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Abstract

We describe a part of the lattice of subvarieties of left distributive
left idempotent groupoids (i.e. those satisfying the identities x(yz) ≈
(xy)(xz) and (xx)y ≈ xy) modulo the lattice of subvarieties of left
distributive idempotent groupoids. A free groupoid in a subvariety of
LDLI groupoids satisfying an identity xn ≈ x decomposes as the direct
product of its largest idempotent factor and a cycle. Some properties
of subdirectly ireducible LDLI groupoids are found.
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We consider groupoids (i.e. sets equipped with a binary operation) satisfying
the following two identities:

x(yz) ≈ (xy)(xz),(LD)

(xx)y ≈ xy.(LI)
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We call such groupoids left distributive left idempotent, shortly LDLI.
A groupoid is called idempotent, if it satisfies the identity

xx ≈ x.(I)

Note that the well known class of left distributive left quasigroups (see, e.g.,
[3], [8], and [9]) satisfies left idempotency. Indeed, our results can be applied
there.

The purpose of this note is to continue recent investigations of P. Jedlička
[4] on LDLI groupoids. We apply his result to compute the lattice of subva-
rieties of LDLI groupoids satisfying an identity xn+1 ≈ x for some n, modulo
the lattice of subvarieties of LDI groupoids (see Theorem 4). This gener-
alizes a result of T. Kepka [5] who described in a similar way subvarieties
of LD groupoids with x(xy) ≈ y (such groupoids are called left symmetric;
they satisfy LI and x3 ≈ x).

In Section 2 we show some properties of subdirectly irreducible LDLI
groupoids and apply them to get some information about the structure of
the lattice of subvarieties satisfying identities xm+n ≈ xm.

We use rather standard terminology and notation, for an introduction to
universal algebra, see, e.g., [2]. We need the following result of P. Jedlička
[4]. Let G be an LDLI groupoid and let ipG be the smallest equivalence
on G containing {(a, aa) : a ∈ G}. Then ipG is a congruence, G/ipG is
idempotent, and ipG is the smallest congruence such that the corresponding
factor is idempotent. Moreover, for any (a, b) ∈ ipG, ac = bc holds for every
c ∈ G. Consequently, any block of ipG is a subalgebra of G and it is term
equivalent to a connected monounary algebra.

1. Varieties satisfying xn+1 ≈ x

Let us define inductively x1 = x and xn = xxn−1 for every n > 1. (Note
that other possible definitions of powers do not really make sense: one can
check by induction that any term t in one variable is LI-equivalent to the
term xn, where n is the depth of the rightmost variable in t.) It is easy to
prove that in LDLI groupoids the identities xy ≈ xny and (xk)l ≈ xk+l−1

hold.
We say that a variety V of groupoids has exponent n, if n is the least

positive integer such that the identity xn+1 ≈ x holds in V. (Of course,
such n does not necessarily exist, however, many important varieties, for
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instance left n-symmetric left distributive groupoids (see, e.g., [9]), have
finite exponent.)

Let Cn denote the groupoid on the set {0, . . . , n−1} with the operation
ab = b + 1 (mod n). Clearly, Cn are LDLI groupoids.

Lemma 1. Let G be an LDLI groupoid with xn+1 ≈ x. Then

(1) every block of ipG is isomorphic to Ck for some k|n;

(2) Cn is a homomorphic image of G, if and only if G is isomorphic to
the direct product Cn × (G/ipG).

Proof.
(1): is easy.
(2): Choose a projection g : G → Cn and put f(x) = (g(x), x/ipG).

Then f : G → Cn× (G/ipG) is a homomorphism. Since there is a homomor-
phism Ck → Cl iff l|k, every block of ipG is isomorphic to Cn (g restricted
to a block of ipG is a homomorphism). Hence, g is bijective on every block
of ipG, because rotations are the only endomorphisms of Cn, and thus, f is
an isomorphism. The other implication is clear.

Lemma 2. Let V be a subvariety of LDLI groupoids and assume V has
exponent n. Then Ck ∈ V, iff k|n.

Proof. If k does not divide n, then Ck does not satisfy xn+1 ≈ x. On the
other hand, if V has exponent n, then, according to Lemma 1, ip-blocks of
elements of V are Ck with k|n (indeed, ip-blocks are subgroupoids). Let k0

be the greatest k such that Ck ∈ V. If k0 < n, then V satisfies xk0+1 ≈ x, a
contradiction with minimality of n. Hence, Cn ∈ V and thus, Ck ∈ V for all
k|n, because they are homomorphic images of Cn.

Let FV(X) denote the free groupoid over X in a variety V. Let I denote
the variety of idempotent groupoids.

Theorem 3. Let V be a subvariety of LDLI groupoids and assume V has
exponent n. Then FV(X) is isomorphic to Cn × FV∩I(X). Consequently,
the variety V is generated by (V ∩ I) ∪ {Cn}.
Proof. Since Cn ∈ V, it is a homomorphic image of FV(X). Hence, by
Lemma 1, FV(X) ' Cn ×H, where H = FV(X)/ipFV (X). It is easy to see
that H ' FV∩I(X), because ip is the smallest idempotent congruence.
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A right zero band is a groupoid satisfying the identity xy ≈ y. It is well
known that the variety RZB of right zero bands is minimal (i.e. it is gen-
erated by each of its elements).

Theorem 4. Let L denote the lattice of subvarieties of LDI groupoids, K its
sublattice of varieties containing RZB and N the lattice of positive integer
divisors of n. The lattice of subvarieties of the variety of LDLI groupoids
satisfying xn+1 ≈ x is isomorphic to the lattice (L×{1})∪ (K × (N r {1}))
(regarded as a subposet of L×N), sending a variety V of exponent m to the
pair Φ(V) = (V ∩ I,m).

Proof. First, we check that the mapping Φ is well-defined: the exponent
m of a subvariety V is clearly a divisor of n and since V contains Cm, it
contains a right zero band (Cm ×Cm)/ip, where ip = ipCm×Cm , and thus it
contains the whole variety RZB, because it is minimal. Next, Φ is injective:
if V1 and V2 are distinct varieties of exponent m, then V1 ∩ I and V2 ∩ I
are distinct, because Vi is generated by (Vi ∩ I) ∪ {Cm}, i = 1, 2. The
mapping Φ is onto, a pair (W, m) is the image of the variety generated
by W ∪ {Cm}. Indeed, let G be an idempotent groupoid in the variety
generated by W ∪ {Cm} and we show that G ∈ W. The case m = 1 is
trivial, so let m > 1. By Birkhoff’s HSP Theorem (see [1]), there are H ∈ W,
K ≤ H × Ck

m (for some k) and an onto homomorphism ϕ : K → G. Since
ipK is the smallest idempotent congruence and G is idempotent, there is an
onto homomorphism ψ : K/ipK → G. Further, K/ipK ≤ (K × Ck

m)/ip '
K × (Ck

m/ip). However, Ck
m/ip is a right zero band and thus it is in W.

Consequently, G is a homomorphic image of a subgroupoid of a groupoid
from W, thus it is in W. Finally, Φ clearly preserves the order and it follows
from Theorem 3 that also Φ−1 preserves the order. Consequently, Φ is a
lattice isomorphism.

Example 1. B. Roszkowska proved in [7] that the lattice of subvarieties
of left symmetric medial idempotent (LSMI) groupoids (those where the
identities x(xy) ≈ y, xy ·uv ≈ xu · yv and xx ≈ x hold) is isomorphic to the
lattice of positive integers ordered by divisibility with a top element added.
A number n corresponds to the variety based on wn(x, y) ≈ y (relatively to
LSMI), where

wn(x, y) = x(y(x(y(. . . ))))︸ ︷︷ ︸
n

.
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Note that right zero bands satisfy wn(x, y) ≈ y iff n is even. Thus, using
Theorem 4, it is easy to describe bases of all proper subvarieties of left
symmetric left distributive medial groupoids (relatively to LSLDM):

1. xx ≈ x;

2. wn(x, y) ≈ y and xx ≈ x, for every n;

3. wn(x, y) ≈ y, for every n even.

(Note that mediality and idempotency imply left distributivity, however,
non-idempotent medial groupoids are not necessarily left distributive.)

Example 2. J. PÃlonka ([6]) investigated idempotent groupoids satisfying

x(x(. . . (x︸ ︷︷ ︸
n

y)) ≈ y, x(yz) ≈ y(xz) and xz ≈ (yx)z.

He called them n-cyclic groupoids. It is easy to see that they are LDLI and
that 1-cyclic groupoids are precisely right zero bands. PÃlonka proved that
the only non-trivial subvarieties of n-cyclic groupoids are m-cyclic groupoids
for m|n. One can thus use Theorem 4 to describe the subvarieties of non-
idempotent n-cyclic groupoids. Every non-trivial one is generated by idem-
potent m-cyclic groupoids and the groupoid Ck, for some divisors m, k of n;
hence there are exactly q2 + 1 such subvarieties, where q is the number of
divisors of n.

2. Varieties satisfying xm+n ≈ xm

Theorems 3 and 4 cannot be generalized to varieties satisfying an identity
xm+n ≈ xm for m > 1. For instance, in an LDLI groupoid G with x3 ≈ x2,
every ipG-block is a constant groupoid, i.e. ab = cd for all ipG-congruent
elements a, b, c, d (the corresponding unary algebra is a loop with several
“tails” of length 1). However, this variety is not generated by LDI and
constant groupoids. Indeed, both LDI and constant groupoids satisfy the
identity xy ≈ x(yy), while the groupoid
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a b c d

a, b b b c d

c, d a b d d

does not, though it is LDLI with x3 ≈ x2. We thus present a weaker result
for such varieties.

For a variety V, let Vm,n denote the subvariety of V based (relatively to
V) by the identity xm+n ≈ xm.

It is well known that a groupoid G is subdirectly irreducible, iff it pos-
sesses the smallest non-trivial congruence, and that any variety is generated
by its subdirectly irreducible members.

Lemma 5. Let G be a subdirectly irreducible LDLI groupoid. If Cn is a
subalgebra of G for some n ≥ 2, then G contains no fork (i.e. elements
a 6= b with a2 = b2) and, vice versa, if G contains a fork, then Cn is not a
subalgebra of G, for any n ≥ 2.

Proof. Put α = {(a, b) ∈ G × G : a2 = b2}. It is clear that α is an
equivalence, which glues each fork. It is a congruence, because whenever
a2 = b2, we get at = a2t = b2t = bt and (ta)2 = ta2 = tb2 = (tb)2.

Put (a, b) ∈ β iff there are k, l such that ak = b and bl = a. By a similar
argument, it is easy to see that β is a congruence, which glues each circle.

Clearly, α∩β = idG, hence either α = idG or β = idG or both, and thus
either G contains no fork, or no circle with two or more elements, or both.

Remark. One can prove that a subdirectly irreducible LDLI groupoid G
either contains a fork, or there is a prime p and a natural number k such
that all ipG-blocks are circles of length either 1, or pk (this is proven in [9]
for LD left quasigroups, however, it is sufficient to assume in the proof LDLI
only). On the other hand, there seems to be no uniformity in the former
case. In the following example the ip-blocks have different length of tails
and, moreover, one contains a ‘pure fork’ (such that b 6= b2 = c2 6= c), while
the other don’t. The smallest non-trivial congruence has the only non-trivial
block {a2, a3}.
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a a2 a3 b c b2 d

a, a2, a3 a2 a3 a3 a2 a2 a3 d

b, c, b2 = c2 a3 a3 a3 b2 b2 b2 d

d a3 a3 a3 a2 a3 a3 d

Lemma 6. Let V be a subvariety of LDLI groupoids and m,n be positive
integers. Then Vm,n is the join of the varieties Vm,1 and V1,n.

Proof. Let G be an LDLI groupoid with xm+n ≈ xm. Then ipG-blocks
consist of a circle of length k, where k|n, and possibly some “tails” of length
at most m (precisely, for any element a out of the circle, am lies on the
circle). Now, assume that G is subdirectly irreducible. It follows from the
previous lemma that either all the circles are of length one, or there are
no tails (because whenever a tail joins a circle, there is a fork). Hence, G
satisfies either xm+1 ≈ xm (tails of length at most m only), or xn+1 ≈ x
(circles only). Now, the claim follows from the fact that any variety is
generated by its subdirectly irreducible members.

Theorem 7. Let V be a subvariety of LDLI groupoids and let k, l,m, n be
positive integers. Then

Vk,l ∨ Vm,n = Vmax(k,m),LCM(l,n)

and

Vk,l ∧ Vm,n = Vmin(k,m),GCD(l,n).

Proof. For the first equality, use the previous lemma and compute
Vk,l ∨ Vm,n = Vk,1 ∨ Vm,1 ∨ V1,l ∨ V1,n = Vmax(k,m),1 ∨ V1,LCM(l,n) =
Vmax(k,m),LCM(l,n). The second claim is rather clear.
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Let V be a variety of LDLI groupoids such that it satisfies no identity xm+n ≈
xm. We show that the mapping (m,n) 7→ Vm,n is injective on N × N. The
identity xz ≈ yz implies an identity t ≈ s iff the depth of the rightmost
variable in t equals to the depth of the rightmost variable in s and the two
variables are identical. Indeed, all identities of V have the latter property —
otherwise t(x, . . . , x) ≈ s(x, . . . , x) were a non-trivial identity in one variable.
Hence V contains all groupoids with xz ≈ yz, i.e., in fact, unary algebras.
It is easy to see that for any m1, n1 and m2, n2 with (m1, n1) 6= (m2, n2)
there is a unary algebra such that it satisfies exactly one of the identities
xm1+n1 ≈ xm1 , xm2+n2 ≈ xm2 . Hence, Vm1,n1 6= Vm2,n2 . Moreover, V1,1

contains RZB always non-trivial.
However, not every subvariety of LDLI groupoids is equal to Vm,n for

some V,m, n. For instance, consider the variety C of constant groupoids
(satisfying the identity xy ≈ uv); clearly, x3 ≈ x2 holds in C. Suppose there
is a variety V such that V2,1 = C. Then V1,1 is a non-trivial idempotent
subvariety of C. However, there is no non-trivial idempotent groupoid in C,
a contradiction.

Problem. As shown above, the claim of Theorem 3 does not work for
varieties without exponent. Particularly interesting case is the following:
describe the structure of free LDLI groupoids modulo free LDI ones.
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[9] D. Stanovský, Left distributive left quasigroups, PhD Thesis, Charles Univer-
sity in Prague, 2004. Available at
http://www.karlin.mff.cuni.cz/~stanovsk/math/disert.pdf

Received 13 August 2004
Revised 30 December 2004

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

