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Abstract

Join-independent and meet-independent sets in complete
lattices were defined in [6]. According to [6], to each complete lattice
(L,<) and a cardinal number p one can assign (in a unique way)
an incidence structure J; of independent sets of (L,<). In this
paper some lattice-inadmissible incidence structures are founded, i.e.
such incidence structures that are not isomorphic to any incidence
structure J7.
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Let (L,<) be a complete lattice and let \/, A be the supremum and the
infimum of any subset of L, respectively. The least and the greatest elements
in (L, <) are denoted by 0, 1 respectively. If z,y € L, then z||y means that
x,y are incomparable in (L, <). If X C L, then we put X, := X ~\ {z} for
x € X and

J(X):{\/Xﬂ:ceX}, M(X):{/\Xz\xeX}.
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Definition 1. A subset X C L is said to be join-independent (meet-
independent) if and only if x £ \/ X, (A Xz £ z, resp.) for all z € X.

Remark 1. The concept of independence have been studied in various types
of lattices motivated by applications in algebra and geometry (refer to [1]-
3], [5], [12]). Our approach is explained in [6] in detail and it is used also
in [11].

Remark 2. A set X = {z} is join-independent (meet-independent) if and
only if z # 0 (x # 1). If card(X) = |X| > 2, then X is join-independent
(meet-independent) if and only if z|| \/ X, (z| A Xz, resp.) for all z € X.

To avoid trivial cases we will suppose that | X| > 2 in what follows. The
notions of join- and meet-independent sets are dual in complete lattices.
Each assertion about join-independent sets admits its corresponding dual
one which will not be stated explicitly.

The set of all join-independent (meet-independent) sets of cardinality p > 2
will be denoted by GP (MP, respectively).
The following proposition is obvious:

Proposition 1. Let x,y be distinct elements of a set X € GP. Then x|y
and \/ X.|| V Xy. |

To every subset X C L we assign a system Uy of subsets of L by setting
Y € Ux iff there exists a bijective mapping « : X — Y such that \/ X, <
a(z) and a(z)||z for all x € X. This mapping is called a U-mapping.
Dually, to a subset X C L we assign a system Vx of subsets of L by
setting Z € Vx iff there exists a bijective mapping 8 : X — Z such that
B(z) < A\ X, and f(x)||x for all z € X. This mapping is called a V -mapping.
It is easy to show: If o is a U-mapping, then a~! is a V-mapping.
The proof of the following proposition is straightforward.

Proposition 2. Let X C L. Then the following statements are equivalent:
(1) X eGP,
(2) J(X) € Ux,
(3) Ux #0. u
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Proposition 3. Let X C L where | X| =p. IfY € Ux, then Y € MP and
X elVy.

Proof. Let Y € Ux. Then a U-mapping o : X — Y exists. Let us put
Yo@ =Y N H{a(r)} for all 2 € X. If a(y) € Y, (), then y € X, and z € X,
which yields z < \/ X, < a(y). Hence, v < A Y, ). If AYyn) < a(x), then
r < a(x) which is a contradiction. Thus, Y € MP. Sincea™ :Y — X is a
V-mapping we get X € Vy. [

Proposition 4. Let X C L. Then the following statements are equivalent:
(1) X e GP,
(2) J(X) e MP.

Proof. (1) = (2) : It follows from Proposition 2 and 3.

(2) = (1) : Let J(X) € MP. If we put P, = J(X) NV X, for z € X,
then A P, £V X, and A\ P, </ X, for each y € X,. Let us assume that
z <\ Xz Then VX, =V X and VX, < VX, for all y € X,. Thus,
A\ P, <\ X, which is a contradiction. Hence, z £ \/ X, and X € GP. =

Proposition 5. Let X € GP andY C L. Then
(1) Y eUx
if and only if

(2) there exists a bijective mapping v : J(X) — Y such that m < ~(m)
for each m € J(X) and v(m)||n for all n € J(X) distinct from m.

Proof. Since X is a join-independent set the mapping 5 : x — \ X,
z € X, is a bijection of X onto J(X).

(1) = (2) : It follows from Y € Ux that there exists a U-mapping
a:X — Y. Let us put v = oL, If m € J(X), then m = \/ X, for
a certain x € X and y(\/ X;) = a(x). Thus, \/ X, < v(V X;). Consider
n € J(X) where n # m. Then n = \/Y, where y # z. If a(z) < \/ X, then
V X < ax) <V X, which contradicts Proposition 1. If \/ X, < a(x), then
z <\ X, < a(z), a contradiction again. Hence, a(z)|| \/ X, and v(m)||n.

(2) = (1) : The mapping a = 3 is a bijection of X onto Y with
a(z) =v(\ X;) for x € X. It suffices to show that o is a U-mapping. m
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Proposition 6. If X C L and Y € Vx, then Ux N Uy = 0.

Proof. If |X| = p, then Y € Vx yields Y € GP and J(Y) € MP.
By Proposition 3, X € Uy and there exists a mapping v : J(Y) — X given
in Proposition 5. Assume that A € Ux. According to Proposition 5, for
each a € A there is a unique element \/ X, € J(X) such that \/ X; < a.
Then z < a for all z € X,. It follows from p > 2 that X, contains at
least two distinct elements 21, z3. If we put v~ 1(21) = mq, 7 1 (22) = ma,
then we obtain m; < 21 < a, mo < 29 < a. Thus, by Proposition 5,
A ¢ Uy. |

Proposition 7. Let X,Y € GP. Then J(X) = J(Y) if and only if
Ux =Uy.

Proof.

1. Let J(X) = J(Y) and consider C' € Ux. Then, by Proposition 5, there
exists a mapping v : J(X) — C. Since J(X) = J(Y), we obtain C € Uy
and thus, Ux C Uy. It is also obvious that Uy C Ux.

2. Let Ux = Uy. Since J(X) € Ux and J(Y) € Uy, we get J(X) € Uy
and J(Y) € Ux. It follows from J(X) € Uy that there exists a bijection
v : J(X) — J(Y) established in Proposition 5 and for each \/ X, € J(X)
there exists a unique element \/ Y} such that \/ X, < \/Y,. If we put
& (z) = y, we get a bijective mapping of X onto Y. Similarly, with the
help of J(X) € Uy we define a bijective mapping &, : Y — X such that
&o(m) = n if and only if VY, < VX,. For z € X we get \/ X, <
VYe ) <V Xeye,x) and, by Proposition 1, x = £,§;(x). Consider
V X, € J(X). Then \/ X, <V Yg (5 and, with respect to &§;(z) € Y,
we obtain \/1/51(13) < VX§2£1(1) =\ X,. Thus, VX, = \/Y%l(m) and
VX, € J(Y). Therefore, J(X) C J(Y) and J(Y) C J(X) can be
obtained similarly. [

As in [6], to (L, <) and p an incidence structure can be assigned. We recall
the definition and some basic facts (more thoroughly, see [4]) about incidence
structures needed in what follows.

Definition 2. An incidence structure (context) is a triple of sets J =
(G,M,I), where I C G x M. An incidence structure J1 = (G1, M, I)
is a substructure of J if G1 C G, My C M and I; = I N (G1 x My).
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Remark 3. Incidence structures are often given by their graphs: The el-
ements of sets G, M are represented by points and those corresponding to
elements g € G, m € M are joined by a line-segment iff gI'm.

Definition 3. An incidence structure J = (G, M, I) having the following
incidence graph is called a simple connection

(a) of type 1:

mo mi ma Mp—2 Mp—1
M:
G:
490 g1 g2 In—1 9n
(b) of type 1%
mo my mo mMp—1 s
M:
G:

g0 g1 92 9n—2 In—1
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(c) of type 2:

mO mi mMp—1 mn
M:
G:

90 g1 g2 In—1 dn
(d) of type 2"

mo mi ma Mp—1 My,
M:
G:

g0 g1 gn—1 gn

The positive integer n is said to be a length of this connection.

Let J = (G, M, I) be an incidence structure. Then for every subset A C G,
respectively B C M, we put Al = {m € M | (Vg € A)[gIm]}, B! =
{9 € G| (Ym € B)[gIm]}. In [7], independent sets in G and M are defined
and to each cardinal number p the incidence structure J? of independent
sets of cardinality p is assigned.

If (L, <) is a complete lattice, then J;, = (L, L, I) is an incidence struc-
ture in which alb iff a < b for a,b € L. Join- and meet-independent sets in
(L, <) are independent in J7, in the sense of [7]. To (L, <) and a cardinal
p the incidence structure J¥ = (GP, MP,I?) is assigned, where AI?B iff
B € Uy for any A € GP, B € MP (see [6]). It is obvious that Al = Uy,
Bl =Vp for Ac GP, B € MP.
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Definition 4. An incidence structure J is said to be lattice-inadmissible if
there do not exist a complete lattice L and a cardinal number p > 2 such
that the associated incidence structure J f is isomorphic to J. Otherwise,
J is called lattice-admissible.

Remark 4. Each incidence structure J = (G, M, I) with {g}! = 0 ({m}!} =
(), respectively) for some g € G (m € M) is lattice-inadmissible, since Ug # ()
(Vg # 0) for every A € GP (B € MP, resp.).

Some other examples of lattice-inadmissible incidence stuctures are given
below.

Proposition 8. Let X € GP N MP. Then
(1) X rrX,

and
(2) if XIPC and BIPX, then B JPC.

Proof. From BI?X, we get B € Vx and, by Proposition 6, Ux N Ug = (.
If XIPC and BIPC, then C' € Ux NUpg which is a contradiction. Obviously,
XIPJ(X) and M(X)IPX. Since M(X) € Vx, we obtain Uy NUpyx) = 0
again. If X/PX, then X € Ux N Uyps(x)which is a contradiction. [ ]

Corrolary 1.

1. If an incidence structure J = (G, M,I) contains an element © € G N
M such that xlx, then J is lattice-inadmissible. In particular, for any
(non-empty) complete lattice (L, <), the incidence structure Jr, is lattice-
inadmissible, since ala for all a € L.

2. If 7 = (G, M, I) contains elements x € GNM, b e G, ¢c € M such that
xlc, blx and blc, then J is lattice-inadmissible. [

Theorem 1. Let (L, <) be a complete lattice and p > 2. Then, in L, there
do not exist pairwise distinct subsets A, B,C € GP, X,Y,Z € MP such that
Us={X}, Up={X,Y}, Uc = {Y, Z}, Vx = {A, B}, Vs = {B,C}.

Proof. Let us suppose that such subsets exist. Then obviously X = J(A).
If furthermore X = J(B), then Uy = Up, by Proposition 7, which is a
contradiction. Hence, Y = J(B) and similarly Z = J(C). Since X =
J(A) ={VA; | v € A} € MP, we get M(X) = {A\ P, | x € A}, where
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P, = X ~{V Az}. Moreover, a < AP, for all a € A and a|| A P, for all
x € Ag. It follows from Vx = {A, B} that either A= M(X) or B = M(X).
Let B = M(X). Then there is a unique a € A such that B = {\ P,} U A,,
where a < A\ P, and z = A\ P, for all z € A,. Obviously, B\ {\ P.} = A,
and \/ Bp p, = \/ Aa. Fory € Ay, we get © < \/ A, for all z € Ay \ {a} and
also a < A\ P, <\/ A,. This yields \/ A, =\ By and X = J(B), which is a
contradiction. Thus, A = M(X). In a similar way, from V3 = {B,C}, we
show that B = M(Y).

Since Vx = {A, B} and A = M(X), there exists precisely one element
a € A such that B = {b} U A,, where b < a and b || = for all z € A,. Then
By, = A, and \/ By, = \/ A,. It follows from Up = {X,Y} and Y = J(B)
that there exists a unique y € A, such that \/ B, <\/ 4, and \/ B, =\/ A,
for each x € A~ {y}. Hence, Y = {\/ B, }U{V A JU{V A, | z € As~{y}}.
Since Y € M?, we get \/ By || \/ A; for all z € A,,.

It follows from Vy = {B,C} and B = M(Y) that C = {c} U B, for
some z € B, where ¢ < z and ¢ || z for all x € B,.

Since Z = J(C), it is obvious that Z = {\/ C, | ¢ € C'}. It follows from
Uc ={Y,Z} that [Y N Z| = p — 1. Let us prove that X € Uc by assigning
a mapping 7 of the set J(C) = Z onto the set X (from Proposition 5). We
examine all particular cases.

1. Suppose that z = b. Then ¢ < b < a < \JA; for all x € A, and
C ={c} UA,. Obviously c || \V 4, and \/ C. = \/ A,. Moreover, \/ C, <
VB, < VA, and \VC, < VA, for all © € A, \ {y}, where, since
Y N Z| = p — 1, precisely one inequality < is replaced by the strict one.
Thus, Z = {\/ A} U{\/ C: | © € A,}. Consider a mapping v: Z — X
defined by setting v(\/ Aa) =V Aa, 7(V Cz) =V Ay forall x € A,. Tt is
easy to see that m < ~(m) for all m € Z. We prove that v(m)|n for all
n € Z~{m}.

a) Let \/Cy < \VBy. Then Z = {\/ Cy,} U{V A; | z € Ay}. It suffices
to show that \/ Cy||\V 44 for ¢ € Ay. Let \/ Cy <\ A,. Then, from
c <V Cy, we get c <\/ A,, which is a contradiction. Let \/ C, <\/ A,
for z € A, ~ {y}. Then x </ C,, which is a contradiction again.

b) Let \/C, < \ A, for a certain ¢ € A, \ {y}. Then Z = {\V B,} U
{VCU{V A, | z € A~ {q,y}}. It suffices to show that \/ Cy| \/ A
for € A;. Suppose that \/ C; < \/ A,. Then, from ¢ <\/ Cy, we get
¢ <\ Ag, which is a contradiction. If \/ C, < \/ A, for x € A, \ {q},
then we obtain a contradiction again, because of x <\/ Cy.
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2. Let z = y. Then ¢|\VA, and \V/C. = VB, < \V Ay, VC, < V Aqg,
VCp < VA, forall z € A, ~ {y}. It is easy to see that Z = {\/ B,} U
{VCy | ¢ € By}. The mapping v is defined by setting v(\/ By) = \V Ay,
YV Cy) =V Ao, 7(V Cz) =\ Ay for x € Ay ~{y}. Further, we proceed
similarly to the case 1.

a) Let VO, < VVAq. Then Z = {\/B,} U{VC,} U{V A, | z € A, ~
{y}}. VG < VA, then ¢ < \/ () yields ¢ < \/ Ay, which is a
contradiction. If \/ C, < \/ A, for z € A~ {y}, then z € \/ A,.

b) Let \VC, < \ A, for a certain ¢ € A, ~ {y}. Then Z = {\V B,} U
{VC,}U{V A, | x € B\{q,y}}. Similarly to the preceding case, we
show that \/ C;|| V A, for z € A,.

3. Let z € Au~{y}. Thenc||\/ A, and \/C. =V B, =V A,, VC, <V A,
VC, <VBy<\VA,and \/C, <\ A, for remaining x € A. Let us put
TV Ce) =V Az, v(V ) =V Ao, 7(V Cy) =V Ay and 7(V Cz) =V Ap
for remaining z € A.

a) Let \/ Cp < \/ Aq. If \/ Cp < \/ A, then ¢ </ A, which is a contra-
diction. For z € A,~{z}, it follows from \/ C;, <\ A, that x <\/ A,.

b) Let \/Cy <\ By. Then\/ C, <\ A, impliesb < \/ A,, \VC, <V A,
implies ¢ < \/ A,, and for remaining z € A, we get x < \/ A,, which
is a contradiction in all cases.

c) Let \/Cy <V A, for g € Ay~ {y, z}. Similarly to the preceding cases,
we show that \/ Cy|| \/ A for z € A,,.

Thus, we have obtained X € Ug, which contradicts our assumption Ug =
{Y,Z}. |

Remark 5. The dual statement also holds, where Vx = {4}, V3 = {4, B},
Vy, ={B,C} and Us = {X,Y}, Up = {V, Z}.

Corrolary 2. Every simple connection (of type 1, 1°, 2, 2°) of the length
greater than 1 is a lattice-inadmissible incidence structure.

Proof. Consider a complete lattice (L,<). Let J? = (GP, MP,IP) be a
simple connection of type 1 and of the length 2. Thus, its graph can be
sketched as follows:
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Obviously, By = J(Ap). If By = J(A1), then Us, = Ua,, which is a contra-
diction. Hence, By = J(A;). However, it means that By = J(Asz), which is
a contradiction again. Dually, we can proceed for any simple connection of
type 1’ and of the length 2.

Consider a simple connection 7 5 of type 1 and of the length greater
than 2 or a simple connection of type 2 and of the length at least 2. Then
Jf contains sets Ag, A1, A2 € GP and By, B1, By € MP such that Uy, =
{B0}7 Ua, = {B07B1}7 Ua, = {B1732}7 VB, = {A07A1}7 Ve, = {AlvAQ}'
According to Theorem, such sets cannot exist. Similar assertion for simple
connections of types 1’, 2’ holds dually. [

Remark 6. Simple connections of the length 1 are lattice-admissible
incidence structures (refer to [6] for an example of a simple connection of

type 2).

Remark 7. There exists a complete lattices (L, <) and a cardinal p such
that the incidence structure J f contains a simple connection of the length
greater than 1 as its substructure.

There exist (general) incidence structures J such that their correspond-
ing incidence structures JP? of independent sets are simple connections. In
[8]-[10], there are such incidence structures J investigated that J? are sim-
ple connections of type 1.
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