
Discussiones Mathematicae 5
General Algebra and Applications 25 (2005 ) 5–21

EMBEDDINGS OF CHAINS INTO CHAINS
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1. Introduction

If G is a set, then |G| denotes its cardinality; a set G will be called nontrivial
if |G| ≥ 2. Let G be a chain and x, y ∈ G; the symbol x−< y means that
x, y are consecutive elements in G, i.e., x < y and x < z < y for no z ∈ G.
In this case we will also say that x is an up-isolated element and y is down-
isolated element in G. An element x ∈ G is isolated if it is up-isolated or
down-isolated.

Let G be a chain, H a (partially) ordered set. A mapping f : G → H
is isotone if x, y ∈ G, x < y implies f(x) ≤ f(y); it is an embedding if it
is isotone and injective. A surjective embedding f : G → H is clearly an
isomorphism of G onto H.

If G and H are disjoint chains (or, more generally, ordered sets), then
G⊕H denotes its ordinal sum. Also, if G is a chain and {Hx : x ∈ G} is a
system of pairwise disjoint chains, then

⊕
x∈G Hx denotes the ordinal sum

of chains Hx over G. Moreover, G ◦H is the ordinal product of chains G,H.
Recall that a cut of a chain G is a couple [A, B] of its nonvoid subsets

such that G = A ⊕ B. The terms jump and gap will be used in the usual
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sense. Note that a chain G contains no jumps if it has no isolated elements
and it contains no gaps if it is a conditionally complete lattice, i.e., any
nonvoid up-bounded subset of G has the supremum in G and any nonvoid
down-bounded subset of G has the infimum in G.

Let G be a chain and a, b ∈ G, a ≤ b. We denote 〈a, b〉 the closed
interval with end-points a, b, i.e., 〈a, b〉 = {x ∈ G : a ≤ x ≤ b}. Similarly,
if a < b, then (a, b) = {x ∈ G : a < x < b} is the open interval with
end-points a, b. Symbols 〈a, b) and (a, b〉 have the obvious meaning. Also,
(a,∞) = {x ∈ G : x > a}, (−∞, a) = {x ∈ G : x < a} and (−∞,∞) = G
are open intervals. More generally, by an interval in a chain G we mean any
subset I ⊆ G having the property a, b ∈ I, a < b ⇒ 〈a, b〉 ⊆ I.

Let S be any system of nonvoid subsets of a chain G. We define a
relation ≺ on S by setting A ≺ B ⇔ a < b for all a ∈ A and all b ∈ B.
Trivially, this relation is a (partial) order on S; we will call it a natural order
on S. If elements of S are pairwise disjoint intervals, then ≺ is a linear order
on S. Especially, if A = 〈a1, a2〉, B = 〈b1, b2〉 are closed intervals in G, then
A ≺ B is equivalent to a2 < b1.

In following chapters we assume that two nontrivial chains G and L
are given where L contains no gaps (and thus it is a conditionally complete
lattice).

2. Isotone mappings and embeddings

Let ϕ : G → L be an isotone mapping. Put for any x ∈ G

aϕ(x) =





sup{ϕ(t) : t ∈ G, t < x}, if x is not the least element in G,

ϕ(x), if x is the least element in G;

bϕ(x) =





inf{ϕ(t) : t ∈ G, t > x}, if x is not the greatest element in G,

ϕ(x), if x is the greatest element in G.

In the sequel, symbols aϕ(x), bϕ(x) always have this meaning.

Lemma 2.1. Let ϕ : G → L be an isotone mapping. Then aϕ(x) ≤ ϕ(x) ≤
bϕ(x) for any x ∈ G.
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Proof. This is clear and follows from the definition.

Further, the set of all closed intervals in L is denoted by L; (L,≺) is thus an
ordered set. If ϕ : G → L is an isotone mapping, then we define a mapping
f [ϕ] : G → L by f [ϕ](x) = 〈aϕ(x), bϕ(x)〉.
Lemma 2.2. Let ϕ : G → L be an isotone mapping. Then it holds:

(i) If f [ϕ] is an embedding of (G,<) into (L,≺), then ϕ is an embedding
of (G,<) into (L, <).

(ii) If G contains no jumps and if ϕ is an embedding of (G,<) into (L,<),
then f [ϕ] is an embedding of (G,<) into (L,≺).

Proof.

(i) Suppose that f [ϕ] is an embedding of (G,<) into (L,≺) and let x < y
for some x, y ∈ G, . Then f [ϕ](x) ≺ f [ϕ](y), i.e., bϕ(x) < aϕ(y).
As ϕ(x) ≤ bϕ(x), ϕ(y) ≥ aϕ(y), we have ϕ(x) < ϕ(y) and ϕ is an
embedding of (G,<) into (L, <).

(ii) Let G contain no jumps and let ϕ : G → L be an embedding. Take any
x, y ∈ G, x < y; then there exist x0, y0 ∈ G with x < x0 < y0 < y. From
this ϕ(x) < ϕ(x0) < ϕ(y0) < ϕ(y). From definition of bϕ(x), aϕ(y), it
follows bϕ(x) ≤ ϕ(x0), aϕ(y) ≥ ϕ(y0). Thus, bϕ(x) < aϕ(y) implies
f [ϕ](x) = 〈aϕ(x), bϕ(x)〉 ≺ 〈aϕ(y), bϕ(y)〉 = f [ϕ](y) and f [ϕ] is an
embedding of (G,<) into (L,≺).

Therefore, we have

Corollary 2.3. Let ϕ : G → L be an isotone mapping and let G contain no
jumps. Then the following statements are equivalent:

(i) ϕ is an embedding of (G,<) into (L,<);

(ii) f [ϕ] is an embedding of (G,<) into (L,≺).

Example 2.4. Denote G = (0, 1) ⊆ R with the natural ordering of reals and
L = G◦〈0, 1〉. Let ϕ : G → L be mapping such that ϕ(x) = [x, 1

2 ] for x ∈ G.
Then ϕ is an embedding of G into L; as G contains no jumps, f [ϕ] is an
embedding of G into (L,≺). Clearly, we have aϕ(x) = [x, 0], bϕ(x) = [x, 1]
for any x ∈ G; thus, f [ϕ](x) = 〈[x, 0], [x, 1]〉.
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We can also prove

Lemma 2.5. Let ϕ : G → L be an embedding. Then G contains no jumps
iff f [ϕ] is an embedding of (G, <) into (L,≺).

Proof. If G contains no jumps, then f [ϕ] is embedding by 2.2.(ii). On
the other hand, suppose that G contains consecutive elements x−<y. Then
ϕ(x) < ϕ(y) in L and, trivially, bϕ(x) = ϕ(y), aϕ(y) = ϕ(x). Thus, aϕ(y) <
bϕ(x) and the relation f [ϕ](x) ≺ f [ϕ](y) is not valid. Hence, f [ϕ] is not an
embedding of (G,<) into (L,≺).

Theorem 2.6. Let ϕ : G → L be an isotone mapping and let G contain no
gaps. Then

⋃
f [ϕ](G) is an interval in L.

Proof. Take any a, b ∈ ⋃
f [ϕ](G) and suppose the existence of an element

c ∈ L such that a < c < b, c /∈⋃
f [ϕ](G). Denote A = {t ∈ G : bϕ(t) < c}

and B = {t ∈ G : aϕ(t) > c}; we show that [A,B] is a cut in G. As a ∈⋃
f [ϕ](G), there exists x ∈ G such that a ∈ f [ϕ](x), i.e., aϕ(x) ≤ a ≤ bϕ(x)

and aϕ(x) < c. Then necessarily bϕ(x) < c; otherwise c ∈ 〈aϕ(x), bϕ(x)〉 ⊆⋃
f [ϕ](G), a contradiction. From this x ∈ A and A 6= ∅. Similarly, we can

prove B 6= ∅. Let x ∈ A and y ∈ B. Then bϕ(x) < c and aϕ(y) > c so that
bϕ(x) < aϕ(y). As ϕ(x) ≤ bϕ(x) and ϕ(y) ≥ aϕ(y), we have ϕ(x) < ϕ(y).
As ϕ is isotone, this implies x < y and we have proved A ≺ B. Let x ∈ G
be any element. Then c /∈ f [ϕ](x) = 〈aϕ(x), bϕ(x)〉. Thus either c > bϕ(x)
or c < aϕ(x), i.e., either x ∈ A or x ∈ B. We have shown A ∪ B = G and
[A,B] is a cut in G. As G contains no gaps, there exists max(A) or min(B)
in G. Suppose the existence of max(A) = z. Then bϕ(z) < c by definition
of A; at the same time c ≤ inf({aϕ(t) : t∈B})= inf({aϕ(t) : t ∈ G, t>z})
≤ inf({ϕ(t) : t ∈ G, t > z}) = bϕ(z), a contradiction. If B has the minimum
in G, then the conclusion is similar.

J. Novák proved in [5] that if H is a chain without jumps and gaps and
if H is a system of its nonvoid pairwise disjoint closed intervals such that⋃H = H, then (H,≺) is a chain without jumps and gaps. We prove a more
general assertion.

Lemma 2.7. Let L0 be a system of nonvoid pairwise disjoint intervals in
L such that

⋃L0 is an interval in L. Then the chain (L0,≺) contains no
gaps.
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Proof. Denote
⋃L0 = I; thus I is an interval in L. Suppose that (L0,≺)

contains a cut [A,B] which is a gap. Put A =
⋃A and B =

⋃B. Then
[A,B] is a cut in I. As (A,≺) does not contain the greatest element, (A,<)
does not contain the greatest element. Similarly, (B,<) does not contain
the least element. The cut [A,B] in I is thus a gap which is impossible.

Theorem 2.8. Let G contain no jumps and let ϕ : G → L be an embedding.
Then the following statements are equivalent:

(i) G contains no gaps;

(ii) In L there exists a system LG of pairwise disjoint closed intervals such
that

⋃LG is an interval in L and that (G,<) and (LG,≺) are
isomorphic.

Proof. (i) implies (ii) by Lemma 2.2 and Theorem 2.6. On the other hand,
(ii) implies (i) by Lemma 2.7.

3. Continuity interval topology

Recall that the interval topology on a chain H is a topology the base of which
is the system of all open intervals. In the following text, when speaking about
a continuity of a mapping ϕ : G → L, we mean the continuity of ϕ with
respect to interval topology on G and on L.

Lemma 3.1. Let ϕ : G → L be an isotone mapping and let x ∈ G. If
aϕ(x) = bϕ(x), then ϕ is continuous at x.

Proof. Let aϕ(x) = bϕ(x) so that aϕ(x) = bϕ(x) = ϕ(x) and let U be
any neighborhood of the element ϕ(x) in L. Then there exists an open
interval I ⊆ U such that ϕ(x) ∈ I. Let, at first, I = (a, b), where a, b ∈ L,
a < ϕ(x) < b. Suppose that x is not an end-element in G. Then there exists
t1 ∈ G with t1 < x such that ϕ(t1) > a (otherwise it would be aϕ(x) ≤ a)
and t2 ∈ G with t2 > x such that ϕ(t2) < b. If we put V = (t1, t2), then V
is a neighborhood of x and ϕ(V ) ⊆ U . If x is the least element in G, then
it is not the greatest and we find t2 ∈ G with t2 > x such that ϕ(t2) < b.
Then V = (−∞, t2) = 〈x, t2) is a neighborhood of x with ϕ(V ) ⊆ U . The
case when x is the greatest element in G is similar.
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Now, suppose I = (a,∞) so that ϕ(x) > a. If x is not the least element
in G, then there exists t1 ∈ G with t1 < x such that ϕ(t1) > a. We put
V = (t1,∞) and we have ϕ(V ) ⊆ U . If x is the least element in G, it suffices
to put V = (−∞,∞). If I = (−∞, b), then the considerations are similar
and case I = (−∞,∞) is trivial.

Lemma 3.2. Let ϕ : G → L be an isotone mapping, let x ∈ G and let ϕ
be continuous at x. If x is not up-isolated, then bϕ(x) = ϕ(x); if x is not
down-isolated, then aϕ(x) = ϕ(x).

Proof. Let x be not up-isolated. If x is the greatest element in G or
ϕ(x) is the greatest element in L, then, trivially, bϕ(x) = ϕ(x). Suppose
that x is not the greatest in G and ϕ(x) is not the greatest in L. Choose
arbitrarily c ∈ L, c > ϕ(x). Then U = (−∞, c) is a neighborhood of ϕ(x)
in L; thus there exists a neighborhood V of x in G such that ϕ(V ) ⊆ U .
As x is not up-isolated, there exists t ∈ V such that x < t. From this
ϕ(x) ≤ ϕ(t) and ϕ(t) ∈ U , i.e., ϕ(t) < c. From the definition of bϕ(x), we
have bϕ(x) ≤ ϕ(t) < c. Hence, bϕ(x) < c for any c ∈ L, c > ϕ(x) implies
bϕ(x) ≤ ϕ(x). From this bϕ(x) = ϕ(x). The assertion for aϕ(x) can be
proved similarly.

Taking into account Lemmas 3.1 and 3.2 we have:

Corollary 3.3. Let ϕ : G → L be an isotone mapping and let x ∈ G be not
an isolated element. Then ϕ is continuous at x iff aϕ(x) = bϕ(x).

From the preceding Lemmas we get

Theorem 3.4. Let G contain no jumps and let ϕ : G → L be an isotone
mapping. Then ϕ is continuous precisely at those elements x ∈ G for which
aϕ(x) = bϕ(x).

Now we will investigate the problem of existence of an embedding
ϕ : G → L with the prescribed set of points of discontinuity.

Lemma 3.5. Let G contain no jumps and let H ⊆ G. Then the following
statements are equivalent:

(i) there exists an embedding ϕ : G → L which is discontinuous at each
element x ∈ H;
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(ii) L contains a system LG of pairwise disjoint closed intervals such that
there exists an isomorphism f : (G,<) → (LG,≺) with the property
x ∈ H ⇒ |f(x)| > 1.

Proof. (i) implies (ii) by Lemma 2.5. and Theorem 3.4. Suppose that (ii)
holds and let f(x) = 〈a(x), b(x)〉 for x ∈ G. By the assumption, a(x) < b(x)
for x ∈ H. Let us define a mapping ϕ : G → L like this:

ϕ(x) = a(x) if x is not the greatest element of G,

ϕ(x) = b(x) if x is the greatest element of G.

Clearly, ϕ is an embedding of (G,<) into (L, <). Let x ∈ H so that
a(x) < b(x). If x is not the greatest element in G, then U = (−∞, b(x))
is a neighborhood of a(x) = ϕ(x) in L. Let V be any neighborhood of
x in G. As G contains no jumps, V contains an element t > x. Then
f(x) ≺ f(t), i.e., b(x) < a(t) and ϕ(t) ≥ a(t) > b(x) implies ϕ(t) /∈ U .
Thus, ϕ(V ) ⊆ U for no neighborhood V of x and ϕ is discontinuous at x.
Now suppose that x is the greatest element in G. Put U = (a(x),∞) Then
U is a neighborhood of b(x) = ϕ(x) in L. If V is any neighborhood of x in G,
then V contains an element t < x. Therefore, f(t) ≺ f(x), i.e., b(t) < a(x)
implies ϕ(t) ≤ b(t) < a(x) and ϕ(t) /∈ U . Thus, again, ϕ(V ) ⊆ U for no
neighborhood V of x; and ϕ is discontinuous at x.

Lemma 3.6. Let G contain no jumps and let H ⊆ G. Assume that L con-
tains a system LG of pairwise disjoint closed intervals such that

⋃LG is an
interval in L and that there exists an isomorphism f : (G,<) → (LG,≺)
with the property x ∈ H ⇔ |f(x)| > 1. Then there exists an embedding
ϕ : G → L such that H is the set of points of discontinuity of the
mapping ϕ.

Proof. Let f(x) = 〈a(x), b(x)〉 so that a(x) < b(x) for x ∈ H and a(x) =
b(x) for x ∈ G rH. Let us define a mapping ϕ : G → L in the same way
as in the proof of Lemma 3.5, i.e., ϕ(x) = b(x) if x is the greatest element
in G and ϕ(x) = a(x) in the other case. Then ϕ is an embedding of G
into L and, as it has been proved in Lemma 3.5, ϕ is discontinuous at any
element x ∈ H. Let x ∈ G r H such that f(x) = {a(x)} and let U be
any neighborhood of the element ϕ(x) = a(x). Suppose at first that x is not
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end-element in G. Then ϕ(x) is not end-element in L and hence, there exist
a, b ∈ L such that a < ϕ(x) < b and (a, b) ⊆ U . Suppose that b(t) < a for
any t ∈ G, t < x. As f(x) = {ϕ(x)} = {a(x)} and for t ∈ G, t > x implies
f(t) Â f(x), i.e., a(t) > ϕ(x), we have a /∈ 〈a(t), b(t)〉 = f(t) for all t ∈ G
and a /∈ ⋃

f(G) =
⋃LG. This contradicts the fact that

⋃LG is an interval
in L. Thus it must exist an element t0 ∈ G, t0 < x such that b(t0) ≥ a. Take
an element t1 ∈ G such that t0 < t1 < x. Then f(t0) ≺ f(t1) ≺ f(x), i.e.,
b(t0) < a(t1) ≤ b(t1) < ϕ(x) and ϕ(t1) = a(t1) > a. In the similar way we
find an element t2 ∈ G with t2 > x such that b(t2) < b. Then V = (t1, t2) is
a neighborhood of x such that ϕ(V ) ⊆ (a, b) ⊆ U and ϕ is continuous at x.

Now let x be the greatest element in G. Then it is not the least element
and, hence, ϕ(x) is not the least element in L. Thus, there exists a ∈ L with
a < ϕ(x) such that (a, ϕ(x)〉 ⊆ U . In a similar way as above, we find an
element t1 ∈ G with t1 < x such that ϕ(t1) > a. Then V = (t1,∞) = (t1, x〉
is a neighborhood of x with ϕ(V ) ⊆ U and ϕ is continuous at x. If x is the
least element in G, then the proof is similar.

From the preceding two Lemmas, we now obtain the conclusion:

Theorem 3.7. Let G contain no jumps and no gaps and let H ⊆ G. Then
the following statements are equivalent:

(i) there exists an embedding ϕ : G → L such that H is the set of points of
discontinuity of the mapping ϕ;

(ii) L contains a system LG of pairwise disjoint closed intervals such
that

⋃LG is an interval in L and that there exists an isomorphism
f : (G,<) → (LG,≺) with the property x ∈ H ⇔ |f(x)| > 1.

Proof. If (i) is valid, then (ii) holds by Theorems 2.8 and 3.4. On the other
hand, (ii) implies (i) by Lemma 3.6.

Especially, by setting H = G, we get

Theorem 3.8. Let G contain no jumps and no gaps. Then the following
statements are equivalent:

(i) there exists an embedding ϕ : G → L which is discontinuous at each
point of G;



Embeddings of chains into chains 13

(ii) L contains a system LG of pairwise disjoint nontrivial closed intervals
such that

⋃LG is an interval in L and that (G,<) and (LG,≺) are
isomorphic.

Example 3.9. Let G = (0, 1) ⊆ R be the open interval with usual ordering
and L = G ◦ 〈0, 1〉. Then LG = {〈[x, 0], [x, 1]〉 : x ∈ G} is an ordered natu-
rally system of pairwise disjoint nontrivial closed intervals in L whose union
is L and which is isomorphic with G. Thus, according to Theorem 3.8, exists
an embedding of G into L which is discontinuous at each point of G. By the
considerations in proofs of Lemmas 3.5 and 3.6, the mapping ϕ(x) = [x, 0],
(where x ∈ G) is such an embedding. Clearly, the embedding constructed
in Example 2.4 has also this property.

4. Case G = L

In this part we will investigate the following problem: Can there exist a chain
G and an embedding of G into G which is discontinuous at each element of
G? If G contains no jumps and no gaps, then it is possible (by Theorem
3.8) only in case when G contains an ordered naturally system of pairwise
disjoint nontrivial closed intervals which is isomorphic with G.

Theorem 4.1. Let G be a chain without gaps and containing both
end-elements. If G is any system of nontrivial subsets of G, then (G,≺)
is not isomorphic to (G,<).

Proof. From assumptions it follows that G is a complete lattice;
denote 0 its least element. Suppose that there exists some system G
of its nontrivial subsets and an isomorphism f : (G,<) → (G,≺). Denote
A = {x ∈ G : {x} ≺ f(x)}. Of course, A ⊆ G. Now we show A 6= ∅. If
{0} ≺ f(0), then 0 ∈ A; in the opposite case an element x ∈ f(0), x > 0
exists and then x ∈ A for f(0) ≺ f(x). Denote sup(A) = a and choose
two elements u, v ∈ f(a), u < v. Suppose a ≤ u. Then a < v, hence,
f(a) ≺ f(v) implies {v} ≺ f(v). This means v ∈ A which contradicts the
fact sup(A) = a and v > a. Thus a > u so that a /∈ A and it is f(u) ≺ f(a),
especially f(u) ≺ {u}. From this u /∈ A. When we should have an x ∈ A
such that u < x < a, then {x} ≺ f(x) ≺ f(a) and x < u, a contradiction.
Thus no x ∈ A with u < x < a exists and A∩〈u, a〉 = ∅. But this contradicts
the fact sup(A) = a.
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As a special case, if G is a chain without gaps and with end-elements, then
it contains no system G of pairwise disjoint nontrivial closed intervals such
that (G,≺) is isomorphic to (G,<). This, together with Theorem 3.8, gives:

Corollary 4.2. Let G be a chain without jumps and gaps containing end-
elements. Then there is no embedding of G into G which is discontinuous
at each point of G.

If G does not contain some end-element, then Theorem 4.1 does not
hold. Indeed, it suffices to put G equal with the set of all positive integers
and f(n) = {2n− 1, 2n}.

M. Novotný in [6] constructed an example of a chain G without jumps
and gaps containing a system G of pairwise disjoint nontrivial closed intervals
such that (G,≺) is isomorphic to (G, <). The following Theorem gives a
general construction of chains with this property.

Theorem 4.3. Let G be a chain, H be a nontrivial chain. Put G1 =
G,Gn+1 = Gn ◦H for n ≥ 1, K =

⊕
n∈N

Gn. Then K contains a system K of

pairwise disjoint nontrivial closed intervals such that (K, <) is isomorphic
to (K,≺).

Proof. Choose two fixed elements a, b ∈ H such that a < b. Let x ∈ K.
Then there exists (a unique) n ∈ N such that x ∈ Gn. We put f(x) =
〈[x, a], [x, b]〉 ⊆ Gn+1. Let us denote K = {f(x) : x ∈ K}. We show that
f : (K,<) → (K,≺) is an isomorphism. Let x, y ∈ K,x < y. If there
exists n ∈ N such that x, y ∈ Gn, then [x, b] < [y, a] in Gn+1 and f(x) =
〈[x, a], [x, b]〉 ≺ 〈[y, a], [y, b]〉 = f(y). If x ∈ Gm, y ∈ Gn, where m 6= n, then
m < n and [x, b] ∈ Gm+1, [y, a] ∈ Gn+1. This implies [x, b] < [y, a] again in
K and f(x) ≺ f(y) in K as well.

Note that if H contains end-elements 0,1 and if we put a = 0, b = 1 in
the above construction, then

⋃K is an interval in K.
A chain having the property from Theorem 4.3 can be constructed such

that it contains no jumps and no gaps. This follows from two lemmas which
proofs are left to reader.

Lemma 4.4. Let G, H be chains. If G and H contain no jumps, then
G ◦H contains no jumps; if G and H contain no gaps and H contains both
end-elements, then G ◦H contains no gaps.
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Lemma 4.5. Let G and H be chains. If G and H contain no jumps and
G has not the greatest element or H has not the least element, then G⊕H
contains no jumps. If G and H contain no gaps and G has the greatest
element or H has the least element, then G⊕H contains no gaps.

We also have:

Corollary 4.6. There exists a chain K without jumps and gaps which con-
tains a system K of pairwise disjoint nontrivial closed intervals such that
∪K is an interval in K and that (K, <) is isomorphic with (K,≺).

Proof. Let G = G1 be a chain without jumps and gaps and with the least
element and without the greatest element, and let H be a nontrivial chain
without jumps and gaps containing end-elements 0,1. Put Gn+1 = Gn ◦H
for n ∈ N and K =

⊕
n∈N

Gn. Then, by Theorem 4.3, K is a chain which

contains a system K with desired properties. Further, if we put a = 0, b = 1
in the construction in the proof of Theorem 4.3, then

⋃K is an interval in
K. Further, by Lemma 4.4, G2 = G1 ◦ H contains no jumps and no gaps
and, clearly, it contains the least element and does not contain the greatest
element. By Lemma 4.5, G1⊕G2 contains no jumps and no gaps and it does
not contain the greatest element. By induction, we prove that, for any n ∈ N,
G1⊕G2⊕ · · · ⊕Gn contains no jumps and no gaps and no greatest element
and Gn+1 contains no jumps and no gaps and it contains the least element
and does not contain the greatest element. Then G1⊕G2⊕· · ·⊕Gn⊕Gn+1

contains no jumps and no gaps and no greatest element. From this it follows
that K =

⊕
n∈N

Gn contains no jumps and no gaps.

Note that the chain K constructed above has not the greatest element but
it contains the least element.

Further, by Theorem 3.8 and Corollary 4.6, we conclude:

Corollary 4.7. There exists a chain K without jumps and gaps and an
embedding ϕ : K → K which is discontinuous at all points of K.

Example 4.8. Let G = G1 = 〈0, 1) ⊆ R, H = 〈0, 1〉 ⊆ R, both with the
usual ordering, Gn+1 = Gn ◦ H for n ∈ N and K =

⊕
n∈N

Gn. By Corollary

4.6 and its proof, K is a chain without jumps and gaps (containing the
least element and not containing the greatest element) which contains a
system K of pairwise disjoint nontrivial closed intervals such that

⋃K is an
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interval in K. Therefore that (K, <) and (K,≺) are isomorphic. Thus, by
Theorem 3.8, it exists an embedding ϕ : K → K which is discontinuous at
all elements of K. An example of such an embedding is the following one:
if x ∈ K, then there exists (a unique) n ∈ N such that x ∈ Gn; finaly, we
put ϕ(x) = [x, 1

2 ] ∈ Gn+1.

5. Density of the set of points of discontinuity

In this part we again suppose that there are given two nontrivial chains G,L
and L contains no gaps. Symbols aϕ(x), bϕ(x), for a given isotone mapping
ϕ : G → L have the same meaning as in parts 2 and 3.

Recall that a subset H of a chain G is called dense in G (in the Hausdorff
sense, see [3], p. 89) if for any elements x, y ∈ G, x < y there exist x0, y0 ∈ H
such that x ≤ x0 < y0 ≤ y. Trivially, if H is dense in G and x, y ∈ G, x−< y,
then x, y ∈ H. If G contains no jumps, then H ⊆ G is dense in G in the
above sense iff it is topologically dense in G at interval topology.

Lemma 5.1. Let ϕ : G → L be an isotone mapping, let H ⊆ G be dense in
G and let x ∈ G. Then the following hold:

(i) If x is not the least element in G, then
aϕ(x) = sup({ϕ(t) : t ∈ H, t < x}).

(ii) If x is not the greatest element in G, then
bϕ(x) = inf({ϕ(t) : t ∈ H, t > x}).

Proof. Ad (i): Let x be not the least element in G. Of course,

sup({ϕ(t) : t ∈ H, t < x}) ≤ aϕ(x).

If there exists an x0 ∈ G such that x0−< x, then, clearly, aϕ(x) = ϕ(x0); but
x0 ∈ H so that sup({ϕ(t) : t ∈ H, t < x}) = ϕ(x0). In the opposite case, for
any t ∈ G, t < x, there exists t0 ∈ H with t < t0 < x implying ϕ(t) ≤ ϕ(t0).
From this aϕ(x) = sup({ϕ(t) : t ∈ G, t < x}) ≤ sup({ϕ(t) : t ∈ H, t < x})
and we have aϕ(x) = sup({ϕ(t) : t ∈ H, t < x}).

(ii) can be proved by dual considerations.

Lemma 5.2. Let ϕ : G → L be an isotone mapping and let G contain no
jumps. Let H ⊆ G be dense in G and let x ∈ G. Then the following hold:
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(i) If x is not the least in G, then aϕ(x) = sup({bϕ(t) : t ∈ H, t < x}).
(ii) If x is not the greatest in G, then bϕ(x) = inf({aϕ(t) : t ∈ H, t > x}).

Proof. Ad (i): Suppose that x is not the least element in G. By Lemma
5.1, aϕ(x) = sup({ϕ(t) : t ∈ H, t < x}). As ϕ(t) ≤ bϕ(t) for all t ∈ G, we
have aϕ(x) ≤ sup({bϕ(t) : t ∈ H, t < x}). On the other hand, if t ∈ H
and t < x, then there exists t0 ∈ H with t < t0 < x implying bϕ(t) ≤ ϕ(t0).
From this sup({bϕ(t) : t ∈ H, t < x}) ≤ sup({ϕ(t) : t ∈ H, t < x}) = aϕ(x)
and the assertion follows.

(ii) can be proved similarly.

Lemma 5.3. Let ϕ : G → L be an isotone mapping, let G contain no jumps
and no gaps, and let H ⊆ G be dense in G. If ϕ is continuous at any point
x ∈ GrH, then cl(

⋃
f [ϕ](H)) is an interval in L.

Proof. Suppose that a, b ∈ cl(
⋃

f [ϕ](H)), a < b and that c ∈ L, a < c < b.
If it exists x ∈ H such that c ∈ 〈aϕ(x), bϕ(x)〉 = f [ϕ](x), then clearly
c ∈ cl(

⋃
f [ϕ](H)). Thus, we can suppose that no x ∈ H with this property

exists. This means that either bϕ(x) < c or aϕ(x) > c for any x ∈ H.
Denote A = {x ∈ H : bϕ(x) < c}, B = {x ∈ H : aϕ(x) > c}. Then [A,B]
is a cut in H. As H is dense in G and G contains no jumps and no gaps,
there exists exactly one element z ∈ G such that z = sup(A) = inf(B).
Assume at first z ∈ A, i.e., z = max(A). Then bϕ(z) < c. By Lemma 5.1,
bϕ(z) = inf({ϕ(t) : t ∈ H, t > z}) = inf(ϕ(B)). Thus it must exist t0 ∈ B
with ϕ(t0) < c. By definition of the set B, we have ϕ(t0) ≥ aϕ(t0) > c, a
contradiction. Similarly, we verify that z /∈ B and hence z ∈ G r H. By
assumption ϕ is continuous at z and, by Theorem 3.4, aϕ(z) = bϕ(z) = ϕ(z).
From Lemma 5.2, there follows ϕ(z) = sup({bϕ(t) : t ∈ H, t < z}) =
sup({bϕ(t) : t ∈ A}). As bϕ(t) < c for all t ∈ A, we have sup({bϕ(t) : t ∈ A})
≤ c, i.e., ϕ(z) ≤ c. Similarly, the fact ϕ(z) = inf({aϕ(t) : t ∈ H, t > z})
implies ϕ(z) ≥ c and we have ϕ(z) = c.

Let U be any neighborhood of the element c ∈ L. Then there
exist c1, c2 ∈ L such that c1 < c < c2 and (c1, c2) ⊆ U . As c = ϕ(z) =
sup({bϕ(t) : t ∈ H, t < z}), there exists t0 ∈ H, such that t0 < z
and c1 < bϕ(t0) ≤ c. This implies 〈aϕ(t0), bϕ(t0)〉 ∩ U 6= ∅. Thus,
U ∩ (

⋃
f [ϕ](H)) 6= ∅ for any neighborhood U of c and c ∈ cl(

⋃
f [ϕ](H)).

We have proved that cl(
⋃

f [ϕ](H)) is an interval in L.
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Lemma 5.4. Let G,L contain no jumps and L contain end-elements.
Let H ⊆ G be dense in G and let L contain a system LH of pairwise
disjoint nontrivial closed intervals such that cl(

⋃LH) is an interval in L
and that (H,<) is isomorphic to (LH ,≺). Then there exists an isotone
mapping ϕ : G → L such that H is the set of points of discontinuity of the
mapping ϕ.

Proof. The assumptions imply that L is a complete lattice. Let f be an
isomorphism of (H, <) onto (LH ,≺) and let f(x) = 〈a(x), b(x)〉 for x ∈ H.
Put, for any x ∈ H, ϕ(x) = a(x) if x is not the greatest element in G,
and ϕ(x) = b(x) otherwise. Then ϕ is a mapping of H into L. We can
extend ϕ to a mapping with domain G, namely, for x ∈ G r H, we put
ϕ(x) = sup({ϕ(t) : t ∈ H, t < x}) if x is not the least element in G and
ϕ(x) = inf({ϕ(t) : t ∈ H, t > x}) otherwise. We show that ϕ : G → L is
isotone. Let x, y ∈ G, x < y. If x, y ∈ H, then f(x) ≺ f(y), i.e., b(x) < a(y)
implies ϕ(x) = a(x) < b(x) < a(y) ≤ ϕ(y). Suppose x ∈ H, y ∈ GrH. Then
there exists t0 ∈ H such that x < t0 < y. From this it follows ϕ(x) < ϕ(t0)
and, from the definition of ϕ, we have ϕ(t0) ≤ ϕ(y). Thus, ϕ(x) < ϕ(y).
Let x ∈ GrH, y ∈ H. If x is the least in G, then ϕ(x) ≤ ϕ(y) follows from
the definition of ϕ; in the opposite case t ∈ H, t < x implies t < y, and thus,
ϕ(t) < ϕ(y) and ϕ(x) = sup({ϕ(t) : t ∈ H, t < x}) ≤ ϕ(y). At the end, let
x, y ∈ G rH. Then there exist t1, t2 ∈ H with x < t1 < t2 < y and, from
the preceding facts, we have ϕ(x) ≤ ϕ(t1) < ϕ(t2) ≤ ϕ(y).

Let x ∈ H. If x is not the greatest in G, then U = (−∞, b(x)) is a
neighborhood of ϕ(x) = a(x) in L. Let V be any neighborhood of x in G.
As G contains no jumps, it exists t ∈ H such that t ∈ V and t > x. Then
f(x) ≺ f(t), i.e., b(x) < a(t) ≤ ϕ(t) and ϕ(t) /∈ U . If x is the greatest
in G, then U = (a(x),∞) is a neighborhood of ϕ(x) = b(x) in L. But any
neighborhood V of x contains an element t ∈ H, t < x. Then b(t) < a(x) and
ϕ(t) = a(t) < b(t) < a(x) implies ϕ(t) /∈ U again. Thus ϕ is discontinuous
at x.

Let x ∈ G r H. Suppose at first that x is neither the least nor the
greatest element of G. Then ϕ(x) is not end-element of L (there exist
t1, t2 ∈ H such that x < t1 < t2 which implies ϕ(x) ≤ ϕ(t1) < ϕ(t2)
and ϕ(x) is not the greatest element; similarly it is not the least element).
Choose any neighborhood U of ϕ(x) in L. Then there exist a, b ∈ L such
that a < ϕ(x) < b and (a, b) ⊆ U . The definition of ϕ(x) implies existence
of t1 ∈ H with t1 < x such that ϕ(t1) > a. We want to show that there
exists t2 ∈ H with t2 > x such that ϕ(t2) < b. Suppose that not. Thus,
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ϕ(t) ≥ b for all t ∈ H, t > x. Then a(t) ≥ b for all t ∈ H, t > x and we
show that b(t) < ϕ(x) for all t ∈ H, t < x. Let t ∈ H and t < x. Then
there exists t0 ∈ H such that t < t0 < x and from this f(t) ≺ f(t0), i.e.,
b(t) < a(t0). From the definition of ϕ(x), there follows a(t0) ≤ ϕ(x). We
have shown (ϕ(x), b)∩〈a(t), b(t)〉 = ∅ for all t ∈ H, i.e., (ϕ(x), b)∩(∪LH) = ∅.
This means that no element of the interval (ϕ(x), b) lies in cl(∪LH), which
contradicts the assumption that cl(∪LH) is an interval in L. Thus, there
exists t2 ∈ H with t2 > x such that ϕ(t2) < b. Then V = (t1, t2) is a
neighborhood of x in G such that ϕ(V ) ⊆ U and ϕ is continuous at x.

Now suppose that x is the greatest element of G. Let U be any neigh-
borhood of ϕ(x) in L. Then there exists a ∈ L with a < ϕ(x) such that
(a, ϕ(x)〉 ⊆ U . From the definition of ϕ(x), there follows the existence of
t1 ∈ H with t1 < x such that ϕ(t1) > a. Then V = (t1,∞) = (t1, x〉 is a
neighborhood of x such that ϕ(V ) ⊆ U . If x is the least element of G and U
is any neighborhood of ϕ(x), then it exists b ∈ L, with b > ϕ(x) such that
〈ϕ(x), b) ⊆ U . In a similar way, we can find an element t2 ∈ H such that
t2 > x and ϕ(t2) < b. Then V = (−∞, t2) = 〈x, t2) is a neighborhood of x
for which ϕ(V ) ⊆ U . Thus ϕ is continuous at x.

In Lemmas 5.3 and 5.4 we can the phrase ”isotone mapping” replace by
the word ”embedding” for the following simple assertion holds:

Lemma 5.5. Let K1,K2 be chains, let K1 contain no jumps and let ϕ :
K1 → K2 be an isotone mapping. If the set of all points off discontinuity of
the mapping ϕ is dense in K1, then ϕ is injective, i.e., it is an embedding
of K1 into K2.

Proof. Suppose that ϕ is isotone and not injective. Then there exist
x1, x2 ∈ K1 such that x1 < x2 and ϕ(x1) = ϕ(x2). Therefore, ϕ is a
constant mapping on interval 〈x1, x2〉 and, thus, continuous at each point
of the interval (x1, x2). But then, the set of all points of discontinuity of
mapping ϕ is not dense in K1.

From the preceding results, we can state the following theorem:

Theorem 5.6. Let G contain no jumps and no gaps, L contain no jumps
and have end-elements. Let H ⊆ G be dense in G. Then the following
statements are equivalent:

(i) There exists an isotone mapping ϕ : G → L such that H is the set of
all points of discontinuity of ϕ.
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(ii) L contains a system LH of pairwise disjoint nontrivial closed intervals
such that cl(∪LH) is an interval in L and, moreover, (H, <) and
(LH ,≺) are isomorphic.

Proof. If (i) holds, then (ii) is valid by Lemmas 5.3, 5.5 and Theorem 3.7.
On the other hand (ii) implies (i) by Lemma 5.4.

By putting G = L, we get:

Corollary 5.7. Let G be a chain without jumps and gaps containing end-
elements, let H ⊆ G be dense in G. Then the following statements are
equivalent:

(i) there exists an isotone mapping ϕ : G → G such that H is the set of all
points of discontinuity of ϕ;

(ii) G contains a system GH of pairwise disjoint nontrivial closed intervals
such that cl(∪GH) is an interval and, moreover, (H,<) and (GH ,≺) are
isomorphic.

Let G be a chain. In accordance with [4], we will say that
G has property (D) if there exists an isotone mapping of G into itself

whose set of all points of discontinuity is dense in G.
If G contains no jumps, then ”isotone mapping” can be replaced by

”embedding”.
From Corollary 5.7 we get directly:

Corollary 5.8. Let G be a chain without jumps and gaps and with end-
elements. Then G has property (D) if and only if there exists a subset
H ⊆ G dense in G and a system GH of pairwise disjoint nontrivial closed
intervals in G such that cl(∪GH) is an interval in G and, moreover, (H, <)
and (GH ,≺) are isomorphic.

Example 5.9. Interval G = 〈0, 1〉 ⊆ R has property (D). In fact, the set H
of dyadic rational numbers from interval (0, 1) is dense in G. If, further, GH

is the system of closures of complemented intervals of Cantor discontinuum
in 〈0, 1〉, then cl(∪GH) = 〈0, 1〉 and, as it is well-known, the chains (H, <)
and (GH ,≺) are isomorphic. Our assertion follows from Corollary 5.8.
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