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Abstract

There is defined and studied a convergence with a fixed regulator
u in directed groups. A wu-Cauchy completion of an integrally closed
directed group is constructed.
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B.Z. Vulikh [6] has defined the notion of a convergence of sequences with
a regulator (r-convergence) in a vector lattice V. A convergence regulator
depends on a sequence in V. In the book [5], W.A.J. Luxemburg and A.C.
Zaanen introduced the notion of a convergence in V' with a fixed regulator
for all sequences in V.

The definition from [5] was formally changed in [1] and then applied in
a lattice ordered group G to define the notion of a convergence with a fixed
regulator u (u-convergence) in G. For an Archimedean lattice ordered group
G there was defined and investigated the concept of a u-Cauchy completion
of G.
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In the present note the notion of a w-convergence is introduced in
directed groups in such a way that it coincides with that in lattice
ordered groups. Further, there is constructed a u-Cauchy completion G* of
an integrally closed directed group G.

1. PRELIMINARIES

We recall some relevant basic notions and results (cf. [2], [3], [4]) concerning
ordered groups.

Let G be a partially ordered group and let N (Z, resp.) be the set of all
positive integers (integers, resp.). An element 0 < e € G is called a strong
unit of G if for each x € G there exists n € N with ne > x. A partially
ordered group G will be said to be integrally closed if for all z,y € G,
nx < y for each n € N implies x < 0. We will call G Archimedean if for all
x,y € G,nx <y for each n € Z implies z = 0. If GG is integrally closed, then
G is Archimedean. The converse does not hold in general (for example the
additive group G of all complex numbers with GT = {z +iy: 2=y =0 or
z > 0 and y > 0} is Archimedean and it fails to be integrally closed), but
it does for lattice ordered groups. G is called directed if its partial order is
upward (or, equivalently downward) directed. Equivalently, G is directed if
and only if every element g € G may be expressed in the form g = x — y for
suitable elements x,y € G, x,y > 0.

Assume that G is a lattice ordered group and z,y € G. Putting |z| =
x V (—z) we define the absolute value of x. Evidently, |z| < y if and only if
—ysxr=Y.

G is torsion free, i.e., x # 0 entails nz # 0 for each n € N.

If G is Abelian and n € N, then
(1) nr < ny implies x < y.

A partially ordered group G is said to be complete if every nonempty subset
of G bounded from above has a least upper bound in G. Every directed
complete partially ordered group is a lattice ordered group. For a subset X
of G,U(X) (L(X), resp.) will denote the set of all upper (lower, resp.)
bounds of X in G.

Theorem 1.1 (cf. [4], Theorem 9.A). Let G be a directed group. Then G
can be embedded into a complete lattice ordered group H if and only if G is
integrally closed.
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Theorem 1.2 ([3], Theorem 18). A complete lattice ordered group is Abelian.
By using Theorems 1.1 and 1.2, we immediately obtain

Corollary 1.3 ([3], Corollary 20). Every integrally closed directed group is
Abelian.

Assume that G is an integrally closed directed group. Then, by Theo-
rems 1.1 and 1.2, it follows that the implication (1) is valid in H and also
in G. Since H is torsion-free, GG is as well.

2. u-CONVERGENCE IN DIRECTED GROUPS

In this section we recall the notion of a convergence with a fixed regulator
in vector lattices and formally change it to be applicable in directed groups.
The notion of a convergence with a fixed regulator u (u-convergence) is
defined and studied in directed groups.

Definition 2.1 (cf. [5]). Let V be a vector lattice and 0 < u € V. It is said
that a sequence (z,,) in V' u-converges to an element = € V' if the following
condition is satisfied:

(c) for every real number € > 0 there exists ng € N such that

|z, — x| <eu for each n € N,n > ny.

1
In the condition (c), € can be equivalently replaced by — (p € N). Then
p

. 1
|ty — x| < —u, ie, —-u<z,—2x< —u.
p p

Therefore, the condition (c¢) is equivalent to the condition

(¢’) for each p € N there exists ng € N with

—u < p(x, —x) <u for each n € N;n > ny.

The condition (¢’) can be applied also in directed groups.
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Definition 2.2. Let GG be a directed group, and 0 < v € G. We say that
a sequence (z,) in G u-converges to an element x € G (or = is a u-limit of
(z,)), written x, — x, if the condition (c‘) is satisfied.

The element u is called a convergence regulator. Let R be the additive
group of all reals with the natural linear order. If G = R, then for each
0 < u € G the notion of u-convergence coincides with the usual convergence.

Theorem 2.3. Let G be an integrally closed directed group and 0 < u € G.
Then u-limits in G are uniquely determined.

Proof. Assume that (z,,) is a sequence in G such that z,, — z and z, — .
Let p € N. There exists ng € N with

—u < 2p(xp, —z) <u and —u < 2p(x, —y) <wu for each n € N,;n > ny.

We have

—u < 2p(xp, —2) <u and —u < 2p(zp, —y) < u.
Therefore,
2p(y — x) = 2p(y — Tny + Tny — ) < 2u
and

2p(z —y) =2p(x — Tpy + Tny — y) < 2u.

From this, we infer that p(y — z) < w and p(z — y) < w. The hypothesis
yields y —x <0 and x —y < 0. Thus x = y. [

Lemma 2.4. Let G be a non-Archimedean directed group. Then there exists
0 < u € G such that u-limits are not uniquely determined.

Proof. There are a,b € G,a # 0,b > 0 such that ka < b for each k € Z.
Since G is directed, there exist 0 < x,y € G,z # y with a = x —y. Consider
the sequence (z,,) = (z,y,z,y,...). Let p € N. We obtain

0, if n is even,

p(ry, —x) =
p(y —x) = (—p)a, ifn is odd.
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Then —b < (—p)a < b. If we put v = b, we get z, — x. Analogously, we
derive that z, — v. [

Assume that G is a non-integrally closed directed group. If G is non-
Archimedean, then, by Lemma 2.4, u-limits are not uniquely determined for
some 0 < u € G. If G is Archimedean, the question of the uniqueness of
u-limits remains open.

The idea of the proofs of Theorem 2.3 and Lemma 2.4 is the same as for
corresponding results in [1], where it was used in the case of lattice-ordered
groups.

In what follows, G is assumed to be an integrally closed directed group
and 0 < u € G a fixed convergence regulator in G. We shall write ;,, — z (or
x, — x in G) instead of x,, 2 z. By a convergent sequence, a u-convergent
sequence is meant and a limit will mean a wu-limit.

Lemma 2.5. Let (z,,) and (y,) be sequences in G,x, — x,y, — y. Then
Tn+Yn — T+ Y.

Proof. Let p € N. There exists ng € N with
—u < 2p(zy — ) <u, —u < 2p(yn, —y) <u foreach n €N, n>ng.
—2u < 2p(zn + yn — (z +y)) < 2u,

_ng(fﬁn"‘yn_(fv“‘y» < u,
ie.,
Tn+Yn — 2+ Y.

Lemma 2.6. If x, — = and k € Z, then kx,, — kx.

Proof. Let p € N. There exists ng € N with

—u < plk|(z,, —x) < u for each n € N,n > ny.
This yields

—u < pk(x, —x) < u, for each n € N;n > nyg.
Thus, kz,, — kx. [
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Definition 2.7. A sequence (z,,) in G is said to be u-fundamental
(abbreviate to fundamental) in G if for each p € N there exists ng € N
such that

—u < p(xy — ) < u, for each m,n € N;m >n > nyg.
Lemma 2.8. FEvery convergent sequence in G is fundamental in G.

Proof. Assume that (z,,) is a convergent sequence in G, z,, — x. Let p € N.
There exists ng € N with

—u < 2p(x, —x) < u, for each n € N;n > nyg.

For each m,n € Nym > n > ng, we get —u < 2p(x — x,,,) < u. Therefore,
—2u < 2p(xy, — Tp) < 2u. Hence, —u < p(x, — ;) < u and the proof is
finished. ]

In general, a fundamental sequence is not convergent. Indeed, it suffices to
put G = @, where @ is the additive group of all rationals with the natural
linear order. If all fundamental sequences in G are convergent, then we shall
refer to G as u- Cauchy complete (shortly C-complete).

3. u-CAUCHY COMPLETION OF (G

Remind that G stands for an integrally closed directed group. In this section
a construction of a u-Cauchy completion of G will be presented.

Lemma 3.1. Every fundamental sequence in G is bounded.

Proof. Suppose that (z,) is a fundamental sequence in G. Let p € N.
There exists ng € N such that

—u < p(xy — xm) < u for each m,n € Nym > n > nyg.
Therefore,
Ty — U < Ty, < Xy, + u for each m € N,m > ny.

Let h € U({x1,22,...,Tng—1,%n, + u}) and [ € L{x1,z2,...
ey Tng—1,Tny — u}). Then we obtain | < x,, < h for each m € N. [
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By a zero sequence is understood a sequence (x,) with z,, — 0. The set of
all fundamental (zero, resp.) sequences in G is denoted by F' (E, resp.).

Define the operation + in F' by putting () + (yn) = (2 +yn). Further,
set () < (yn) if and only if z,, <y, for each n € N. It is clear that (F, <)
is a partially ordered set. Moreover, we have

Lemma 3.2. (F,+,<) is an integrally closed directed group.

Proof. Let (x,), (yn) € F and p € N. There exists ng € N with
—u < 2p(xn - xm) <u and —u < 2p(yn - ym) <u

for each m,n € Nym >n > ng.

Then
—2u < 2p(zy + Yn) — (T + Ym) < 2u.

Thus,
—u < p((Tn + Yn) — (Tm + Ym)) < u.

Hence, (z,, +yn) € F.

From (z,) € F, it follows (—z,) € F as well; (—x,) is the inverse to
(zn,). Hence, F' is a group.

According to Lemma 3.1, there are h;,[;(i = 1,2) with

lh <z, <hy and Il <y, <hy foreach ne€N.

Let h € U({h1,h2}) and | € L({l1,l2}).Constant sequences (l,l,...) and
(h,h,...) belong to F. We have

(1) < (xn) < (hyh,..) and (L1,...) < (yu) < (hhy...).

This shows that F' is a directed set. Since the group operation is performed
componentwise, F' is an integrally closed partially ordered group and the
proof is complete. [
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Lemma 3.3. E is a convex subgroup of F.

Proof. In view of Lemma 2.8, we have F C F. According to Lemmas
2.5 and 2.6, F is a subgroup of F. Assume that (x,) € E,(y,) € F
and 0 < (yn) < (x,). Then for each p € N there exists ngp € N with
—u < pyn < pr, < ueach n € Nyn > ng. Therefore (y,) € E and F is
convex in F'. [

Since F' is Abelian, we can form the factor group G* = F/E. We use (x,)* to
denote the class of G* containing a sequence (x,,) € F. Let (z,)*, (yn)* € G*.
By Lemma 3.2, we obtain (x,+y,) € F. We have (x,,)*+ (yn)* = (xn+yn)*
The group G* can be made into a partially ordered group by putting (z,)* <
(yn)* if and only if there exist (z]) € (z,)* and (y),) € (yn)* such that
(«],) < (y),) (equivalently, if for each () € (z,,)* there is (y},) € (yn)* with
(o) < ().

It is easy to see that (z,,)* < (y,)* if and only if there exists a sequence
(tn) € E with (z5,) < (yn) + (¢t,). By using Lemma 3.2, we obtain that G*
is an Abelian directed group.

Now, we are interested in the question whether G* is integrally closed.
The following theorem offers a partial answer.

Theorem 3.4. Let G be an integrally closed directed group and let u be a
strong unit of G. Then G* is integrally closed.

Proof. Let (z,)*, (yn)* € G* such that k(x,)* < (yn)* for each k € N. We
are going to show that (z,)* < E.
For each k € N, there exists a sequence (tF) € E with

k() < (yn) + (13)-

With respect to Lemma 3.1, there exists g € G with y,, < g for each n € N.
Since v is a strong unit of G, there exists m € N with mu > g.
We have

(m + 1)kxn S Yn + tw(qlm—‘rl)k S g + t%mJFl)k < mu + t;m"'l)k

for each n € N.
From (t%mﬂ)k) € E, we infer that there exists ng € N with t%mﬂ)k <

for each n € N,n > ng. Let n € N,;n > ng. We get

(m+ Dkx, < mu+u=(m+ 1)u.
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Hence, kz, < u. From the assumption that G is integrally closed, it follows
xn, < 0 for each n € N,n > ng, proving (z,)* < E. ]

The proof of Theorem 3.4 is similar to that in [1] applied for an Archimedean
lattice ordered group.

Consider the class T' of integrally closed directed group G such that G*
is again such one. This class is rich. Indeed, every Archimedean linearly or-
dered group, G € T'. It is a consequence of the fact that every Archimedean
linearly ordered group is a subgroup of R. Another groups from the class
T can be obtained by using Theorem 3.4. Let G be an integrally closed
directed group and 0 < g € G. Then G(g) = J[-—ng,ng](n € N) is a convex
subgroup of G generated by g. It is easily seen that G(g) is an integrally
closed directed group and g is a strong unit of G(g). Applying Theorem 3.4,
we conclude G(g) € T

The question whether Theorem 3.4 holds without assuming that u is a
strong unit of G, remains open.

Definition 3.5. Let G € T and u be a convergence regulator in G. Then
G* is called a u-Cauchy completion (shortly a C-completion) of G.

Throughout, it will be supposed that G* is a C-completion of G.

The element U = (u, u,...)* is considered as a convergence regulator in
G*. For (z,,) € F, denote X,, = (xp, Tp,...)".

Define the mapping ¥ : G — G* by the rule ¥(x) = (x,z,...)* for each
x € G. Then V¥ is an isomorphism of a directed group G into G*.

Theorem 3.6. Every element of G* is a U-limit of some sequence in ¥(G).

Proof. Let (z,)* € G*. Then (X,,) is a sequence in ¥(G). We intend to
show that X,, & (xn)*.
Let n1 € N be fixed. An easy verification establishes that

an - (.an)* = (:Cnla Tngs )* - (xlv X2y «+vy Tpy Tn4ly Tn+2, )* =

*
(xnl — X1, Tpy — X2 ---y Tng — Lnyy Tng — Tng+1l, Lnl — Tni+2, ) =

(0, Tn, — Tny41, Tny — Tnys2,--.)" = (Tny — )" (Where m > ny).
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Let p € N. There exists ng € N with

—u < p(xy — xm) < u for each m,n € Nym >n > n,.

Suppose that n € N,n > n, is fixed and m € N,m > n. Then for the
sequence (z, — &y,) (m € N), we obtain (z, — x,,) € F and

-U < p(mn - mm)* = p(Xn - (wn)*) < U,

completing the proof. [
F* will denote the set of all U-fundamental sequences in G*.

Theorem 3.7. Let (x,) be a sequence in G. Then (xy,) € F if and only if
(Xpn) € F*.

Proof. Assume that (z,) € F and p € N. There exists n, € N with

—u < p(xn, — ) <u for each m,n € Nym >n > no.

Then

(—u,—u,...) < p(Tn — Tm, Tn — Tm,...) < (W, u,...),

_U S p(xn - xmaxn - xma > )* S U7

U <p((zn,n...)* = (Tmy Tm,...)") < U,

-U S p(Xn - Xm) S U
and thus, (X,,) € F™*.

Conversely, suppose that (X,,) € F* and p € N. Then there exists
ng € N with

—U < 2p(X,, — X;n) < U for each m,n € N;m >n > ny.

We have

Xn—Xm = @n, Ty . ) — (@, Ty - )" = (T — Tny Ty — T,y - 2) "
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Then
—(uyuy...)" <2p(xy — Ty Ty — Ty - - -)" < (Uy .. .)".

Let m,n > ng be fixed. For each p € N there exists a sequence (t§) € F
(s € N) such that

2p(zy, — ) <u+t? foreach seN.

There exists sg € N such that £ < u for each s € N,s > s9. We set
t"h =t{if se N,s > sg and t') ="} | if s € N,s < s9. Then (t'}) € E and

t'? < wu for each s € N. We get 2p(x,, — xp,) < 2u. Hence, p(z, — ) < u.
In a similar way, we get —u < p(x, — x,). Whence, (z,) € F. |

Theorem 3.8. G* is C-complete.

Proof.Let X! = (x},)*, X? = (22,)*, ... be a sequence from G*.We have to
show that this sequence is U-convergent. According to Theorem 3.6, every

element X" = (z]}))* of the sequence is a U-limit of some sequence in ¥(G),

namely X = (z], a0, ...)* Y. X™. For each n € N can be found m, € N

such that —U < k(X)) — X™) < U for each m,k € Nym > my,,k < n.
Whence —U < k(X}, — X") < U for each k € N,k < n. If we denote
L, = Xy, , then
—U < k(Z, — X") <U for each k € N,k < n.
We are going to prove that (Z,) € F™*.
We have
Loy =Ty = (Zp,— X™)+ (X" = X™) + (X™ = Zpn).

Let p € N. There is ng € N, ng > 3p, such that for each m,n e Nym > n >
ng, we get

U < 3p(Zy—X™) < U, -U < 3p(X"—X™) < U, ~U < 3p(X" ~ZLyp) < U

which entails
—3U < 3p(Zy, — Z,) < 3U.

Therefore,
U <p(Zp —Zp,) < U,

that means (Z,) € F*.
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Under the notation z, =z}, , we have Z, = (zn, Zn,...)*. By Theorem 3.7

from (Zy) € F*, it follows (z,) € F. We intend to show that X" — (z,)*.
By Theorem 3.6, Z,, — (z,)*. We have

X" = (2n)" = (X" = Zn) + (Zn — (z0)").

Let p € N. There is ng € N, ng > 2p such that for each n € N,n > ng, we
obtain

U <2p(X" = Zp) <U,-U < 2p(Zpn, — (20)").
This yields

—2U < 2p(X™ — (2z)*) < 2U for each n € N,;n > ny.

Whence,
—U < p(X"™ = (2,)") < U for each n € N;n > nyg

and the proof is complete. [

If z and ¥(z) an identified for each x € G, then u is a convergence regulator
in G* and it follows at once from Theorems 3.8 and 3.6.

Theorem 3.9. If G €T, then

(i) C-completion G* of G is C-complete;
(ii) G is a subgroup of G* with the induced partial order;

(iii) every element of G* is a limit of some sequence in G. [ ]
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