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Abstract

The algebras C (complex numbers), H (quaternions), and O (octo-
nions) are real division algebras obtained from the real numbers R by
a doubling procedure called the Cayley-Dickson Process. By doubling
R (dim 1), we obtain C (dim 2), then C produces H (dim 4), and H
yields O (dim 8). The next doubling process applied to O then yields
an algebra S (dim 16) called the sedenions. This study deals with the
subalgebra structure of the sedenion algebra S and its zero divisors.
In particular, it shows that S has subalgebras isomorphic to R, C, H,
O, and a newly identified algebra Õ called the quasi-octonions that
contains the zero-divisors of S.
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1. Introduction

In the past, non-associative algebras and related structures with zero
divisors have not been given much attention because they did not
appear to have any “useful” applications in most mathematical disciplines.
Lately, however, a lot of attention has been focused by theoretical
physicists on the Cayley-Dickson algebras O (octonions) and S (sedenions)
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because of their increasing usefulness in formulating many of the new the-
ories of elementary particles. In particular, the octonions O (which is
the only non-associative normed division algebra over the reals; see [1], [8])
has been found to be involved in so many unexpected places (like string
theory, quantum theory, Clifford algebras, topology, etc.).

These algebras are obtained by a doubling procedure called the Cayley-
Dickson Process (CDP). By doubling the real numbers R (dim 20 = 1)
we obtain the complex numbers C (dim 21 = 2), then C produces the
quaternions H (dim 22 = 4), and H yields O (dim 23 = 8), all of which are
normed division algebras. The next doubling process applied to O then
yields an algebra S (dim 24 = 16) called the sedenion algebra. This
doubling process can be extended beyond the sedenions to form what
are known as the 2n-ions (see [5], [7]).

The problem with CDP is that each step of the doubling process
results in a progressive loss of structure. Thus, R is an ordered field
with all the nice properties we are so familiar with in dealing with num-
bers like: the division property, associative property, commutative property,
self-conjugate property, etc. When we double R to obtain C, it loses the
self-conjugate property (and is no longer an ordered field), next H loses
the commutative property, and O loses the associative property. Finally,
when we double O to obtain S, it loses the division property.
This means that S is non-commutative, non-associative, and is not
a division algebra because it has zero divisors. No wonder, most
mathematicians shy away from the sedenions and some even consider S as
a “pathological” case ([6]).

The captivating thing about S is that all of the real division algebras
R, C, H, and O fit nicely inside it as subalgebras. Hence, any object
involving these algebras can be dealt with in S. Moreover, we see
that S is the double of O which has found several applications in theoretical
physics and related fields (see [1], [8], and [14]). So several theorists have
found it reasonable to ask (cf. [13]):

If the octonions are so good, would not the sedenions be even better?

2. The sedenions

The Cayley-Dickson sedenion algebra S is often defined as a non-commutative,
non-associative, non-alternative, but power-associative 16 dimensional
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algebra with a quadratic form and whose elements are constructed from real
numbers R by iterations of the Cayley-Dickson Process (see [5]). Moreover,
it is neither a composition algebra nor a division algebra because it has zero
divisors.

Let E16 = {ei ∈ S | i = 0, 1, ..., 15} be the canonical basis of S, where e0

is the unit (or identity) and e1, ..., e15 are called imaginaries. Then every
sedenion a ∈ S can be expressed as a linear combination of the base elements
ei ∈ E16, that is,

a =
15∑

i=0

aiei = a0 +
15∑

i=1

aiei

where ai ∈ R. Here a0 is called the real part of a while
∑15

i=1 aiei is called
its imaginary part.

Addition of sedenions is done component-wise. On the other hand,
multiplication is defined by bilinearity and the multiplication rule of the
base elements. Thus, if a,b ∈ S, we have:

ab =

(
15∑

i=0

aiei

)


15∑

j=0

bjei


 =

15∑

i,j=0

aibj(eiej) =
15∑

i,j,k=1

fijγ
k
ijek

where ei,ej , ek ∈ E16, fij = aibj ∈ R, and the quantities γk
ij ∈ R are called

structure constants. The multiplication rule of the sedenion base elements
is given by

eiej =
15∑

k=0

γk
ijek

and is summarized in Table 1.

Since S is the double of O, it contains O as a subalgebra. Thus,
the indices i = 0, 1, ..., 7 correspond to the octonion base elements, while
those where i = 8, ..., 15 correspond to the pure sedenion base elements.
Moreover, O is the double of H, and H is the double of C. Hence, H
and C are also subalgebras of S. This is nicely shown by the broken lines in
Table 1.
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Table 1. Multiplication table of the sedenion base elements. For simplicity, the
entries in this table are the indices of the base elements, that is, we have
set i ≡ ei, where i = 0, 1, ..., 15.

The above multiplication rule can also be expressed more compactly by
means of 35 associative triples (or cycles). These are listed below in two
sets: octonion triplets and sedenion triplets.

OCTONION TRIPLETS:
(1,2,3), (1,4,5), (1,7,6), (2,4,6), (2,5,7), (3,4,7), (3,6,5)

SEDENION TRIPLETS:
(1,8,9), (1,11,10), (1,13,12), (1,14,15)

(2,8,10), (2,9,11), (2,14,12), (2,15,13)

(3,8,11), (3,10,9), (3,15,12), (3,13,14)

(4,8,12), (4,9,13), (4,10,14), (4,11,15)

(5,8,13), (5,12,9), (5,10,15), (5,14,11)

(6,8,14), (6,15,9), (6,12,10), (6,11,13)

(7,8,15), (7,9,14), (7,13,10), (7,12,11)
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If (a, b, c) is any given triplet, then ab = c and ba = −c. This is also true of
any cyclic permutation of a, b, c ; e.g., bc = a and cb = −a, etc. Moreover,
given the triplet (a, b, c), then (ab)c = a(bc). Similarly, this is also true of
any cyclic permutation of a, b, c ; e.g., (bc)a = b(ca), etc. The elements in a
triplet therefore associate and anti-commute.

Remark 1. There are several 16-dimensional algebras or ”semi-algebras”
that are now called “sedenions” in the literature. One of these is the
Conway-Smith sedenions ([4]) which is a semi-algebra with a multiplicative
norm and is thus different from the Cayley-Dickson sedenions discussed in
this paper. Another one is that defined by J.D.H. Smith in [11] that is also
a semi-algebra with a multiplicative norm: it contains the octonions as a
subalgebra.

3. Subalgebras of the sedenions

The structure of the sedenion algebra is determined primarily by its
subalgebra composition. As noted earlier, R, C, H, and O fit nicely
into the sedenion algebra S as subalgebras as a consequence of the Cayley-
Dickson Process. Thus we find from Table 1 that S contains O, which
contains H, which contains C, and which finally contains R as
subalgebras. In addition, any other subalgebras of O, H, and C are also
subalgebras of S.

Every finite dimensional algebra (see [10]) is basically defined by the
multiplication rule of its basis En. It can be shown that the set
E16 = {ei | i = 0, 1, ..., 15} of 16 sedenion base elements generates a
set SL = {±ei | i = 0, 1, ..., 15} of order 32, where e0 is the identity
element, that forms a non-commutative loop under sedenion multiplication.
This loop SL, which we shall call the Cayley-Dickson sedenion loop,
is embedded (see [8]) in the sedenion space and its subloops determine
the basic subalgebras of S (the subalgebras generated by the base
elements of S).

To determine the properties and basic subalgebras of S, we must there-
fore analyze this embedded loop SL by decomposing it into its subloops and
identifying each of them. We do this by means of the software FINITAS ([9])
– a computer program for the analysis and construction of finite algebraic
structures. The results of this analysis are as follows:
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I. The non-commutative loop SL belongs to the class of non-associative
finite invertible loops (NAFIL). Analysis shows that it satisfies the
following properties:

• PAP (Power Associative Property), IP (L/R Inverse Property), WIP
(Weak Inverse Property), AAIP (Antiautomorphic Inverse Property),
SAIP (L/R Semiautomorphic Inverse Property), AP (L/R Alternative
Property), FL (Flexible Law), RIF Loop property, CL (C-Loop Prop-
erty), and NSLP (Nuclear Square Loop Property: LN, MN, RN). More-
over, it follows from PAP, IP, AP, and FL that it is also diassociative.
(See Table 2.)

• All elements of SL, except e0 and −e0, are of order 4; its center is
{e0,−e0}; and all squares are in this center.

II. The loop SL has exactly 67 subloops (numbered 1 to 67 by FINITAS ),
66 of which are non-trivial and normal. The block diagram of the
lattice of these subloops is shown in Figure 1.

• There are 15 subloops of order 16. All of these are non-abelian NAFILs
of two types: (a) eight NAFILs isomorphic to the octonion loop OL

(the Moufang loop generated by the basis of O), and (b) seven NAFILs
that are isomorphic to a loop which we shall call the quasi-octonion
loop ÕL. This loop is not isomorphic to the octonion loop OL because it
does not satisfy the Moufang identity. These are the maximal subloops
of SL.

• There are 35 subloops of order 8. All of these are non-abelian groups
isomorphic to the quaternion group Q of order 8. These are subloops
of the copies of OL and ÕL.

• There are 15 subloops of order 4. All of these are abelian groups
isomorphic to the cyclic group C4 of order 4. These are subloops of
the copies of Q.

• There is only one (1) subloop of order 2. This is a group isomorphic
to the cyclic group C2 of order 2 and is the center of SL.

• There is only one (1) subloop of order 1. This is the trivial group.
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Figure 1. The lattice diagram (in block form) of the subloop structure of the
sedenion loop SL of order 32.

It follows from the above subloop analysis that:

Proposition 1. Every non-trivial subloop of SL is isomorphic to one of the
following loops: OL, ÕL, Q, C4, and C2.

The subloops of SL that are isomorphic to OL, ÕL, Q, C4, and C2 shall be
called copies of these loops. The loop ÕL represents the class of 7 isomorphic
subloops of SL (numbers 4, 7, 10, 18, 21, 29, 32) listed in Table 3. Note
that in each of the octonion and quasi-octonion copies, the first three of
the 7 imaginaries are elements of an octonion triplet while the remaining
four are pure sedenion base elements. These imaginaries have very special
properties.
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The lattice of the subloops of SL shown in Figure 1 also shows that the copies
of OL and ÕL contain only copies of Q, C4, and C2 as subloops. This means
that both OL and ÕL contain only subloops isomorphic to Q, C4, and C2.
Thus, they have the same subloop composition.

To determine the important properties of the loops SL, OL and ÕL,
we analyzed their Cayley tables by means of the software FINITAS. The
identified properties are listed in Table 2.

Table 2. This table shows some of the known loop identities satisfied by the
sedenion loop SL, octonion loop OL, and the quasi-octonion loop ÕL.

PROPERTY DEFINING IDENTITY SL OL ÕL

IP LIP: x−1(xy) = y and RIP: (yx)x−1 = y YES YES YES

FL x(yx) = (xy)x YES YES YES

AP LAP: x(xy) = (xx)y and RAP: x(yy) = (xy)y YES YES YES

CL x(y(yz)) = ((xy)y)z → LC and RC YES YES YES

LC (xx)(yz) = (x(xy))z YES YES YES

RC x((yz)z) = (xy)(zz) YES YES YES

MP (xy)(zx) = (x(yx))z × YES ×
PAP xaxb = xa+b

YES YES YES

WIP x(yx)−1 = y−1
YES YES YES

AAIP (xy)−1 = y−1x−1
YES YES YES

RIF (xy)(z(xy)) = ((x(yz))x)y YES YES YES

NSLP LN, MN, RN YES YES YES

LN (xx)(yz) = ((xx)y)z YES YES YES

MN x((yy)z) = (x(yy))z YES YES YES

RN x(y(zz)) = (xy)(zz) YES YES YES

We therefore see that the sedenion, octonion, and quasi-octonion loops share
the same properties. This follows from the fact that a subloop L of any loop
L satisfies all properties of L. Although the octonion loop OL also shares all
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of the properties of ÕL and SL, it satisfies in addition the Moufang Property
(MP). Hence, OL and ÕL are not isomorphic.

Table 3. Subloops of the sedenion loop SLthat are copies of OL and ÕL. Here,
the subloop 2.{0, 1, 2, 3, 4, 5, 6, 7,−0,−1,−2,−3,−4,−5, −6,−7} corre-
sponds to OL as a consequence of the Cayley-Dickson Process.

Copies of Octonion Loop OL Copies of Quasi-Octonion Loop ÕL

2.{0,1,2,3,4,5,6,7,-0,-1,-2,-3,-4,-5,-6,-7}→OL

3.{0,1,2,3,8,9,10,11,-0,-1,-2,-3,-8,-9,-10,-11} 4.{0,1,2,3,12,13,14,15,-0,-1,-2,-3,-12,-13,-14,-15}

6.{0,1,4,5,8,9,12,13,-0,-1,-4,-5,-8,-9,-12,-13} 7.{0,1,4,5,10,11,14,15,-0,-1,-4,-5,-10,-11,-14,-15}

9.{0,1,6,7,8,9,14,15,-0,-1,-6,-7,-8,-9,-14,-15} 10.{0,1,6,7,10,11,12,13,-0,-1,-6,-7,-10,-11,-12,-13}

17.{0,2,4,6,8,10,12,14,-0,-2,-4,-6,-8,-10,-12,-14} 18.{0,2,4,6,9,11,13,15,-0,-2,-4,-6,-9,-11,-13,-15}

20.{0,2,5,7,8,10,13,15,-0,-2,-5,-7,-8,-10,-13,-15} 21.{0,2,5,7,9,11,12,14,-0,-2,-5,-7,-9,-11,-12,-14}

28.{0,3,4,7,8,11,12,15,-0,-3,-4,-7,-8,-11,-12,-15} 29.{0,3,4,7,9,10,13,14,-0,-3,-4,-7,-9,-10,-13,-14}

31.{0,3,5,6,8,11,13,14,-0,-3,-5,-6,-8,-11,-13,-14} 32.{0,3,5,6,9,10,12,15,-0,-3,-5,-6,-9,-10,-12,-15}

The Cayley tables of the octonion loop OL = {±ei | i = 0, 1, ..., 7} and
quasi-octonion loop ÕL = {±ui | i = 0, 1, ..., 7} are shown in Tables 4(A)
and 4(B).

Table 4(A). Cayley table of the octonion loop OL of order 16.
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Table 4(B). Cayley table of the quasi-octonion loop ÕL of order 16.

Remark 2. A search of the current literature on the sedenions has shown
that the quasi-octonion loop ÕL has not been previously identified [10].
This loop and its 7 copies in S implement some of the identities of the Bol-
Moufang type (see [9]; also known as the Fenyves identities) like the CL,
RC, LC, and the LN, MN, RN identities (Table 2); they are the first known
non-trivial natural models of these identities.

In the above tables, the 8 positive elements, e0, e1,..., e7, of the loop OL

are the base elements of the 8-dimensional octonion algebra O (or Cayley
numbers). On the other hand, the elements u0,u1, ...,u7, of the loop ÕL are
the base elements of a newly identified 8-dimensional algebra Õ which we
shall call the quasi-octonion algebra. This means that the positive elements
of the copies of OL and ÕL form subalgebras isomorphic to the algebras
O and Õ, respectively. Note, however, that not all of the properties of the
loops SL, OL, and ÕL are inherited by the corresponding algebras S, O, and
Õ that they generate.

Similarly, the positive elements of the loops that are copies of Q, C4,
and C2 in S define subalgebras of the copies of O and Õ in S. Thus, the
sedenion algebra S contains subalgebras isomorphic to O, Õ, H, and C. The
lattice of these basic subalgebras of S, therefore, has the same structure as
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that of the subloops of SL shown in Figure 1. Whether or not these are
the only subalgebras of S (to within isomorphism) is an interesting open
problem.

The quasi-octonion algebra Õ has all of the known properties of the
sedenion algebra S: it is non-commutative, non-associative, non-alternative,
power-associative, and has a quadratic form. And, like S, it is neither a com-
position nor a division algebra because it has zero divisors. Moreover, Õ has
all of the known properties of the octonions O, except the Moufang identity,
and determining the details of its structure is interesting open problem.

In the next section, we will show that the existence of the seven copies
of Õ as subalgebras of S is responsible for the known zero divisors of the
sedenions.

4. The zero divisors of the sedenions

Algebras with zero divisors are not very popular among mathematicians
because very few know what to do with these unusual objects. This is also
due to the fact that most of the useful algebras we are familiar with are
division algebras (like R, C, H, and O) where the equation ab = 0 is true
iff a = 0 or b = 0.

As indicated in the previous sections, the sedenion algebra S is not a
division algebra because it has zero divisors. This means that there exist
sedenions a,b 6= 0 such that ab = 0. But where in the sedenion space do we
find these zero divisors? This is an important question that we will now try
to settle.

Several studies have been made on the zero divisors of S motivated
by their potential applications in theoretical physics. Often cited in the
literature are the following papers [5]–[7] and [13]. Of these, only R.P.C.
de Marrais has determined (by what he calls a “bottom-up” approach) the
actual zero divisors of S. The others have simply dealt with zero divisors
from a theoretical standpoint (called the “top-down” approach).

The actual determination of the zero divisors of the sedenions is quite
tedious and time consuming. G. Moreno has exhibited only one instance of
a pair of sedenion zero divisors in his paper∗. K. and M. Imaeda claimed
that the zero divisors of the sedenions are confined to some hypersurfaces

∗Moreno gave in [7] the following example of a zero divisor pair: x = e1 + e10 and
y = e15 − e4. Thus we find that xy = (e1 + e10)(e15 − e4) = 0.



262 R.E. Cawagas

but did not explain what these are. On the other hand, de Marrais† has
determined exactly 84 pairs of zero divisors shown in Table 5 by “isolating
underlying structures from which all complicated ZD expressions and spaces
in the Sedenions must be composed...”

After studying the 84 known zero divisor pairs in Table 5 determined
by de Marrais and the subloops of the sedenion loop SL in Table 3, we now
have.

Proposition 2. The known zero divisors of the sedenion algebra S are all
confined to copies in S of the quasi-octonion algebra Õ.

By Proposition 1, every subloop of SL is isomorphic to one of the fol-
lowing loops: OL,ÕL,Q,C4, and C2. Since OL and Q,C4, C2 (which are
groups) define subalgebras that are division algebras, then they do not have
any zero divisors. It is easy to show that the quasi-octonion algebra Õ has
zero divisors and, therefore, all of its copies in S have zero divisors. This
indicates that any of the known zero divisors of S must belong to one of the
copies of Õ.

To verify this, consider Table 5 which lists the 84 zero divisor
pairs determined by de Marrais [6]. Each zero divisor in the pair consists
of two base elements of the form (o ± s), where o is an octonion base
element (belonging to an octonion triplet), while s is a pure sedenion
base element. These are presented as seven sets called “GoTo” lists,
each based on one of the 7 octonion triplets (or O-trip) and a set
of 7 imaginary base elements called an automorpheme. As can be seen
in Table 5, each automorpheme consists of the positive imaginary elements
of a subloop of SL that is a copy of ÕL. Hence, they correspond to subalge-
bras of S that are copies of Õ.

Note that in any given GoTo list, the two base elements o and s in any
zero divisor (o± s) belong to the automorpheme of that list. Moreover, the
set of four base elements in each zero divisor pair can be found only in the
automorpheme of that GoTo list.

†R. de Maraais has developed a set of “Production Rules” ([6]) for determining the 84
sedenion zero divisor pairs in Table 3 that is quite simple to carry out compared to the
usual methods.
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Table 5. List of sedenion zero divisor pairs. Source: Robert de Marrais,
http://arXiv.org/abs/math.GM/0011260. As in Table 1, the numerals
are the indices of the base elements, that is, i ≡ ei.

GoTo#1Based on Octonion Triplet(1,2,3)–Automorpheme:(1,2,3,12,13,14,15)

(1+13)(2–14) (1+14)(2+13) (1–12)(2–15) (1–15)(2+12)

(2–14)(3+15) (2+13)(3–12) (2–15)(3–14) (2+12)(3+13)

(3+15)(1–13) (3–12)(1–14) (3–14)(1+12) (3+13)(1+15)

GoTo#2Based on Octonion Triplet(1,4,5)–Automorpheme:(1,4,5,10,11,14,15)

(1+14)(4–11) (1+11)(4+14) (1–15)(4–10) (1–10)(4+15)

(4–11)(5+10) (4+14)(5–15) (4–10)(5–11) (4+15)(5+14)

(5+10)(1–14) (5–15)(1–11) (5–11)(1+15) (5+14)(1+10)

GoTo#3Based on Octonion Triplet(1,7,6)–Automorpheme:(1,7,6,10,11,12,13)

(1+11)(7–13) (1+13)(7+11) (1–10)(7–12) (1–12)(7+10)

(7–13)(6+12) (7+11)(6–10) (7–12)(6–13) (7+10)(6+11)

(6+12)(1–11) (6–10)(1–13) (6–13)(1+10) (6+11)(1+12)

GoTo#4Based on Octonion Triplet(2,4,6)–Automorpheme:(2,4,6,9,11,13,15)

(2+15)(4–9) (2+9)(4+15) (2–13)(4–11) (2–11)(4+13)

(4–9)(6+11) (4+15)(6–13) (4–11)(6– 9) (4+13)(6+15)

(6+11)(2–15) (6–13)(2–9) (6–9)(2+13) (6+15)(2+11)

GoTo#5Based on Octonion Triplet(2,5,7)–Automorpheme:(2,5,7,9,11,12,14)

(2+9)(5–14) (2+14)(5+9) (2–11)(5–12) (2–12)(5+11)

(5–14)(7+12) (5+9)(7–11) (5–12)(7–14) (5+11)(7+ 9)

(7+12)(2–9) (7–11)(2–14) (7–14)(2+11) (7+9)(2+12)

GoTo#6Based on Octonion Triplet(3,4,7)–Automorpheme:(3,4,7,9,10,13,14)

(3+13)(4-10) (3+10)(4+13) (3–14)(4– 9) (3–9)(4+14)

(4–10)(7+9) (4+13)(7–14) (4–9)(7–10) (4+14)(7+13)

(7+ 9)(3–13) (7–14)(3–10) (7–10)(3+14) (7+13)(3+ 9)

GoTo#7Based on Octonion Triplet(3,6,5)–Automorpheme:(3,6,5,9,10,12,15)

(3+10)(6–15) (3+15)(6+10) (3–9)(6–12 ) (3–12)(6+ 9)

(6–15)(5+12) (6+10)(5–9) (6–12)(5–15) (6+9)(5+10)

(5+12)(3–10) (5–9)(3–15) (5–15)(3+9) (5+10)(3+12)
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Consider the zero divisor pair (2–14)(3+15) found in the GoTo#1 list of
Table 5. Let us evaluate this expression as the bilinear product of two
sedenions (e2 − e14) and (e3 + e15). Using the multiplication rule shown in
Table 1, we have:

(e2 − e14)(e3 + e15) = e2 · e3 + e2 · e15 − (e14 · e3)− (e14 · e15)

= e1 + e13 − e13 − e1 = 0

Thus, we find that (e2 − e14)(e3 + e15) = 0 although neither (e2 − e14)
nor (e3 + e15) is equal to zero. Therefore, the sedenions (e2 − e14) and
(e3 + e15) are zero divisors. All of the zero divisor pairs listed in Table 5
can be evaluated in the same way giving the same results.
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