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Abstract

An inflation of an algebra is formed by adding a set of new elements
to each element in the original or base algebra, with the stipulation that
in forming products each new element behaves exactly like the element
in the base algebra to which it is attached. Clarke and Monzo have
defined the generalized inflation of a semigroup, in which a set of new
elements is again added to each base element, but where the new ele-
ments are allowed to act like different elements of the base, depending
on the context in which they are used. Such generalized inflations of
semigroups are closely related to both inflations and null extensions.
Clarke and Monzo proved that for a semigroup base algebra which is
a union of groups, any semigroup null extension must be a generalized
inflation, so that the concepts of null extension and generalized infla-
tion coincide in the case of unions of groups. As a consequence, the
collection of all associative generalized inflations formed from algebras
in a variety of unions of groups also forms a variety.

In this paper we define the concept of a generalized inflation for
any type of algebra. In particular, we allow for generalized inflations
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of semigroups which are no longer semigroups themselves. After some
general results about such generalized inflations, we characterize for
several varieties of bands which null extensions of algebras in the vari-
ety are generalized inflations, and which of these are associative. These
characterizations are used to produce examples which answer, in our
more general setting, several of the open questions posed by Clarke
and Monzo.
Keywords: inflation, generalized inflation, null extension, variety of
semigroups, bands.
2000 Mathematics Subject Classification: 08A05, 20M07, 20M10.

1. Introduction and definitions

An inflation of an algebra B is a new algebra formed from B by adding a set of
new elements to each element b in B, with the stipulation that new elements
attached to b always act like b in forming products in the new algebra.
Inflations have been extensively studied, particularly for semigroups; see
for instance [4], [6], [11], and [12]. Recently several variations of inflations
have also been introduced. The concept of a k-inflation was developed by
Bogdanović and Milić ([1]) for semigroups and extended to arbitrary type by
Milić ([10]), and defined in a slightly different way by Denecke and Wismath
for k-normalizations ([7]). In [5] Clarke and Monzo studied what they called
generalized inflations of semigroups, in which a set of new elements is added
to each base element but the new elements are also allowed to act like
different elements of the base depending on the context in which they are
used. Such generalized inflations of semigroups are closely related to both
inflations and null extensions. In the semigroup case, a null extension of
a semigroup B is a semigroup whose square is B. Any semigroup which
is a generalized inflation of a semigroup B is also a null extension. Clarke
and Monzo proved in [5] that any semigroup which is a null extension of
a semigroup which is a union of groups must be a generalized inflation, so
that the two concepts of null extension and generalized inflation coincide in
the case of unions of groups.

In this paper we define the concept of a generalized inflation for any
type of algebra. In particular, we allow for generalized inflations of semi-
groups which no longer need be associative. After introducing our basic
definitions in the remainder of this section, we study the interconnections
between inflations, null extensions and generalized inflations in this more
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general setting in Section 2. Then in Sections 3 to 6 we characterize, for the
semigroup varieties of left zero bands, rectangular bands, normal bands and
semilattices, which null extensions of algebras in the variety are generalized
inflations, and of these, which are associative. These characterizations pro-
vide us with examples to answer, in our more general setting, several open
problems posed by Clarke and Monzo.

Throughout this paper, we let τ = (ni)i∈I be any type of algebras, with
fi an ni-ary operation symbol for each i in some index set I.

Definition 1.1. Let A = (A; (fi)i∈I) be an algebra of type τ . We define
the image of A as the set Im(A) consisting of all elements of the form
fA

i (a1, . . . , ani), for some i ∈ I and some a1, . . . , ani ∈ A. An algebra A is
called a null extension of an algebra B if Im(A) ⊆ B.

Let B be an algebra of type τ . Both inflations and generalized inflations of
B are defined by attaching a set of new elements to each base element b ∈ B.
For each b ∈ B, let Sb be a set containing b, with Sb ∩ Sc = ∅ for b 6= c, so
that the sets Sb are pairwise disjoint. Let A =

⋃
b∈B Sb. For each x ∈ A,

there is a unique element b ∈ B such that x ∈ Sb; we denote this element by
x̂, and call it the base element of x. The function ˆ : A → B thus defined
will be called the ‘hat’ function.

Definition 1.2. Let A = (A; (fA
i )i∈I) be an algebra with A =

⋃
b∈B Sb

and operations fA
i defined by fA

i (a1, . . . , ani) = fB
i (â1, . . . , âni). Then

A is called an inflation of the algebra B, and B is called the base of the
inflation.

A generalized inflation of B also uses a universe set A =
⋃

b∈B Sb. The
operations on A will be defined using some selector or role model
functions Γi. That is, for each operation symbol fi of the type, we
define an ni-ary function Γi : Ani → B, with the property that
Γi(x1, . . . , xni) = x1 if x1 ∈ B. Then we define the operations fA

i for
our new algebra A by

fA
i (a1, . . . , ani)

= fB
i (Γi(a1, â2, . . . , âni), Γi(a2, â1, â3, . . . , âni), . . . ,Γi(ani , â2, . . . , âni−1)).
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Definition 1.3. The algebra A = (A; (fA
i )i∈I) constructed in this way is

called a generalized inflation algebra of B, with B as the base of the gener-
alized inflation. We will write A = (B, Γ, ˆ) for the generalized inflation of
B formed using the functions Γ and ˆ.

Many of the results and examples we present in later sections deal with type
(2) and semigroups. In this case we have a single binary operation symbol,
usually denoted by f , and a single selector function Γ : A × A → B, with
multiplication in the new algebra defined by fA(x, y) = fB(Γ(x, ŷ), Γ(y, x̂)).
Note that in fact it is only necessary to define Γ on the set A × B. We
think of the function Γ as selecting for each element x its role model when
used with a base element b or ŷ in B. In an inflation, each new element
has exactly one role model in all contexts, and that role model is its base
element; in a generalized inflation a new element can have many different
role models in different contexts.

When A and B are both semigroups, our definition of a generalized
inflation is exactly the process described by Clarke and Monzo in [5]. Here
however we consider arbitrary algebras, even within type (2). In this sense
our definition is broader than that of Clarke and Monzo: if A is a semigroup
and a generalized inflation of B, then B is a semigroup, but a generalized
inflation of a semigroup B need not be a semigroup. The following example
illustrates this.

Example 1.4. Consider type (2), with one binary operation symbol f . The
example given by Clarke and Monzo in [5] is the following: B = {e, g, h},
with the multiplication of a left zero semigroup, and in the generalized infla-
tion one new element x ∈ Se is added, with Γ(x, e) = Γ(x, h) = Γ(x, x) = e,
and Γ(x, g) = h. In this case the new algebra A is still a semigroup.

But now consider the same base set B = {e, g, h}, again a left zero semi-
group, with one new element p ∈ Se added. We set Γ(p, e) = e, Γ(p, p) = e,
Γ(p, g) = g, Γ(p, h) = h. The following calculation shows that the general-
ized inflation defined by Γ is no longer associative:

fA(fA(p, p), h) = fA(fB(Γ(p, p̂),Γ(p, p̂)), h)

= fA(fB(Γ(p, e),Γ(p, e)), h) = fA(fB(e, e), h)

= fA(e, h) = fB(Γ(e, ĥ),Γ(h, ê)) = fB(e, h) = e;
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but

fA(p, fA(p, h)) = fA(p, fB(Γ(p, ĥ), Γ(h, p̂)))

= fA(p, fB(Γ(p, h), Γ(h, e))) = fA(p, fB(h, h))

= FA(p, h) = fB(Γ(p, ĥ), Γ(h, p̂)) = fB(h, h) = h.

We begin with some basic observations about the concepts of inflation, gen-
eralized inflation and null extension.

Lemma 1.5. Let A and B be algebras of type τ . Then:

(i) Any inflation of B is a generalized inflation of B;

(ii) Any generalized inflation of B is a null extension of B;

(iii) Any algebra is an inflation and a generalized inflation of itself;

(iv) If A is a generalized inflation of B, then B is a subalgebra of A;

(v) Any inflation C of a generalized inflation A of B is a generalized
inflation of B;

Proof. (i): Let A be an inflation of B. Then each element x ∈ A is assigned
a base element x̂ ∈ B by the inflation. For each i ∈ I, we define the role
model function Γi by Γi(x1, x2, . . . , xni) = x̂1. Then the generalized inflation
operation fA

i induced by Γi on A satisfies fA
i (a1, . . . , ani) = fB

i (â1, . . . , âni),
and is the same as the inflation operation on A. This shows that the inflation
may be viewed as a generalized inflation of B.

(ii): It follows from the definition of the operations in a generalized
inflation A of an algebra B, that Im(A) ⊆ B.

(iii): If A is an inflation or generalized inflation of B in which no new
elements are added to B, so that Sb = {b} for all b ∈ B, then A = B.

(iv): This follows from the fact that fA
i |B = fB

i .
(v): This was proved in [5] for the case that C is a semigroup inflation of

a semigroup generalized inflation of B; the same proof may be generalized to
cover arbitrary type. We let A = (B,Γ, ˆ), and let γ : C → A by γ : x 7→ x
be a function which represents C as an inflation of A. For each i ∈ I, define
Γ′ : Cni → B by Γ′(x1, . . . , xni) = Γ(x1, . . . , xni). Then C is easily seen to
be a generalized inflation of B, using Γ′.
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2. Class operators and identities

Let Alg(τ) be the class of all algebras of type τ . We define the following
class operators on Alg(τ): for V any class of algebras of type τ , let

Inf(V ) = {A ∈ Alg(τ) | A is an inflation of some B in V }.
GInf(V ) = {A ∈ Alg(τ) | A is a generalized inflation of some B in V }.
NExt(V ) = {A ∈ Alg(τ) | A is a null extension of some B in V }.

These three operators are clearly monotone and extensive. It is straightfor-
ward to show that Inf is also idempotent, i.e. any inflation of an inflation
of an algebra B is also an inflation of B. Thus Inf is a closure operator on
Alg(τ). But a null extension of a null extension of an algebra is not nec-
essarily a null extension, and we shall give an example in the next section
to show that a generalized inflation of a generalized inflation is not always
a generalized inflation. This answers, in our more generalized setting, a
question posed by Clarke and Monzo in [5].

It follows from Lemma 1.5 that for any variety V , we have:

V ⊆ Inf(V ) ⊆ GInf(V ) ⊆ NExt(V ).

Another question posed by Clarke and Monzo is whether the class GInf(V )
is a variety when V is a variety. They showed that when V is a variety
of unions of groups, the class of semigroups in GInf(V ) forms a variety
of semigroups, and asked whether this property holds for all varieties of
semigroups. In our more general setting, we ask whether the classes Inf(V ),
GInf(V ) and NExt(V ) are varieties when V is a variety of type τ .

To answer this question for NExt(V ), we must consider identities of
type τ . An identity of type τ is any equation u ≈ v, where u and v are
terms of type τ . Such terms are built up from the operation symbols fi

of the type and a standard set of variables, X = {x1, x2, x3, . . .}. For any
variety V of type τ , we denote by IdV the set of all identities satisfied in V ;
and for any set Σ of identities of type τ , we denote by ModΣ the variety of
all algebras which satisfy all the identities in Σ.

In order to define a new operation on identities, we introduce the follow-
ing notation. For each natural number j, we consider a set of new variables
{xj1, xj2, xj3, . . .}. We set Tj = {fi(xj1, xj2, . . . , xjni) | i ∈ I}. Then for
any identity u ≈ v of type τ , we let (u ≈ v)∗ be the set of all identities
formed from u ≈ v by consistent replacement of each variable xj in u or v
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by any element of Tj . For Σ a set of identities, we denote by Σ∗ the set of
all identities (u ≈ v)∗ for u ≈ v ∈ Σ.

Note that in the type (2) setting, this operation merely replaces each
variable xj in an identity by the “doubled” variable xj1xj2. In particular,
the associative identity x1(x2x3) ≈ (x1x2)x3 becomes the double-associative
identity (x11x12)[(x21x22)(x31x32)] ≈ [(x11x12)(x21x22)](x31x32). This was
the construction used by Clarke and Monzo to prove the type (2), semigroup
version of the following result.

Theorem 2.1. Let V be any variety of type τ . Then:
(i) NExt(V ) = Mod((IdV )∗), for any variety V .
(ii) NExt(V ) is a variety.
(iii) If V = ModΣ, so that Σ is a basis for the set IdV of all identities of

V , then NExt(V ) = Mod(Σ∗), and Σ∗ is a basis for the identities of
NExt(V ).

Proof. (i): It follows from the definition of a null extension that any algebra
A which is a null extension of an algebra B in V satisfies all the identities in
IdV ∗, so that NExt(V ) ⊆ Mod((IdV )∗). Conversely, let A be an algebra
satisfying the identities in IdV ∗. Then the algebra B = Im(A) satisfies all
the identities of V , by the construction of IdV ∗, and A is a null extension
of B ∈ V .

(ii): This is a consequence of (i), since any equational class is a variety.
(iii): It will suffice to show that for any identity u ≈ v which can be

deduced from Σ, according to the usual five rules of deduction, the corre-
sponding identity (u ≈ v)∗ can be deduced from Σ∗. This can be shown
by induction on the length of a deduction of u ≈ v from Σ. It is clear
that if u ≈ v follows from any set of identities by application of the first
three rules, reflexivity, symmetry or transitivity, then (u ≈ v)∗ follows by
the same rules from the corresponding starred identities. We verify that
the analogous claim holds for the remaining two rules of deduction. If fi

is an ni-ary operation symbol and uj ≈ vj holds for 1 ≤ j ≤ ni, then
fi(u1, . . . , uni)

∗ = fi(u∗1, . . . , u∗ni
) ≈ fi(v∗1, . . . , v∗ni

) = fi(v1, . . . , vni)
∗ is a

consequence of u∗j ≈ v∗j for 1 ≤ j ≤ ni. For the replacement rule, suppose
that u′ ≈ v′ is obtained from u ≈ v by replacing each occurrence of a vari-
able xk by a term t. Then (u′ ≈ v′)∗ can be deduced from (u ≈ v)∗, by a
suitable replacement of the variables in the terms in Tk used in place of xk

in the starred version.
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The properties of the class operator Inf are studied in [3], where it is shown
that Inf(V ) is a variety when V is a variety. It is straightforward to verify
that any finite product of generalized inflations of algebras from a variety V
is a generalized inflation of the product of the algebras. This shows that the
class GInf(V ) is closed under the formation of finite products. However,
we shall give an example in the next section to show that GInf(V ) is not
always closed under the formation of subalgebras, and hence is not in general
a variety. We do not know if GInf(V ) is closed under homomorphic images.

3. Generalized inflations of left zero bands

In the remainder of this paper we investigate null extensions and generalized
inflations of (varieties of) idempotent semigroups, or bands. Our type is
thus (2), with one binary operation symbol f . For convenience we shall
often write semigroup identities in the usual juxtaposition notation, writing
xy instead of fA(x, y), and omitting brackets where allowed. Note however
that although the base algebras of the extensions will always be semigroups,
the extensions themselves need not be. Note also that for type (2), when
A = (B,Γ, ˆ) is a generalized inflation of B, the binary operation on A is
given by the formula xy = Γ(x, ŷ)Γ(y, x̂).

We provide here a list of the varieties of semigroups to which we shall
refer:

Sem = Mod(x(yz) ≈ (xy)z), the variety of all semigroups;

TR = Mod(x ≈ y), the variety of all trivial semigroups;

Z = Mod(xy ≈ zw), the variety of all zero semigroups;

LZ = Mod(x ≈ xz), the variety of all left zero band semigroups;

RZ = Mod(x ≈ yx), the variety of all right zero band semigroups;

RB = Mod(x ≈ x2, x(yz) ≈ (xy)z ≈ xz), the variety of all rectangular
band semigroups;

NB = Mod(x ≈ x2, x(yz) ≈ (xy)z, xyzw ≈ xzyw), the variety of all
normal band semigroups;

SL = Mod(x ≈ x2, x(yz) ≈ (xy)z, xy ≈ yx), the variety of all commuta-
tive band semigroups or semilattices;

B = Mod(x(yz) ≈ (xy)z, x ≈ x2), the variety of all idempotent semi-
groups, or bands.
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Clarke’s and Monzo’s Theorem (Theorem 5 in [5]) says that any semigroup
null extension of a base semigroup which is a union of groups must in fact
be a generalized inflation. This means that for any variety V of unions of
groups, NExt(V )∩Sem = GInf(V )∩Sem, and hence that GInf(V )∩Sem
is a variety.

Our first observation is that NExt(V ) and GInf(V ) need not be equal,
even if V is a variety of unions of groups, when we no longer require asso-
ciativity. This is a consequence of the following basic fact about generalized
inflations. If A = (B,Γ, ˆ) is a generalized inflation of B, then for every
x ∈ A r B, we have xx = fA(x, x) = fB(Γ(x, x̂),Γ(x, x̂)) = Γ(x, x̂)Γ(x, x̂).
This means that any product xx in a generalized inflation must be a square
in B. For example, let us take B to be the 2-element group {e, a} with
identity e. Let A have base set {e, a, x}. We can define a binary operation
on A for which xx = a, such that A is a null extension of B. But A cannot
be a generalized inflation of B, since xx = a is not a square in B. This
shows that not every (non-associative) null extension of a union of groups
need be a generalized inflation.

Example 3.1. For V = TR, the trivial variety, it is easy to see that any
generalized inflation or null extension of an algebra in V is a zero semi-
group. Thus we have Z = GInf(V ) = NExt(V ) in this case. In particular,
GInf(TR) is a variety.

Example 3.2. Let V = Z, the variety of zero semigroups. Any gener-
alized inflation of a zero semigroup is still a zero semigroup: for any ele-
ments x, y, u, v in the generalized inflation, we have xy = Γ(x, ŷ)Γ(y, x̂) =
Γ(u, v̂)Γ(v, û) = uv. However, we can produce an example of an associative
null extension of a zero semigroup which is not a generalized inflation: Take
A = {b, c, x}, B = {b, c} ∈ Z, and set B ×B = {c} but xx = b. This shows
that GInf(Z) ∩ Sem 6= NExt(Z) ∩ Sem.

Next, we characterize generalized inflations of left zero bands from the va-
riety LZ. Dual results may of course be shown for the variety RZ of right
zero bands.

Lemma 3.3. Let A = (B, Γ, ˆ) be any generalized inflation of a left zero
band B. Then for all x, y, z ∈ A and all b ∈ B, the following hold:
(i) (xy)z = xy;

(ii) xb = Γ(x, b) and xy = xŷ = Γ(x, ŷ).
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Proof. (i): Using the multiplication of the generalized inflation we have
(xy)z = (Γ(x, ŷ)Γ(y, x̂))Γ(z,Γ(x, ŷ)Γ(y, x̂)) = Γ(x, ŷ) = Γ(x, ŷ)Γ(y, x̂) = xy,
for all x, y ∈ A.

(ii): We have xb = Γ(x, b)Γ(b, x) = Γ(x, b) in LZ. Similarly, xy =
Γ(x, ŷ)Γ(y, x̂) = Γ(x, ŷ) = Γ(x, ŷ)ŷ = xŷ.

It follows from part (ii) of this Lemma that if a null extension A of a left
zero band B is to be a generalized inflation of B, then there is a unique way
to define the function Γ : A × B → B, namely that Γ(x, b) = xb. Thus,
in order to determine whether a generalized inflation is possible, we must
analyze how to choose the base elements x̂ associated to new elements x.
The sets Hx defined below are the sets of possible such “hats” for each x.

Theorem 3.4. Let A be a null extension of B ∈ LZ. For each x ∈ A rB,
let

Hx = {b ∈ B | wx = wb for all w ∈ A rB}.
Then A is a generalized inflation of B iff for all x ∈ A r B, the set Hx is
non-empty.

Proof. If A is a generalized inflation of B, then, by Lemma 3.3(ii), we see
that x̂ ∈ Hx for every new element x ∈ A r B. This shows that each Hx is
non-empty in a generalized inflation. Conversely, let A be a null extension
of B for which all the sets Hx are non-empty. For each x ∈ A r B, set x̂
to be any element of Hx, and define Γ : (A r B)× B → B by Γ(x, b) = xb.
Then the generalized inflation (B, Γ, ˆ) is precisely the algebra A.

In [5], Clarke and Monzo give a construction for expressing any associative
null extension of a semigroup which is a union of groups as a generalized
inflation. Their method for choosing the ‘hat’ and Γ functions to use depends
strongly on associativity. Our method from Theorem 3.4 can be used even
for non-associative null extensions of left zero semigroups, and also gives all
possible formulations of the null extension as a generalized inflation. The
next example illustrates this process.

Example 3.5. Let B be a left zero band with universe B = {b, c, d}. Con-
sider the null extension A of B whose universe is the set {b, c, d, x, y}, and
whose binary operation is given by the following table.
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A b c d x y

b b b b b b
c c c c c c
d d d d d d

x b d b b d
y c c c c c

Note that the definition of p ∈ Hq for a new element q requires that the
column in the table under p is the same as the column under q, so such sets
can easily be computed from the table. In this example, we see that Hx =
{b, d} and Hy = {c}. Thus there are two generalized inflations corresponding
to the algebra A, one with x̂ = b and one with x̂ = d.

Example 3.6. Now we consider as our base algebra the algebra A from the
previous example. We define a generalized inflation C = (A, Γ, ˆ) of A by
adding a new element q ∈ Sy, so that q̂ = y, and setting Γ(q, b) = Γ(q, c) =
Γ(q, d) = d and Γ(q, x) = Γ(q, y) = c. Then C is a generalized inflation
of a generalized inflation of the left zero band B, with multiplication as
shown below, and we can use Theorem 3.4 to determine whether C is also
a generalized inflation of B. However, Hq is empty in this case, since there
is no element p ∈ B whose column in the multiplication table is the same
as the column for q. This means that there is no element in the base set B
that can act as q̂ in a generalized inflation. This example thus shows that
a generalized inflation of a generalized inflation need not be a generalized
inflation, answering in the more general non-associative setting a question
of Clarke and Monzo for the semigroup situation. It also shows that the
operator GInf is not idempotent.

C b c d x y q

b b b b b b b
c c c c c c c
d d d d d d d
x b d b b d d
y c c c c c c

q d d d c c c
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Example 3.7. Let B be a left zero band with base set B = {a, b, c, d}. Let
A be the generalized inflation of B with four new elements x, y, z, w, where
x̂ = b, ŷ = a, ẑ = d and ŵ = c, and Γ(p, k) = pk for all p ∈ A r B and
all k ∈ B, as shown in the multiplication table below. Now consider the set
C = {y, z, b, c, d}. It can be checked that C is a subalgebra of A. But C
itself is not a generalized inflation of any left zero band. If it were, it would
have to be a generalized inflation of D = Im(C) = {b, c, d}. But the set
Hy is empty here, so no possible choice for ŷ exists from the base D. This
example shows us that a subalgebra of an algebra in GInf(LZ) is not in
GInf(LZ), and hence that GInf(LZ) is not a variety.

A a b c d x y z w

a a a a a a a a a
b b b b b b b b b
c c c c c c c c c
d d d d d d d d d

x a b b b b a b b
y b c b c c b c b
z c d b b d c b b
w c a c c a c c c

Next, we characterize which generalized inflations of left zero semigroups
are in fact themselves semigroups. We do this first for the case that only
one new element is added to the base algebra, then use this case to prove
the general result.

Lemma 3.8. Let A = B ∪ {x} be a null extension of a left zero semigroup
B. Then the following are equivalent:

(1) A = (B, Γ, ˆ) is an associative generalized inflation of B;

(2) for any p ∈ B, x(xp) = xx = x(xx);

(3) x(xx) = xx and for all p ∈ B, either xp = xx or x(xp) = xx.

Proof. (1) ⇒ (2) : If A is an associative generalized inflation of the left zero
semigroup B, then, by associativity and the LZ axioms, we have x(xp) =
(xx)p = xx, for any p ∈ B. Also x(xx) = Γ(x, xx) = Γ(x,Γ(x, x̂)) =
x(xx̂) = (xx)x̂ = xx.
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(2) ⇔ (3) : This is obvious.

(2) ⇒ (1) : Suppose that A = B∪{x} satisfies the identities in (2). Then
since xx = x(xx), we have xx ∈ Hx, and, by Theorem 3.4, we can make
A into a generalized inflation by taking x̂ = xx and setting Γ(x, p) = xp
for all p ∈ B. Thus, there remains only to show that A is associative. By
Lemma 3.3, we have x(xx) = xx = (xx)x, and x(xp) = xx = (xx)p for
all p ∈ B. Similarly, x(px) = Γ(x, px)px = Γ(x, px) = Γ(x, pΓ(x, p)) =
Γ(x, p) = xp = (xp)x. All the remaining cases needed for associativity can
be verified similarly.

We recall that for a new element x in a generalized inflation, and for any
base element p, the element Γ(x, p) can be viewed as the role model of x
when used with p. In the left zero case, we have xp = Γ(x, p)p = Γ(x, p).
We will denote by Rx = {xp : p ∈ B} the set of all role models of the
element x.

Theorem 3.9. Let A be a null extension of a left zero semigroup B. Then
the following are equivalent:

(1) A is an associative generalized inflation of B.

(2) For all x, y ∈ A rB, xRy = {xy} and xx = x(xx).

Proof. (1) ⇒ (2) : When A is an associative generalized inflation of B, we
have x(yp) = (xy)p = xy for any x, y ∈ ArB. Therefore, xRy = {xy}. The
condition xx = x(xx) follows from Lemma 3.8 and the fact that if A is an
associative generalized inflation, so is B ∪ {x} for any x ∈ A rB.

(2) ⇒ (1) : From the identities in (2), it follows from Lemma 3.8 that
for any x ∈ A r B, B ∪ {x} is an associative generalized inflation of B,
using x̂ = xx. Thus, we can make a generalized inflation of B on the set
A, using x̂ = xx and Γ(x, p) = xp, and the first part of (2) means that this
generalized inflation coincides with A. As in Lemma 3.8, we can now verify
all cases needed to show that A is associative. First, xRy = {xy} implies
that x(yp) = xy = (xy)p for all x, y ∈ A rB and p ∈ B. Similarly, p(xy) =
p = (px)y and x(py) = xp = (xp)y. Moreover, x(yz) = Γ(x, yz)(yz) =
Γ(x, yz) = Γ(x,Γ(y, ẑ)) = x(yẑ) = xy = (xy)z. Hence, A is an associative
generalized inflation of B.

The symmetric result is also true for right zero semigroups B. Using the
above result we can construct examples of associative generalized inflations
of left or right zero semigroups.
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Example 3.10. Let B be a finite left zero semigroup with elements b1, b2,
b3, b4, and b5. Let A be the infinite null extension of B shown in the table
below. Note that Ra1 = Ra6 = {b1, b3}, Ra2 = Ra3 = {b2, b4}, Ra4 =
{b4, b5}, and Ra5 = {b4}. We can check that x(xx) = xx and xRy = {xy} for
any x, y ∈ A r B. For example, a1Ra1 = a1Ra6 = {b1} = {a1a5} = {a1a6}.
Thus, A is an associative generalized inflation of B.

A b1 b2 b3 b4 b5 a1 a2 a3 a4 a5 a6 · · ·
b1 b1 b1 b1 b1 b1 b1 b1 b1 b1 b1 b1 b1

b2 b2 b2 b2 b2 b2 b2 b2 b2 b2 b2 b2 b2

...
...

...
...

...
...

...
...

...
...

...
...

...

a1 b1 b3 b1 b3 b3 b1 b3 b3 b3 b3 b1 · · ·
a2 b4 b2 b4 b2 b2 b4 b2 b2 b2 b2 b4 · · ·
a3 b2 b4 b2 b4 b4 b2 b4 b4 b4 b4 b2 · · ·
a4 b5 b4 b5 b4 b4 b5 b4 b4 b4 b4 b5 · · ·
a5 b4 b4 b4 b4 b4 b4 b4 b4 b4 b4 b4 · · ·
a6 b3 b1 b3 b1 b1 b3 b1 b1 b1 b1 b3 · · ·
...

...
...

...
...

...
...

...
...

...
...

...

Similar examples can be constructed in which some of the new elements
have more than two role models, and in which the base algebra B is infinite.

Corollary 3.11. Let A = B ∪ {x} be an associative generalized inflation
of B with xx = bi ∈ B, such that there is exactly one bl ∈ B such that
xbl = bm 6= bi. If A ∪ {y} is an associative generalized inflation of B with
ŷ = yy = bl, then A ∪ {y} is an inflation of A.

Proof. Suppose that A ∪ {y} is not an inflation of A, so that the new
element y has more than one role model. Then there exist base elements
bk 6= bj 6= bi such that ybk = bl and ybj = bk where bk 6= bl. But now, we
have x(ybj) = xbk 6= bm, because bl is the only element satisfying xbl = bm;
but (xy)bj = Γ(x, ŷ) = Γ(x, bl) = xbl = bm, which contradicts associativity.
Hence, A ∪ {y} is an inflation of A.
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4. Generalized inflations of rectangular bands

In this section, we characterize which null extensions of a rectangular band
are generalized inflations, and which generalized inflations of a rectangular
band are semigroups.

Lemma 4.1. Let A = (B,Γ, ˆ) be any generalized inflation of a rectangular
band B. Then for all x, y ∈ A rB and all b ∈ B, the following hold:

(i) Γ(x, b) = (xb)(bx),

(ii) Γ(x, ŷ) = (xy)(yx) = (xŷ)(ŷx).

Proof. (i): Let x, y ∈ A r B and let b ∈ B. Then in the generalized
inflation we have (xb)(bx) = Γ(x, b̂)Γ(b, x̂)Γ(b, x̂)Γ(x, b̂) = Γ(x, b)bbΓ(x, b),
and in a rectangular band this is equal to Γ(x, b).

(ii): The equality Γ(x, ŷ) = (xŷ)(ŷx) follows from part (i), and the other
equality can be verified in a similar fashion.

It follows from part (i) of this Lemma that if a null extension A of a rect-
angular band B is to be a generalized inflation of B, then there is a unique
way to define the function Γ : A×B → B, namely by Γ(x, b) = (xb)(bx).

Theorem 4.2. Let A be a null extension of B ∈ RB. For each x ∈ A rB,
let

Hx = {b ∈ B | (wx)(xw) = (wb)(bw), for all w ∈ A rB}.

Then A is a generalized inflation of B iff for all x ∈ A r B, the set Hx is
non-empty.

Proof. When A is a generalized inflation of B, it follows from Lemma
4.1 (ii) above that for any x ∈ A r B, we have (wx)(xw) = (wx̂)(x̂w) for
all w ∈ A r B, and hence that x̂ ∈ Hx. Conversely, suppose that the set
Hx is non-empty, for each x ∈ A r B. Then we choose for x̂ any element
of Hx. Using this choice of “hats”, along with a function Γ defined by
Γ(x, b) = (xb)(bx), gives us a generalized inflation of B. Moreover, the
multiplication in this generalized inflation satisfies xy = Γ(x, ŷ)Γ(y, x̂) =
(xŷ)(ŷx)(yx̂)(x̂y) = (xy)(yx)(yx)(xy) in B, by Lemma 4.1, and this gives
the product xy in our original algebra A. Thus, the generalized inflation of
B created here is the algebra A.
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Theorem 4.3. Let A = (B,Γ, ˆ) be a generalized inflation of B ∈ RB.
Then A is a semigroup iff A satisfies

Γ(x, a)Γ(x, b) = Γ(x, ab) and Γ(x,Γ(y, a)) = Γ(x, ŷ),

for all a, b ∈ B and all x, y ∈ A rB.

Proof. Let A = (B, Γ, ˆ) be a generalized inflation of B which is a semi-
group. Let a, b ∈ B and x, y ∈ A r B. Then (xa)b = x(ab) implies that
Γ(x, a)ab = Γ(x, ab)ab, and, dually, a(bx) = (ab)x implies that abΓ(x, b) =
abΓ(x, ab). Multiplying these two equations gives Γ(x, a)ababΓ(x, b) =
Γ(x, ab)ababΓ(x, ab). In RB this gives Γ(x, a)Γ(x, b) = Γ(x, ab). For the
second property, we start with the equation (xy)a = x(ya) in A. We have
x(ya) = Γ(x,Γ(y, a)a)Γ(y, a)a = Γ(x,Γ(y, a))Γ(x, a)Γ(y, a)a, using the first
property, while (xy)a = Γ(x, ŷ)Γ(y, x̂)a. Equating these and using the ax-
ioms of RB shows that we must have Γ(x, ŷ)a = Γ(x,Γ(y, a))a. A dual
argument starting from the equation (ay)x = a(yx) gives the equation
aΓ(x,Γ(y, a)) = aΓ(x, ŷ). Now, multiplying these two equations together
and using the RB identities gives Γ(x,Γ(y, a)) = Γ(x, ŷ).

Conversely, suppose that A is a generalized inflation of B which satisfies
the two given equations. Then for any x, y, z ∈ A, we have

(xy)z = Γ(x, ŷ)Γ(y, x̂) Γ(z, Γ(x, ŷ) Γ(y, x̂))

= Γ(x, ŷ) Γ(y, x̂) Γ(z,Γ(x, ŷ)) Γ(z,Γ(y, x̂)) by the first property,

= Γ(x, ŷ) Γ(y, x̂) Γ(z, x̂) Γ(z, ŷ) by the second property,

= Γ(x, ŷ) Γ(z, ŷ) by the RB identities,
= Γ(x, ŷ) Γ(x, ẑ) Γ(y, ẑ) Γ(z, ŷ) by the RB identities,

= Γ(x,Γ(y, ẑ)) Γ(x,Γ(z, ŷ)) Γ(y, ẑ) Γ(z, ŷ) by the second property,

= Γ(x,Γ(y, ẑ) Γ(z, ŷ)) Γ(y, ẑ) Γ(z, ŷ) by the first property,

= x(yz).

This shows that A satisfies the associative identity, and is a semigroup.
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5. Generalized inflations of normal bands

Now we consider generalized inflations of base algebras which are free normal
bands. Let B be a free algebra in the variety NB on some generating set
X = {x1, x2, x3, . . .}. Let s and t be any two elements of B, which we can
consider as “words” on the alphabet X. We will say that s is a left factor
of t if t = su for some (possibly empty) word u, and dually for right factors.
Note that in order to discuss longest left and right factors of an element in
B, we need to assume that B is a free normal band on a set of generating
letters.

Theorem 5.1. Let B be a free normal band, and let A be a null extension
of B. Then A is a generalized inflation of B iff the following two conditions
are satisfied by A:

(1) For all p ∈ B and all x ∈ A rB, p(xp)(px) = px and (xp)(px)p = xp;

(2) For every x ∈ A rB, there exists an element xb ∈ B such that:

(a) For all y ∈ A r B, the elements yxb and yx have a common left
factor, and the elements xby and xy have a common right factor.

(b) If xb = zb for two elements x, z ∈ A rB, then (xx)(zz) = xz, and
for all y ∈ A r B, the elements yxb, yx and yz have a common
left factor and the elements xby, xy and zy have a common right
factor.

(c) Let L(x, y) be the longest left common factor of the elements yxb,
yx, and any yz for which zb = xb. Dually, let R(x, y) be the
longest right common factor of xby, xy, and any zy for which
zb = xb. Let Γ′ be a function from A×B to B for which Γ′(y, xb) =
L(x, y)R(x, y), and Γ′(y, p) = (yp)(py) for any element p ∈ B
which is not in the set {xb | x ∈ ArB}. Then for all new elements
x and y, A satisfies xy = Γ′(x, yb)Γ′(y, xb) and xbΓ′(y, xb) = xby
and Γ′(y, xb)xb = yxb.

Proof. First, suppose that A is a generalized inflation (B, Γ, ˆ) of B. We
verify that the specified conditions are all met in A.

(1): In the generalized inflation multiplication, we have p(xp)(px) =
pΓ(x, p)ppΓ(x, p) = pΓ(x, p) = px and (xp)(px)p = Γ(x, p)ppΓ(x, p)p =
Γ(x, p)p = xp, using the associativity and idempotence of the base B.
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(2): We show that for any x ∈ A r B, the element x̂ has the properties
needed for xb.

(a) For any y ∈ ArB, we have yx̂ = Γ(y, x̂)x̂ and yx = Γ(y, x̂)Γ(x, ŷ).
Thus these two elements have a common left factor of Γ(y, x̂). The
other part of condition (2a) is verified similarly.

(b) Let z ∈ A rB such that ẑ = x̂. Then

(xx)(zz) = Γ(x, x̂)Γ(x, x̂)Γ(z, ẑ)Γ(z, ẑ) = Γ(x, x̂)Γ(z, ẑ)

= Γ(x, ẑ)Γ(z, x̂) = xz.

Moreover, for any y, yx = Γ(y, x̂)Γ(x, ŷ) and yz = Γ(y, ẑ)Γ(z, ŷ),
and these two elements have a common left factor of Γ(y, x̂). The
other part of condition (2b) is verified similarly.

(c) From part (2a), we have yx = Γ(y, x̂)Γ(x, ŷ), which means that
the longest left common factor L(x, y) has the form Γ(y, x̂)γ, for
some possibly empty word γ which is a left factor of Γ(x, ŷ). Sim-
ilarly, xy = Γ(x, ŷ)Γ(y, x̂) means that the longest right common
factor R(x, y) has the form δΓ(y, x̂), for some possibly empty word
δ which is a right factor of Γ(x, ŷ). Dual arguments allow us to
write L(y, x) = Γ(x, ŷ)α and R(y, x) = βΓ(x, ŷ), where α and β
are left and right factors respectively of Γ(y, x̂). Now, using the
normality properties of the base, we have

Γ′(x, ŷ) Γ′(y, x̂)= Γ(x, ŷ)αβΓ(x, ŷ)Γ(y, x̂)γδΓ(y, x̂)

= Γ(x, ŷ)αΓ(y, x̂)βγΓ(x, ŷ)δΓ(y, x̂),

= Γ(x, ŷ)Γ(y, x̂)Γ(x, ŷ)Γ(y, x̂)

= Γ(x, ŷ)Γ(y, x̂) = xy.

The final two properties follow from a similar argument. From part (2a),
we have yx̂ = Γ(y, x̂)x̂, which means that the longest left common factor
L(x, y) has the form Γ(y, x̂)θ for some possibly empty word θ which is a
left factor of x̂. Similarly, x̂y = x̂Γ(y, x̂) means that the longest right com-
mon factor R(x, y) has the form ρΓ(y, x̂), for some possibly empty word ρ
which is a right factor of x̂. Now, using the normality properties of the base,
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including the fact that wlr = w for any words w, l and r for which l is a left
factor and r is a right factor of w, we have

x̂Γ′(y, x̂) = x̂Γ(y, x̂)θρΓ(y, x̂) = x̂Γ(y, x̂)Γ(y, x̂) = x̂Γ(y, x̂) = x̂y.

This shows that any generalized inflation of a free normal band has all the
properties given here, using xb = x̂. Conversely, we show that any null
extension A of a free normal band which has these properties will be a
generalized inflation. For any new element x ∈ A r B, we chose x̂ to be
the given element xb, and we define the function Γ′ as in condition (2c).
We claim that the generalized inflation (B,Γ′, ˆ) agrees with the original
null extension algebra A. Condition (2c) means precisely that for any two
new elements x and y, the multiplication for xy in the generalized inflation
agrees with the product xy in A. We also need to verify that this holds for
products of the form px or xp, for a new element x and a base element p.
If p is not equal to ŷ for any y ∈ A r B, then in the generalized inflation
we have xp = Γ′(x, p)p = (xp)(px)p = xp, and dually px = pΓ′(x, p) =
p(xp)(px) = px, by condition (1). Otherwise, if p = ŷ for some y, then
we have xp = Γ′(x, p)p = Γ′(x, ŷ)ŷ = xŷ = xp, and similarly for px, by
condition (2c).

6. Generalized inflations of semilattices

In this section we study generalized inflations of base algebras which are
semilattices. In both the left zero and rectangular band cases, we saw that
the Γ function of a generalized inflation is completely determined by the
multiplication table; but for semilattices, as with normal bands, it is possible
for an algebra A to be a generalized inflation of the base under several
different Γ functions. We shall show that for a given choice of hats in
a generalized inflation of a semilattice, there is one Γ function which is
canonical.
We use the following construction. Let B be a semilattice, and suppose we
have a set of new elements x ∈ ArB, each attached to some element x̂ ∈ B,
and a Γ function from A×B to B, given by a table.

Step 1. Construct a partial table for Γ, showing only those entries of the
form Γ(x, ŷ).
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Γ(x, ŷ) x y z · · ·
x̂
ŷ Γ(y, ŷ)
ẑ
...

Step 2. Construct the multiplication table of A as follows.

A B x y z · · ·

B px = pΓ(x, p)

x
y yp = Γ(y, p)p xy = Γ(x, ŷ)Γ(y, x̂)
z
...

Note that the generalized inflation rules px = pΓ(x, p) and yp = Γ(y, p)p
mean that two sections of the multiplication table, those showing products
of a new element with an old one, are obtained from the original Γ function
table by multiplying table entries by the corresponding old element. If we
view the entries of the table obtained in Step 1 as a matrix, we obtain the
last section of the multiplication table for A, the products of new elements
with new elements, by multiplying each Γ entry by its “transpose” entry,
since xy = Γ(x, ŷ)Γ(y, x̂).

Since B is a semilattice, there is a natural partial order ¹ defined on
the universe set B: we set x ¹ y if x is a sub-word of y (or xz = y
for some z). Let gcd(x, y, . . .) denote the longest common subwords of
x, y, . . .. Of course, gcd(x, y, . . .) ¹ x and gcd(x, y, . . .) ¹ y. Our con-
struction of a canonical Γ function, using these greatest common divisors,
will be similar to that used for normal bands; however for semilattices we
need consider only the common content, rather than left and right common
factors.
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Lemma 6.1. Let A = (B, Γ, ˆ) be a generalized inflation of B ∈ SL. Con-
struct Γ′ as follows:

Γ′(x, p) =





pΓ(x, p), if p 6= ŷ for any y ∈ A rB;

gcd(px, yx, zx, . . .), if p = ŷ = ẑ = . . . for some y, z ∈ A rB.

Then A = (B, Γ, ˆ) = (B, Γ′, ˆ).

Proof. From the construction of Γ′, we have Γ(x, p) ¹ Γ′(x, p) ¹ pΓ(x, p).
Therefore, pΓ(x, p) ¹ pΓ′(x, p) ¹ pΓ(x, p) implies that px = xp = pΓ(x, p) =
pΓ′(x, p). Similarly, Γ(x, ŷ) ¹ Γ′(x, ŷ) ¹ yx and Γ(y, x̂) ¹ Γ′(y, x̂) ¹ xy
imply that

xy = Γ(x, ŷ)Γ(y, x̂) ¹ Γ′(x, ŷ)Γ′(y, x̂) ¹ (yx)(xy) = xy.

Hence, A is also a generalized inflation of B using the same hat function and
the new Γ function Γ′, that is, A = (B, Γ′, ˆ).

Corollary 6.2. Let A be a null extension of B ∈ SL with a given ‘hat’
function ˆ . Define

Γ′(x, p) =





px = xp, if p 6= ŷ for any y ∈ A rB;

gcd(px, yx, zx, . . .), if p = ŷ = ẑ = · · · for some y, z ∈ A rB.

Then A is a generalized inflation of B if and only if A is also a generalized
inflation of B by using Γ′.

We shall call the function Γ′ thus defined the canonical Γ function for a
generalized inflation A of a semilattice B. Next, we characterize when a
null extension is a generalized inflation of a semilattice, without having a
specified ‘hat’ or Γ function.

Theorem 6.3. Let A be a null extension of B ∈ SL. Then A is a generalized
inflation of B if and only if the following conditions hold:

(1) A is commutative and p(px) = px for any p ∈ B and x ∈ A rB;
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(2) Hx = {p ∈ B : px = p(xx)} 6= ∅ for any x ∈ A rB;

(3) ∀y ∈ A rB, there exists by ∈ Hy such that by(yy) = byy and
gcd(byx, yx) 6= ∅ for any x ∈ ArB. Moreover, by · gcd(byx, yx) = byx;

(4) If by = bz, then gcd(yx, zx) 6= ∅ for any x ∈ A r B. Moreover
(yy)(zz) = yz;

(5) For any x, y ∈ A rB, gcd(byx, yx, . . .)gcd(bxy, xy, . . .) = xy.

Proof. Let A = (B, Γ, ˆ) be a generalized inflation of B. Then A must
be commutative and p(px) = p(pΓ(x, p)) = pΓ(x, p) = px. Obviously,
x̂ ∈ Hx 6= ∅ for any x ∈ ArB, and we choose bx = x̂ for each x. Therefore,
gcd(byx, yx) is the greatest common factor of ŷΓ(x, ŷ) and Γ(y, x̂)Γ(x, ŷ),
with a common subword Γ(x, ŷ). Moreover, it follows from Γ(x, ŷ) ¹
gcd(byx, yx) ¹ byx and Condition (1) that ŷΓ(x, ŷ) = ŷ(ŷx) = by(byx) =
byx. From this we conclude that by · gcd(byx, yx) = byx. If ŷ = ẑ, then
Γ(x, ŷ) ¹ gcd(yx, zx) = gcd (Γ(y, x̂) Γ(x, ŷ), Γ(z, x̂) Γ(x, ẑ)) 6= ∅. Further-
more, (yy)(zz) = (Γ(y, ŷ)Γ(y, ŷ))(Γ(z, ẑ)Γ(z, ẑ)) = Γ(y, ŷ)Γ(z, ẑ) = yz. Fi-
nally, Γ(x, ŷ) ¹ gcd(byx, yx, . . .) ¹ yx and Γ(y, x̂) ¹ gcd(bxy, xy, . . .) ¹ xy,
so it follows that

xy = Γ(x, ŷ)Γ(y, x̂) ¹ gcd(byx, yx, . . .)gcd(bxy, xy, . . .) ¹ (yx)(xy) = xy

for any x, y ∈ A rB.
Conversely, let A be a null extension satisfying these five conditions.

We choose x̂ = bx for any x ∈ A rB. We define a Γ function as follows:

Γ(x, p) =





px, if p 6= ŷ for any y ∈ A rB;

gcd(px, yx, zx, . . .), if p = ŷ = ẑ = · · · for some y, z ∈ A rB.

Now we show that the generalized inflation (B, Γ, ˆ) coincides with the al-
gebra A. For this we compare products in the generalized inflation with
products in A, and we note that it suffices to consider only products of the
form px or xy, where p is an element of the base B and x and y are new
elements. If p is not equal to any by, then pΓ(x, p) = p(px) = px. Otherwise,
if p = by for some y, then p ·gcd(px, yx, . . .) = px implies that pΓ(x, p) = px,
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by Condition (3). Therefore, px = pΓ(x, p) in both cases. Condition (5)
then says that xy = Γ(x, ŷ)Γ(y, x̂). Therefore, A is indeed a generalized
inflation of B.

The next example shows that Condition (5) of this theorem is necessary,
by giving an algebra A which satisfies the first four conditions but not the
fifth.

Example 6.4. Let B = {a, b, c, ab, ac, bc, abc} be the free semilattice on
three generators a, b and c. Let A be the null extension formed by attaching
three new elements x, y, z to B, with multiplication as shown in the table
below.

A a b c ab ac bc abc x y z

a a ab ac ab ac abc abc ab a abc

b ab b bc ab abc bc abc bc bc bc

c ac bc c abc ac bc abc ac ac ac

ab ab ab abc ab abc abc abc ab ab abc

ac ac abc ac abc ac abc abc ac ac ac

bc abc bc bc abc abc bc abc bc bc bc

abc abc abc abc abc abc abc abc abc abc abc

x ab bc ac ab ac bc abc ab abc abc

y a bc ac ab ac bc abc abc ab abc

z abc bc ac abc ac bc abc abc abc ab

Obviously A is commutative and p(px) = px for any p ∈ B and x, y, z ∈
A r B. It can be checked that Hx = {a, ab, abc}, Hy = {ab, abc} and
Hz = {abc}. For A to be a generalized inflation of B, by condition (4), we
need x̂ 6= ŷ 6= ẑ. Hence the only possible choice is to have x̂ = bx = a,
ŷ = by = ab, and ẑ = bz = abc. It is straightforward to check that the
required gcd conditions are also met, so A satisfies the first four conditions
of the theorem. But note that we have the following table:
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Γ x y z

x̂ ab a abc

ŷ ab ab abc

ẑ abc abc abc

Thus, we have Γ(x, ŷ)Γ(y, x̂) = (ab)(a) = ab which is not xy = abc in
the original multiplication table. Therefore, A can not be a generalized
inflation of B.
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