word over the changing
alphabet X is a finite sequence x0x1 . . . xl, where xi ∈ Xi for i = 0, 1, . . . , l.
We denote by X∗ the set of all words (including the empty word ∅). By |w|
we denote the length of the word w ∈ X∗. The set of words of the length
t we denote by X(t). For any t ∈ N0 we also consider the set X(t) of finite
sequences in which the i-th letter (i = 1, 2, . . .) belongs to the set Xt+i−1.
In particular X(0) = X∗.

Definition 2.1 . A time-varying Mealy automaton is a quintuple

A = (Q,X, Y, ϕ, ψ),

where:

1. Q = (Qt)t∈N0 is a sequence of sets of inside states,

2. X = (Xt)t∈N0 is a changing input alphabet,
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3. Y = (Yt)t∈N0 is a changing output alphabet,

4. ϕ = (ϕt)t∈N0 is a sequence of transitions functions of the form

ϕt : Qt ×Xt → Qt+1,

5. ψ = (ψt)t∈N0 is a sequence of output functions of the form

ψt : Qt ×Xt → Yt.

We say that an automaton A is finite if the set S =
⋃

t∈N0

Qt of all its inside

states is finite. If |S| = n, we say that A is an n-state automaton.
It is convenient to present a time-varying Mealy automaton as a labelled,

directed, locally finite graph with vertices corresponding to the inside states
of the automaton. For every t ∈ N0 and every letter x ∈ Xt an arrow labelled
by x starts from every state q ∈ Qt and is going to the state ϕt(q, x). Each
vertex q ∈ Qt is labelled by the corresponding state function

(1) σt,q : Xt → Yt, σt,q(x) = ψt(q, x).

To make the graph of the automaton clear, the sets of vertices Vt and Vt′

corresponding to the sets Qt and Qt′ respectively, are disjoint whenever
t 6= t′ (in particular, different vertices may correspond to the same inside
state). Moreover, we will substitute a large number of arrows connecting
two fixed states and having the same direction for a one multi-arrow labelled
by suitable letters and if the labelling of such a multi-arrow is obvious we
will omit this labelling.

Example 2.1 . Let (mt)t∈N0 be a sequence of positive integers. The Figure 1
presents a 2-state time-varying automaton A = (Q,X, Y, ϕ, ψ) in which:

1. Qt = {0, 1},
2. Xt = Yt = {0, 1, . . . ,mt − 1},
2. ϕt(q, x) = µ(q) · µ(x),

3. ψt(q, x) = x +mt q,
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where +mt is an addition (mod mt) and the function µ : R→ {0, 1} is defined
as follows:

µ(0) = 1 and µ(x) = 0 for x 6= 0.

1 1 1 1
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s
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s
3

s
2s

1

0 00

0

1

Figure 1. Example of a time-varying automaton.

In the Figure the state functions 1 and σt constitute respectively the identity
function and the cyclical permutation (0, 1, . . . , mt − 1) of Xt.

A time-varying automaton may be interpreted as a machine, which being
at a moment t ∈ N0 in a state q ∈ Qt and reading on the input tape a letter
x ∈ Xt, goes to the state ϕt(q, x), types on the output tape the letter ψt(q, x),
moves both tapes to the next position and then proceeds further to the next
moment t + 1.

The automaton A with a fixed initial state q ∈ Q0 is called the initial
automaton and is denoted by Aq. The above interpretation defines a natural
action of Aq on the words. Namely, the initial automaton Aq defines a
function fA

q : X∗ → Y ∗ as follows:

fA
q (x0x1...xl) = ψ0(q0, x0)ψ1(q1, x1)...ψl(ql, xl),

where the sequence q0, q1, . . . , ql of inside states is defined recursively:

(2) q0 = q, qi = ϕi−1(qi−1, xi−1) for i = 1, 2, . . . , l.
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The function fA
q is called the automaton function defined by Aq. The image

of a word w = x0x1 . . . xl under a map fA
q can be easily found using the

graph of the automaton. One must find a directed path starting in a vertex
q ∈ Q0 and with consecutive labels x0, x1, . . . , xl. Such a path will be unique.
If σ0, σ1, . . . , σl are the labels of consecutive vertices in this path, then the
word fA

q (w) is equal to σ0(x0)σ1(x1) . . . σl(xl).
In the set of words over a changing alphabet, we consider for any k ∈ N0

the equivalence relation ∼k as follows:

w ∼k v iff w and v have a common prefix of the length k.

Let X and Y be changing alphabets and let f be a function of the form
f : X∗ → Y ∗. If f preserves the relation ∼k for any k, then we say that f
preserves beginnings of the words. If |f(w)| = |w| for any w ∈ X∗, then we
say that f preserves lengths of the words.

Theorem 2.1 ([9]). The function f : X∗ → Y ∗ is an automaton function
iff it preserves beginnings and lengths of the words.

Definition 2.2 . Let w ∈ X∗ be a word of the length n = |w|. The function
fw : X(n) → Y(n) defined by the equality

f(wv) = f(w)fw(v)

is called a remainder of f on the word w or simply a w-remainder of f .

Definition 2.3 . Let A = (Q,X, Y, ϕ, ψ) be a time-varying Mealy automa-
ton. For any t0 ∈ N0 the automaton A|t0 = (Q′, X ′, Y ′, ϕ′, ψ′) defined as
follows

Q′
t = Qt0+t, X ′

t = Xt0+t, Y ′
t = Yt0+t, ϕ′t = ϕt0+t, ψ′t = ψt0+t,

is called a t0-remainder of A.

If f is generated by the initial automaton Aq and the word w = x0x1 . . . xl,
then the w-remainder fw is an automaton function generated by the automa-
ton Bql

, where B = A|l and the initial state ql is obtained from (2).
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Definition 2.4 . An automaton A in which input and output alphabets co-
incide and every its state function σt,q : Xt → Xt is a permutation of Xt is
called a permutational automaton.

If A is a permutational automaton, then for every q ∈ Q0 the transfor-
mation fA

q defines a permutation of X∗.
The set SA(X) of automaton functions defined by all initial automata

over a common input and output alphabet X forms a monoid with the iden-
tity function as the neutral element. The subset GA(X) of functions gener-
ated by permutational automata is a group of invertible elements in SA(X).
The group GA(X) is an example of residually finite groups (see [10]).

Definition 2.5 . Let A = (Q,X,X, ϕ, ψ) be a time-varying permutational
automaton. The group of the form

G(A) = 〈fA
q : q ∈ Q0〉

is called the group generated by automaton A.

For any permutational automaton A, the group G(A) is residually finite, as
a subgroup of GA(X). It turns out that groups of this form include the class
of finitely generated residually finite groups.

Theorem 2.2 ([10]). For any n-generated residually finite group G, there is
an n-state time-varying automaton A such that G ∼= G(A).

3. The embedding into the permutational wreath product

Let X = (Xt)t∈N0 be a changing alphabet and let G be any subgroup of
GA(X). For any i ∈ N0 we consider the group

Gi =
〈
gw : g ∈ G, w ∈ X(i)

〉

which is a group generated by w-remainders of functions from G on all words
w ∈ X(i). In particular G0 = G.
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Example 3.1 . If G = G(A), then Gi is in general a subgroup of G(A|i).
If we additionally assume that A is accessible, that is every state of A may
be obtained from the recurrence (2) for some initial state q ∈ Q0 and some
word w = x0x1 . . . xl, then the equality Gi = G(A|i) holds for every i ∈ N0.

Proposition 3.1 . For any f, g ∈ SA(X) and any word w ∈ X∗, we have

(3) (f ◦ g)w = fw ◦ gf(w).

If g ∈ GA(X), then

(4)
(
g−1

)
w

=
(
gg−1(w)

)−1
.

Proof. For any u ∈ X(|w|) we have (f ◦ g)(wu) = (f ◦ g)(w)(f ◦ g)w(u). On
the other hand

(f ◦ g)(wu) = g(f(wu)) = g(f(w)fw(u)) =

= g(f(w))gf(w)(fw(u)) = (f ◦ g)(w)(fw ◦ gf(w))(u),

what gives (3) from the previous equality. The formula (4) follows by
substitution of f for g−1 in (3).

Let us arrange the letters of Xi in the sequence: x0, x1, . . . , xm−1.

Proposition 3.2 . The group Gi embeds into the permutational wreath
product Gi+1 oXi S(Xi) by the mapping

Ψ: g 7→ (gx0 , gx1 , . . . , gxm−1)σg,

where σg ∈ S(Xi) is defined by the equality σg(x) = g(x).

Proof. The mapping Ψ is one-to-one, what follows from the equalities
g(xu) = σg(x)gx(u) for x ∈ Xi and u ∈ X(i+1). By Proposition 3.1, we
have:
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Ψ(f ◦ g) = ((f ◦ g)x0 , . . . , (f ◦ g)xm−1)σf◦g =

= (fx0 ◦ gσf (x0), . . . , fxm−1 ◦ gσf (xm−1)) σf ◦ σg =

= (fx0 , fx1 , . . . , fxm−1)σf (gx0 , gx1 , . . . , gxm−1)σg =

= Ψ(f)Ψ(g).

Hence Ψ is a homomorphism.

We will write
g = [gx0 , gx1 , . . . , gxm−1 ]σg

without special comments.

4. Representations of a free group of rank
two by time-varying Mealy automata

In this chapter we describe a representation of a free group of rank two by
time-varying Mealy automata. Two different constructions of such automata
will be presented.

The first construction gives a representation by a 2-state automaton. It
uses the following reverse order relation ≺ among freely reduced group words
in symbols a, b:

1. the empty word ≺ a ≺ a−1 ≺ b ≺ b−1,

2. if |w1| < |w2|, then w1 ≺ w2,

3. if |w1| = |w2| and w1, w2 first differ (counting from the right side) in
their k-th terms, then the order of these words depends on their k-th
terms.

The crucial point of this construction constitute two permutations a, b of the
set N with the following property: if w is a group word in a and b on the
l-th position (l = 1, 2, . . .) in the above ordering, then the permutation of
N defined by w maps the number 1 into l. The permutations a, b may be
defined by the following formulas:
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a(n) =





2, if n = 1,

n + 4 · 3k, if 2 · 3k ≤ n < 3k+1,

n− 2 · 3k, if 3k+1 ≤ n < 4 · 3k,

n + 3k+1, if 4 · 3k ≤ n < 2 · 3k+1;

b(n) =





4, if n = 1,

n + 10 · 3k, if 2 · 3k ≤ n < 5 · 3k,

n− [13 · 3k−1], if 5 · 3k ≤ n < 17 · 3k−1,

n− 4 · 3k, if 17 · 3k−1 ≤ n < 2 · 3k+1.

Let A = (Q,X, X, ϕ, ψ) be a time-varying automaton in which (exception-
ally, all the components below are indexed from t = 1):

1. Qt = {0, 1},
2. Xt = {1, 2, . . . , t},
3. ϕt(q, x) = q,

4. ψt(0, x) = at(x), ψt(1, x) = bt(x),

where at, bt are defined as follows:

at(x) =





a(x), if x ∈ Xt ∩ a−1(Xt),

āt(x), if x ∈ Xt r a−1(Xt);

bt(x) =





b(x), if x ∈ Xt ∩ b−1(Xt),

b̄t(x), if x ∈ Xt r b−1(Xt);
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and the mappings

āt : Xt r a−1(Xt) → Xt r a(Xt), b̄t(x) : Xt r b−1(Xt) → Xt r b(Xt)

are any bijections. It is not hard to see that at, bt ∈ S(Xt). In particular, the
automaton A is permutational. The graph of this automaton is presented in
Figure 2.
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Figure 2. The automaton A which generates a free group of rank two.

Theorem 4.1 . The group G(A) generated by the functions fA
0 and fA

1 is a
free group of rank two which is freely generated by these functions.

Proof. The generators fA
0 and fA

1 map any word x∗ = x1x2 . . . xl ∈ X∗

into

fA
0 (x∗) = a1(x1)a2(x2) . . . al(xl), fA

1 (x∗) = b1(x1)b2(x2) . . . bl(xl).

For every n ∈ N we have:

at(x) = a(x), bt(x) = b(x) for x = 1, 2, . . . , n,

where t = max{a(1), . . . , a(n), b(1), . . . , b(n)}. Thus, if w is a nonempty,
freely reduced group word in fA

0 , fA
1 and the element g ∈ G(A) is represented

by w, then

g(11 . . . 1︸ ︷︷ ︸
t

) 6= 11 . . . 1︸ ︷︷ ︸
t
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for t large enough. Indeed, if a group word which derives from w by
substitution of all fA

0 for a and of all fA
1 for b is on the l-th position

(in the above ordering), then l 6= 1 and the last letter of g(11 . . . 1︸ ︷︷ ︸
t

) ∈ X∗

is equal to l for t large enough.

In the second constructions we consider the automaton B = (Q, X, X, ϕ, ψ)
defined as follows:

1. Qt = Xt = {0, 1, . . . , t + 1},

2. ϕt(q, x) =





1 + µ(t + 1− x), for q = 1,

1 + q − µ(q), for q 6= 1;

3. ψt(q, x) =





x, for q = 1,

α
µ(q)−q
t (x), for q 6= 1;

where αt = (0)(1, 2, . . . , t+1) is a cyclical permutation of Xt. The automaton
B is permutational and its graph is presented in Figure 3.

The construction of the automaton B is quite different from the automa-
ton A. In particular, the automaton B is not finite. On the other hand, the
labelling of its inside states is quite straight. Namely, every state function
σt,q is a power of a cyclical permutation αt.

We consider for any i ∈ N0 the remainders ai and bi of the functions
fB
0 and fB

1 respectively, on the word 00 . . . 0 of the length i. Let Gi = G(B|i)
be a group generated by an i-remainder of the automaton B. From
the graph of B, we see that Gi = 〈ai, a

2
i , . . . , a

i−1
i , bi〉 = 〈ai, bi〉. In particular,

G0 = G(B). The embedding of Gi into the permutational wreath product
Gi+1 oXi S(Xi) is induced by the following equations:

(5) ai = [ai+1, ai+1, . . . , ai+1]αi, bi = [bi+1, . . . , bi+1, a
i
i+1].
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Figure 3. The automaton B which generates a free group of rank two.

Any element g ∈ Gi is an automaton function over the changing alphabet
Y = (Xi+t)t∈N0 . It is represented by some freely reduced group word w in
the symbols ai, bi:

g = w(ai, bi).

Let x∗ = x0x1 . . . xl−1 be any word over Y and let

gx0 , gx0x1 , . . . , gx0x1...xl−1

be remainders of g on the consecutive beginnings of x∗. The remainder
gx0...xj ∈ Gi+j+1 (j = 0, 1, . . . l − 1) is represented by some freely reduced
group word wx0...xj in the symbols ai+j+1, bi+j+1:

gx0...xj = wx0...xj (ai+j+1, bi+j+1).
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Using the equations 5, we may derive wx0...xj from wx0...xj−1 (from w if j = 0)
in the following way:

(i) if xj = 0, then every syllable of the form as
i+j is substituted for as

i+j+1

and every syllable of the form br
i+j is substituted for br

i+j+1,

(ii) if xj 6= 0, then every syllable of the form as
i+j is substituted for as

i+j+1

and every syllable of the form br
i+j is substituted for br

i+j+1 or - in case

of αs
i+j(xj) = i + j + 1 - for a

r(i+j)
i+j+1, where s is the sum of all exponents

on ai+j-syllables on the left of br
i+j .

Thus wx0...xj is a freely reduction of the word derived from wx0...xj−1 by the
rules (i) and (ii). The word wx∗ is called an x∗-remainder of w. The rules
(i) and (ii) define the action of Gi on the set Y ∗ as follows:

(6) g(x0x1 . . . xl−1) = αS0
i (x0)αS1

i+1(x1) . . . α
Sl−1

i+l−1(xl−1),

where Sj is the sum of all exponents on ai+j-syllables in wx0...xj−1 .

Theorem 4.2 . The group G(B) generated by the functions fB
0 and fB

1 is a
free group of rank two which is freely generated by these functions.

Proof. We show that for every i ∈ N0 the group Gi is freely generated by
ai, bi. Let

w = as1
i br1

i . . . ask
i brk

i

be any nonempty, freely reduced group word in ai, bi and let N(w) be the
number of bi-syllables in w. We prove by induction on N(w) that w does not
define the neutral element in Gi. To this, we assume that for every j ∈ N0

any nonempty, freely reduced group word v in aj , bj with N(v) < N(w) does
not define the neutral element in Gj .

If N(w) ≤ 1, then w = as1
i (s1 6= 0) or w = as1

i br1
i as2

i (r1 6= 0). In this
case we easily check that none of the above words defines the neutral element
in Gi. Let, now assume N(w) > 1. Then k > 1. Let us denote:

S =
k−1∑

j=1

sj , R = max
0<j<k

(|sj |+ |sj+1|) + 1, and l = max(0, R− i).
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We consider the remainders wy∗ and wx∗ of w on sequences:

y∗ = 00 . . . 0︸ ︷︷ ︸
l

, x∗ = 00 . . . 0︸ ︷︷ ︸
l

x,

where x = α−S
i+l(i + l + 1) ∈ Xi+l. By the rule (i) we have

wy∗ = as1
i+lb

r1
i+l . . . a

sk
i+lb

rk
i+l.

We may derive wx∗ from wy∗ by substitution of every its ai+l-syllable for an
appropriate ai+l+1-syllable and every bi+l-syllable for bi+l+1-syllable or else
ai+l+1-syllable – according to the rules (i) and (ii). The substitution of any
bi+l-syllable for ai+l+1-syllable we call simply as ai+l+1-substitution.

There are no two consecutive syllables b
rj

i+l, b
rj+1

i+l in wy∗ for which the
ai+l+1-substitutions hold. Otherwise α

sj+1

i+l (i + l + 1) = i + l + 1 and since,
as sj+1 6= 0, we have consequently

|sj+1| ≥ i + l + 1 ≥ i + (R− i) + 1 > R > |sj+1|.

If v = a
sj

i+lb
rj

i+la
sj+1

i+l is any subword in wy∗ such that the ai+l+1-substitution
holds for b

rj

i+l, then this subword will be substituted for as′
i+l+1 in wx∗ , where

s′ = sj + rj(i + l) + sj+1. Since

|rj(i + l)| ≥ |i + l| ≥ R ≥ |sj |+ |sj+1|+ 1 > |sj + sj+1|,

we have s′ 6= 0.
As a result of the above observation, we obtain that wx∗ is nonempty.

Moreover, for the syllable b
rk−1

i+l in wy∗ the ai+l+1-substitution holds. As a
result we have

N(wx∗) < N(w).

By inductive assumption, wx∗ does not define the neutral element in Gi+l+1.
As a consequence, w does not define the neutral element in Gi.
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Remark 4.1 . The fact that the sequence |X0|, |X1|, |X2|, . . . is unbounded
is crucial in both first and the second construction. Moreover, if X is any
changing alphabet with the above sequence unbounded, then the same ar-
guments allow to construct in a similar way a time-varying automaton over
X giving a representation of a free group of rank two.
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