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Abstract

Graph algebras establish a connection between directed graphs
without multiple edges and special universal algebras of type (2,0).
We say that a graph G satisfies an identity s ≈ t if the corresponding
graph algebra A(G) satisfies s ≈ t. A graph G = (V, E) is called a
transitive graph if the corresponding graph algebra A(G) satisfies the
equation x(yz) ≈ (xz)(yz). An identity s ≈ t of terms s and t of any
type τ is called a hyperidentity of an algebra A if whenever the opera-
tion symbols occurring in s and t are replaced by any term operations
of A of the appropriate arity, the resulting identities hold in A.

In this paper we characterize transitive graph algebras, identities
and hyperidentities in transitive graph algebras.
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1. Introduction

An identity s ≈ t of terms s, t of any type τ is called a hyperidentity of
an algebra A if whenever the operation symbols occurring in s and t are
replaced by any term operations of A of the appropriate arity, the resulting
identity holds in A. Hyperidentities can be defined more precisely using the
concept of a hypersubstitution.

We fix a type τ = (ni)i∈I , ni > 0 for all i ∈ I , and operation symbols
(fi)i∈I , where fi is ni-ary. Let Wτ (X) be the set of all terms of type τ over
some fixed alphabet X, and let Alg(τ) be the class of all algebras of type τ .
Then a mapping

σ : {fi| i ∈ I} −→ Wτ (X)

which assigns to every ni-ary operation symbol fi an ni-ary term will be
called a hypersubstitution of type τ (for short, a hypersubstitution). By σ̂
we denote the extension of the hypersubstitution σ to a mapping

σ̂ : Wτ (X) −→ Wτ (X).

The term σ̂[t] is defined inductively by

(i) σ̂[x] = x for any variable x in the alphabet X

and

(ii) σ̂[fi(t1, ..., tni)] = σ(fi)Wτ (X)(σ̂[t1], ..., σ̂[tni ]).

Here σ(fi)Wτ (X) on the right hand side of (ii) is the operation induced by
σ(fi) on the term algebra with the universe Wτ (X).

Graph algebras have been invented in [9] to obtain examples of non-
finitely based finite algebras. To recall this concept, let G = (V, E) be a
(directed) graph with the vertex set V and the set of edges E ⊆ V × V .
Define the graph algebra A(G) corresponding to G with the underlying set
V ∪ {∞}, where ∞ is a symbol outside V , and with two basic operations,
namely a nullary operation pointing to ∞ and a binary one denoted by jux-
taposition, given for u, v ∈ V ∪ {∞} by

uv =

{
u, if (u, v) ∈ E,

∞, otherwise.

Graph identities were characterized in [3] by using the rooted graph of a
term t, where the vertices correspond to the variables occurring in t. Since
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on a graph algebra we have one nullary and one binary operation, σ(f) in
this case is a binary term in Wτ (X), i.e. a term built up from variables of
a two-element alphabet and a binary operation symbol f corresponding to
the binary operation of the graph algebra.

In [7], R. Pöschel has shown that any term over the class of all graph
algebras can be uniquely represented by a normal form term and that there
is an algorithm to construct the normal form term to every given term t.

In [1], K. Denecke and T. Poomsa-ard characterized graph hyperidenti-
ties by using normal form graph hypersubstitutions.

In [6], T. Poomsa-ard characterized associative graph hyperidentities by
using normal form graph hypersubstitutions.

We say that a graph G = (V, E) is transitive if the corresponding
graph algebra A(G) satisfies the equation x(yz) ≈ (xz)(yz). In this paper
we characterize transitive graph algebras, identities and hyperidentities in
transitive graph algebras.

2. Transitive graph algebras

We begin with a more precise definition of terms of the type of graph
algebras.

Definition 2.1. The set Wτ (X) of all terms over the alphabet

X = {x1, x2, x3, ...}

is defined inductively as follows:

(i) every variable xi, i = 1, 2, 3, ..., and ∞ are terms;

(ii) if t1 and t2 are terms, then f(t1, t2) is a term; instead of f(t1, t2) we
will write t1t2, for short;

(iii) Wτ (X) is the set of all terms which can be obtained from (i) and (ii)
in finitely many steps.

Terms built up from the two-element set X2 = {x1, x2} of variables are
thus binary terms. We denote the set of all binary terms by Wτ (X2). The
leftmost variable of a term t is denoted by L(t) and rightmost variable of a
term t is denoted by R(t). A term, in which the symbol ∞ occurs, is called
a trivial term.
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Definition 2.2. To each non-trivial term t of type τ = (2, 0) one can
define a directed graph G(t) = (V (t), E(t)), where the vertex set V (t)
is the set var(t) of all variables occurring in t, and where E(t) is defined
inductively by

E(t) = φ if t is a variable and E(t1t2) = E(t1) ∪ E(t2) ∪ {(L(t1), L(t2))},

when t = t1t2 is a compound term and L(t1), L(t2) are the leftmost variables
in t1 and t2, respectively.

L(t) is called the root of the graph G(t) and the pair (G(t), L(t)) is the
rooted graph corresponding to t. Formally, to every trivial term t we assign
the empty graph φ.

Definition 2.3. We say that a graph G = (V, E) satisfies an identity s ≈ t
if the corresponding graph algebra A(G) satisfies s ≈ t (i.e. we have s = t
for every assignment V (s) ∪ V (t) → V ∪ {∞}), and in this case, we write
G |= s ≈ t.

Definition 2.4. Let G = (V,E) and G
′
= (V

′
, E

′
) be graphs. A homomor-

phism h from G into G
′
is a mapping h : V → V

′
carrying edges to edges,

that is, for which (u, v) ∈ E implies (h(u), h(v)) ∈ E
′
.

In [3] it was proved:

Proposition 2.1. Let s and t be non-trivial terms from Wτ (X) with vari-
ables V (s) = V (t) = {x0, x1, ..., xn} and L(s) = L(t). Then a graph
G = (V,E) satisfies s ≈ t if and only if the graph algebra A(G) has the
following property:

A mapping h : V (s) −→ V is a homomorphism from G(s) into G iff it
is a homomorphism from G(t) into G.

Proposition 2.1 gives a method to check whether a graph G = (V, E) satisfies
the equation s ≈ t. Hence, we can check whether a graph G = (V, E) has a
transitive graph algebra by the following proposition.

Proposition 2.2. Let G = (V, E) be a graph. Then G has a transitive
graph algebra if and only if (a, b), (b, c) ∈ E implies (a, c) ∈ E for any edges
(a, b), (b, c) ∈ E.

Proof. Suppose G = (V, E) has a transitive graph algebra. Let s
and t be terms such that s = x(yz), t = (xz)(yz). Let (a, b), (b, c) ∈ E
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and h : V (s) → V be the restriction of an evaluation function of the
variables such that h(x) = a, h(y) = b, and h(z) = c. We see that h is a
homomorphism from G(s) into G. By Proposition 2.1, we have that
h is a homomorphism from G(t) into G. Since (x, z) ∈ E(t), so
(h(x), h(z)) = (a, c) ∈ E.

Conversely, suppose G = (V,E) is a graph such that if (a, c), (b, c) ∈ E,
then (a, c) ∈ E. Let s and t be non-trivial terms such that s = x(yz),
t = (xz)(yz). Suppose that h : V (s) → V is a homomorphism from G(s)
into G. Since (x, y), (y, z) ∈ E(s), we have (h(x), h(y)), (h(y), h(z)) ∈ E.
By the assumption, we get (h(x), h(z)) ∈ E. Therefore, h is a homomor-
phism from G(t) into G. Suppose that h is a homomorphism from G(t)
into G. Then, it is clear that h is also a homomorphism from G(s) into G.
Hence, by Proposition 2.1, we get that A(G) satisfies s ≈ t.

3. Identities in transitive graph algebras

Graph identities were characterized in [3] by the following proposition:

Proposition 3.1. A non-trivial equation s ≈ t is an identity in the class of
all graph algebras iff either both terms s and t are trivial or none of them is
trivial, G(s) = G(t) and L(s) = L(t).

Further it was proved:

Proposition 3.2. Let G = (V, E) be a graph and let h : X −→ V ∪ {∞}
be an evaluation of the variables. Consider the canonical extension of h to
the set of all terms. Then there holds: if t is a trivial term then h(t) = ∞.
Otherwise, if h : G(t) −→ G is a homomorphism of graphs, then h(t) =
h(L(t)), and if h is not a homomorphism of graphs, then h(t) = ∞.

In [6] the following lemma was proved:

Lemma 3.1. Let G = (V, E) be a graph, let t be a term and let

h : X −→ V ∪ {∞}
be an evaluation of the variables. Then:

(i) If h is a homomorphism from G(t) into G with the property that the
subgraph of G induced by h(V (t)) is complete, then h(t) = h(L(t));
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(ii) If h is a homomorphism from G(t) into G with the property that the
subgraph of G induced by h(V (t)) is disconnected, then h(t) = ∞.

Now, we apply our results to characterize all identities in the class of all
transitive graph algebras. Clearly, if s and t are trivial, then s ≈ t is an
identity in the class of all transitive graph algebras and x ≈ x (x ∈ X) is
an identity in the class of all transitive graph algebras too. So we consider
the case that s and t are non-trivial and different from variables. Then all
identities in the class of all transitive graph algebras are characterized by
the following theorem:

Theorem 3.1. Let s and t be non-trivial terms and let x0 = L(s). Then
s ≈ t is an identity in the class of all transitive graph algebras if and only if
the following conditions are satisfied:

(i) L(s) = L(t),

(ii) V (s) = V (t),

(iii) for any x ∈ V (s), x is on a dicycle in G(s) iff x is on a dicycle in
G(t),

(iv) for any x, y ∈ V (s), x 6= y, G(s) has a dipath from x to y iff G(t) has
a dipath from x to y.

Proof. Suppose that s ≈ t is an identity in the class of all transitive graph
algebras. Since any complete graph is transitive, it follows that L(s) = L(t)
and V (s) = V (t).

For any x ∈ V (s), suppose that x is on a dicycle in G(s) but x is
not on a dicycle in G(t). Consider the graph G = (V, E) such that V =
{0, 1, 2}, E = {(0, 0), (0, 1), (0, 2), (1, 2), (2, 2)}. Then, by Proposition 2.2,
A(G) has a transitive graph algebra. Let h : V (t) → V be the restriction
of an evaluation of variables such that h(x) = 1, h(w) = 2 for all w ∈ V (t)
such that G(t) has a dipath from x to w and h(z) = 0 for all other z ∈ V (t).
We see that h(s) = ∞, h(t) = 0 or h(t) = 1. Hence, A(G) does not satisfy
s ≈ t.

Now for any x, y ∈ V (s), x 6= y, suppose that G(s) has a dipath from
x to y but G(t) has no a dipath from x to y. Consider the transitive
graph G = (V,E) such that V = {0, 1}, E = {(0, 0), (0, 1), (1, 1)}. Let
h : V (t) → V be the restriction of an evaluation of the variables which
h(x) = 1 and h(w) = 1 for all w ∈ V (t) such that G(t) has a dipath from
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x to w and h(y′) = 0 for all other y′ ∈ V (t). We see that h(s) = ∞ and
h(t) = 0. Hence, A(G) does not satisfy s ≈ t.

Conversely, suppose that s and t are non-trivial terms satisfying
(i), (ii), (iii) and (iv). Let G = (V, E) be a transitive graph and let
h : V (s) → V be the restriction of an evaluation of the variables. Sup-
pose h is a homomorphism from G(s) into G and let (x, y) ∈ E(t). If
x = y, then by (iii), x is on a dicycle in G(s). Let (x, x1), (x1, x2), (x2, x3)
, ..., (xn−1, xn), (xn, x) be such the dicycle. Since h is a homomorphism from
G(s) into G, so

(h(x), h(x1)), (h(x1), h(x2)), ..., (h(xn−1), h(xn)), (h(xn), h(x)) ∈ E.

By transitivity of G, we get (h(x), h(x)) ∈ E. If x 6= y, then by (iv) G(s)
has a dipath from x to y. Let (x, x1), (x1, x2), (x2, x3), ..., (xn−1, xn), (xn, y)
be such the dipath. Since h is a homomorphism from G(s) into G, so

(h(x), h(x1)), (h(x1), h(x2)), ..., (h(xn−1), h(xn)), (h(xn), h(y)) ∈ E.

By transitivity of G again, we get (h(x), h(y)) ∈ E. Hence, h is also a
homomorphism from G(t) into G. By the same way, if h is a homomorphism
from G(t) into G, then we can prove that it is a homomorphism from G(s)
into G. By Proposition 2.1, we get that A(G) satisfies s ≈ t.

4. Hyperidentities in transitive graph algebras

Let T G be the class of all transitive graph algebras and let IdT G be the set
of all identities satisfied in T G. Now we want to make precise the concept
of a hypersubstitution for graph algebras.

Definition 4.1. A mapping σ : {f,∞} → Wτ (X2), where f is the operation
symbol corresponding to the binary operation of a graph algebra is called
graph hypersubstitution if σ(∞) = ∞ and σ(f) = s ∈ Wτ (X2). The graph
hypersubstitution with σ(f) = s is denoted by σs.

Definition 4.2. An identity s ≈ t is a transitive graph hyperidentity iff for
all graph hypersubstitutions σ, the equations σ̂[s] ≈ σ̂[t] are identities in
T G.
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If we want to check that s ≈ t is a hyperidentity in T G, we can restrict
ourselves to a (small) subset of HypG – the set of all graph hypersubstitu-
tions.

In [4] the following relation between hypersubstitutions was defined:

Definition 4.3. Two graph hypersubstitutions σ1, σ2 are T G-equivalent iff
σ1(f) ≈ σ2(f) is an identity in T G. In this case we write σ1 ∼T G σ2.

In [2] (see also [4]) the following lemma was proved:

Lemma 4.1. If σ̂1[s] ≈ σ̂1[t] ∈ IdT G and σ1 ∼T G σ2, then σ̂2[s] ≈ σ̂2[t] ∈
IdT G.

Therefore, it is enough to consider the quotient set HypG/ ∼T G .
In [7] it was shown that any non-trivial term t over the class of graph

algebras has a uniquely determined normal form term NF (t) and there is
an algorithm to construct the normal form term to a given term t. Now,
we want to describe how to construct the normal form term. Let t be a
non-trivial term. The normal form term of t is the term NF (t) constructed
by the following algorithm:

(i) Construct G(t) = (V (t), E(t)).

(ii) Construct for every x ∈ V (t) the list lx = (xi1 , ..., xik(x)
) of all out-

neighbors (i.e. (x, xij ) ∈ E(t), 1 ≤ j ≤ k(x)) ordered by increasing
indices i1 ≤ ... ≤ ik(x) and let sx be the term (...((xxi1)xi2)...xik(x)

).

(iii) Starting with x := L(t), Z := V (t), s := L(t), choose the variable
xi ∈ Z ∩ V (s) with the least index i, substitute the first occurrence
of xi by the term sxi , denote the resulting term again by s and put
Z := Z r {xi}. While Z 6= φ continue this procedure. The resulting
term is the normal form NF (t).

The algorithm stops after a finite number of steps, since G(t) is a rooted
graph. Without difficulties one shows G(NF (t)) = G(t), L(NF (t)) = L(t).

In [2] the following definition was given:

Definition 4.4. The graph hypersubstitution σNF (t), is called normal
form graph hypersubstitution. Here NF (t) is the normal form of the binary
term t.
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Since for any binary term t the rooted graphs of t and NF (t) are the
same, we have t ≈ NF (t) ∈ IdT G. Then for any graph hypersubstitution
σt with σt(f) = t ∈ Wτ (X2), one obtains σt ∼T G σNF (t).

In [2] all rooted graphs with at most two vertices were considered. Then
we formed the corresponding binary terms and used the algorithm to con-
struct normal form terms. The result is given in the following table.

normal form term graph hypers. normal form term graph hypers.

x1x2 σ0 x1 σ1

x2 σ2 x1x1 σ3

x2x2 σ4 x2x1 σ5

(x1x1)x2 σ6 (x2x1)x2 σ7

x1(x2x2) σ8 x2(x1x1) σ9

(x1x1)(x2x2) σ10 (x2(x1x1))x2 σ11

x1(x2x1) σ12 x2(x1x2) σ13

(x1x1)(x2x1) σ14 x2((x1x1)x2) σ15

x1((x2x1)x2) σ16 (x2(x1x2))x2 σ17

(x1x1)((x2x1)x2) σ18 (x2((x1x1)x2))x2 σ19

By Theorem 3.1, we have the following relations:

(i) σ12∼T Gσ14∼T Gσ16∼T Gσ18,

(ii) σ13∼T Gσ15∼T Gσ17∼T Gσ19.
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Let MT G be the set of all normal form graph hypersubstitutions in T G.
Then we get,

MT G = {σ0, σ1, σ2, σ3, σ4, σ5, σ6, σ7, σ8, σ9, σ10, σ11, σ12, σ13}.
We define the product of two normal form graph hypersubstitutions in MT G
as follows.

Definition 4.5. The product σ1N ◦N σ2N of two normal form graph hyper-
substitutions is defined by (σ1N ◦N σ2N )(f) := NF (σ̂1N [σ2N (f)]).

The following table gives the multiplication of elements in MT G .

◦N σ0 σ1 σ2 σ3 σ4 σ5 σ6 σ7 σ8 σ9 σ10 σ11 σ12 σ13

σ0 σ0 σ1 σ2 σ3 σ4 σ5 σ6 σ7 σ8 σ9 σ10 σ11 σ12 σ13

σ1 σ1 σ1 σ2 σ1 σ2 σ2 σ1 σ2 σ1 σ2 σ1 σ2 σ1 σ2

σ2 σ2 σ1 σ2 σ1 σ2 σ1 σ2 σ2 σ2 σ1 σ2 σ2 σ1 σ2

σ3 σ3 σ1 σ2 σ3 σ4 σ4 σ3 σ4 σ3 σ4 σ3 σ4 σ3 σ4

σ4 σ4 σ1 σ2 σ3 σ4 σ3 σ4 σ4 σ4 σ3 σ4 σ4 σ3 σ4

σ5 σ5 σ1 σ2 σ3 σ4 σ0 σ9 σ13 σ7 σ6 σ11 σ13 σ6 σ7

σ6 σ6 σ1 σ2 σ3 σ4 σ7 σ6 σ7 σ10 σ11 σ10 σ11 σ12 σ13

σ7 σ7 σ1 σ2 σ3 σ4 σ6 σ11 σ13 σ7 σ6 σ11 σ13 σ6 σ7

σ8 σ8 σ1 σ2 σ3 σ4 σ9 σ10 σ11 σ8 σ9 σ10 σ11 σ12 σ13

σ9 σ9 σ1 σ2 σ3 σ4 σ8 σ9 σ13 σ11 σ10 σ11 σ13 σ10 σ11

σ10 σ10 σ1 σ2 σ3 σ4 σ11 σ10 σ11 σ10 σ11 σ10 σ11 σ12 σ13

σ11 σ11 σ1 σ2 σ3 σ4 σ10 σ11 σ13 σ11 σ10 σ11 σ13 σ10 σ11

σ12 σ12 σ1 σ2 σ3 σ4 σ13 σ12 σ13 σ12 σ13 σ12 σ13 σ12 σ13

σ13 σ13 σ1 σ2 σ3 σ4 σ12 σ13 σ13 σ7 σ12 σ13 σ13 σ12 σ13

In [2] the concept of a leftmost normal form graph hypersubstitution was
defined.
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Definition 4.6. A graph hypersubstitution σ is called leftmost hypersub-
stitution if L(σ(f)) = x1.

The set ML(T G) of all leftmost normal form graph hypersubstitutions in
MT G contains exactly the following elements:

ML(T G) = {σ0, σ1, σ3, σ6, σ8, σ10, σ12}.

In [5] the concept of a proper hypersubstitution of a class of algebras was
introduced.

Definition 4.7. A hypersubstitution σ is called proper with respect to a
class K of algebras if σ̂[s] ≈ σ̂[t] ∈ IdK for all s ≈ t ∈ IdK.

A graph hypersubstitution with the property that σ(f) contains both
variables x1 and x2 is called regular. It is easy to check that the set of all
regular graph hypersubstitutions forms a groupoid Mreg.

We want to prove that {σ0, σ6, σ8, σ10, σ12} is the set of all proper normal
form graph hypersubstitutions with respect to T G.

In [2] the following lemma was proved.

Lemma 4.2. For each non-trivial term s, (s 6= x ∈ X2) and for all
u, v ∈ X2, we have:

(i) E(σ̂6[s]) = E(s) ∪ {(u, u)|(u, v) ∈ E(s)},
(ii) E(σ̂8[s]) = E(s) ∪ {(v, v)|(u, v) ∈ E(s)},

and
(iii) E(σ̂12[s]) = E(s) ∪ {(v, u)|(u, v) ∈ E(s)}.

Then we obtain:

Theorem 4.1. {σ0, σ6, σ8, σ10, σ12} is the set of all proper graph hypersub-
stitution with respect to the class T G of transitive algebras.

Proof. If s ≈ t ∈ IdT G and s, t are trivial terms, then for every graph
hypersubstitution σ ∈ {σ0, σ6, σ8, σ10, σ12} the term σ̂[s] and σ̂[t] are also
trivial and thus σ̂[s] ≈ σ̂[t] ∈ IdT G. In the same manner, we see that
σ̂[s] ≈ σ̂[t] ∈ IdT G for every σ ∈ {σ0, σ6, σ8, σ10, σ12}, if s = t = x.

Now, assume that s and t are non-trivial terms, different from variables,
and s ≈ t ∈ IdT G. Then (i)–(iv) of Theorem 3.1 hold.
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For σ6, σ8, σ10, σ12, we obtain:

L(σ̂6[s]) = L(s) = L(t) = L(σ̂6[t]), L(σ̂8[s]) = L(s) = L(t) = L(σ̂8[t]),

L(σ̂10[s]) = L(s) = L(t) = L(σ̂10[t]), L(σ̂12[s]) = L(s) = L(t) = L(σ̂12[t]).

Since σ6, σ8, σ10, σ12 are regular, we have:

V (s) = V (σ̂6[s]), V (t) = V (σ̂6[t]), V (s) = V (σ̂8[s]), V (t) = V (σ̂8[t]),

V (s) = V (σ̂10[s]), V (t) = V (σ̂10[t]), V (s) = V (σ̂12[s]), V (t) = V (σ̂12[t]).

Since V (s) = V (t), we have

V (σ̂6[s]) = V (σ̂6[t]), V (σ̂8[s]) = V (σ̂8[t]),

V (σ̂10[s]) = V (σ̂10[t])

and

V (σ̂12[s]) = V (σ̂12[t]).

By Lemma 4.2, we have

E(σ̂6[s]) = E(s) ∪ {(u, u) | (u, v) ∈ E(s)},

E(σ̂6[t]) = E(t) ∪ {(u, u) | (u, v) ∈ E(t)},

E(σ̂8[s]) = E(s) ∪ {(v, v) | (u, v) ∈ E(s)},

E(σ̂8[t]) = E(t) ∪ {(v, v) | (u, v) ∈ E(t)},

E(σ̂12[s]) = E(s) ∪ {(v, u) | (u, v) ∈ E(s)},
and

E(σ̂12[t]) = E(t) ∪ {(v, u) | (u, v) ∈ E(t)}.
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For any x, suppose that x is on a dicycle C in G(σ̂6[s]). If the dicycle C
is not a loop, then G(s) contains the dicycle C. By Theorem 3.1, x is on a
dicycle in G(t). It follows that x is on a dicycle in G(σ̂6[t]). Suppose that
the dicycle C is a loop, i.e. (x, x) ∈ E(σ̂6[s]). If (x, x) ∈ E(s), then x is
on a dicycle in G(t). Hence, x is on a dicycle in G(σ̂6[t]). If (x, x) /∈ E(s),
then there exist (x, xj) ∈ E(s), x 6= xj for some xj ∈ V (s). By Theorem 3.1,
G(t) has a dipath from x to xj . Hence, (x, x) ∈ E(σ̂6[t]). By the same way,
we can prove that, if x is on a dicycle in G(σ̂6[t]), then x is on a dicycle in
G(σ̂6[s]).

For any x, y ∈ V (s), x 6= y, suppose that G(σ̂6[s]) has a dipath from
x to y. Then G(s) has a dipath from x to y. By Theorem 3.1, G(t) has
a dipath from x to y. It follows that G(σ̂6[t]) has a dipath from x to y
and conversely. Hence, σ̂6[s] ≈ σ̂6[t] ∈ IdT G. By the same way, we get
σ̂8[s] ≈ σ̂8[t] ∈ IdT G.

For σ10, since σ6◦Nσ8 = σ10 and σ6, σ8 are proper, then σ̂10[s] =
σ̂6[σ̂8[s]], σ̂10[t] = σ̂6[σ̂8[t]] and σ̂8[s] ≈ σ̂8[t] ∈ IdT G, σ̂6[σ̂8[s]] ≈ σ̂6[σ̂8[t]] ∈
IdT G. Therefore, σ̂10[s] ≈ σ̂10[t] ∈ IdT G.

For σ12, and for any x ∈ V (s), suppose that x is on a dicycle in G(σ̂12[s]).
Let C = (x, x1), (x1, x2), (x2, x3), ..., (xn, x) be such dicycle. If it is a dicycle
in G(s), then x is on a dicycle in G(t) by Theorem 3.1(iii). Hence, x is on
the dicycle in G(σ̂12[t]). If it is not, then we consider in two cases. The
first case is such when all edges in dicycle C are not belong to G(s). Then
(x, xn), (xn, xn−1), (xn−1, xn−3), ..., (x1, x) is the dicycle in G(s). Hence, x is
on a dicycle in G(t) by Theorem 3.1(iii). By Lemma 4.2, we get that x is on
a dicycle in G(σ̂12[t]). The second case is when there exists some edges in
C not belong to G(s). In this case the dicycle C is divided into subdipaths
P1, P2, ..., Pp and Q1, Q2, ..., Qq such that all edges of each Pi, i = 1, 2, ..., p
are belong to G(s) and all edges of each Qj , j = 1, 2, ..., q are not belong to
G(s). Suppose Qj = (xj1, xj2), (xj2, xj3), ..., (xjrij−1, xjrj ), j = 1, 2, ..., q.
Then the dipaths (xjrj , xjrj−1), ..., (xj3, xj2), (xj2, xj1), j = 1, 2, ..., q are
in G(s). Hence, there are the dipaths from xjrj to xj1 in G(t) for all
j = 1, 2, ..., q by Theorem 3.1(iv). That is there are the dipaths from xj1 to
xjrj in G(σ̂12[t]) for all j = 1, 2, ..., j. From these dipaths and the subdipaths
Pi, i = 1, 2, ..., p we can find the dicycle C

′
in G(σ̂12[t]) which contains x.

By the same way, we can prove that, if x is on a dicycle in G(σ̂12[t]), then
x is on a dicycle in G(σ̂12[s]).

For any x, y ∈ V (s), x 6= y, suppose that G(σ̂12[s]) has a dipath from x
to y. If it is the dipath in G(s), then G(t) has a dipath from x to y. Hence,
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G(σ̂12[t]) has a dipath from x to y. If it is not, then by using the similar
method of proof as above, we can find the dipath from x to y in G(σ̂12[t])
and we can prove the converse. Therefore, σ̂12[s] ≈ σ̂12[t] ∈ IdT G.

For any σ /∈ {σ0, σ6, σ8, σ10, σ12}, we give an identity s ≈ t in T G such
that σ̂[s] ≈ σ̂[t] /∈ IdT G. Clearly, if s and t are trivial terms with different
leftmost and different rightmost, then σ̂1[s] ≈ σ̂1[t] /∈ IdT G, σ̂3[s] ≈ σ̂3[t] /∈
IdT G and σ̂2[s] ≈ σ̂2[t] /∈ IdT G, σ̂4[s] ≈ σ̂4[t] /∈ IdT G.

Now, let s = x1(x2x1), t = x1((x2x1)x2). By Theorem 3.1, we get
s ≈ t ∈ IdT G. If σ ∈ {σ5, σ7, σ9, σ13}, then L(σ(f)) = x2. We see that
L(σ̂[s]) = x1 and L(σ̂[t]) = x2 for σ ∈ {σ5, σ7, σ9, σ13}. Thus σ̂[s] ≈ σ̂[t] /∈
IdT G.

Now, we apply our results to characterize all hyperidentities in the class
of all transitive graph algebras. Clearly, if s and t are trivial terms, then
s ≈ t is a hyperidentity in T G if and only if they have the same leftmost and
the same rightmost and x ≈ x(x ∈ X) is a hyperidentity in T G too. So we
consider the case that s and t are non-trivial and different from variables.

In [2] the concept of a dual term sd of the non-trivial term s was defined
in the following way:

If s = x ∈ X, then xd = x; if s = t1t2, then sd = td2t
d
1. The dual term sd

can be obtained by application of the graph hypersubstitution σ5, namely,
σ̂5[s] = sd.

Theorem 4.2. An identity s ≈ t in T G, where s, t are non-trivial and
s 6= x, t 6= x, is a hyperidentity in T G if and only if the dual equation
sd ≈ td is also an identity in T G.

Proof. If s ≈ t is a hyperidentity in T G, then σ̂5[s] ≈ σ̂5[t] is an identity
in T G, i.e., sd ≈ td is an identity in T G. Conversely, assume that s ≈ t is an
identity in T G and that sd ≈ td is an identity in T G too. We have to prove
that s ≈ t is closed under all graph hypersubstitutions from MT G .

If σ ∈ {σ0, σ6, σ8, σ10, σ12}, then σ is proper and we get that σ̂[s] ≈
σ̂[t] ∈ IdT G. By assumption, σ̂5[s] = sd ≈ td = σ̂5[t] is an identity in T G.

For σ1, σ2, σ3 and σ4, we have σ̂1[s] = L(s) = L(t) = σ̂1[t], σ̂2[s] =
L(sd) = L(td) = σ̂2[t], σ̂3[s] = L(s)L(s) = L(t)L(t) = σ̂3[t] and σ̂4[s] =
L(sd)L(sd) = L(td)L(td) = σ̂4[t].

Because of σ6◦Nσ5 = σ7, σ8◦Nσ5 = σ9, σ10◦Nσ5 = σ11 σ12◦Nσ5 = σ13

and σ̂[σ̂5[t′]] = σ̂[t′d] for all σ ∈ MT G , t′ ∈ Wτ (X2), we have that σ̂7[s] ≈
σ̂7[t], σ̂9[s] ≈ σ̂9[t], σ̂11[s] ≈ σ̂11[t], σ̂13[s] ≈ σ̂13[t] are identities in T G.
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