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Abstract

In this paper, we introduce the notion of ternary semi-integral
domain and ternary semifield and study some of their properties.
In particular we also investigate the maximal ideals of the ternary
semiring Z−0 .
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1. Introduction

The notion of ternary algebraic system was introduced by D.H. Lehmer in
[7]. He investigated certain ternary algebraic systems called triplexes which
turn out to be commutative ternary groups (in the sense of W. Dörnte or
D.H. Lehmer see [7]). The notion of ternary semigroups was introduced by
S. Banach (cf. [9]). He showed by an example that a ternary semigroup
does not necessarily reduce to an ordinary semigroup. These two algebraic
structures were further studied by different authors in the middle part of the
twentieth century. In [10], M.L. Santiago developed the theory of ternary
semigroups and semiheaps. He devoted his attention mainly to the study of
regular ternary semigroups, completely regular ternary semigroups, bi-ideals
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and intersection ideals in ternary semigroups, the standard embedding of a
ternary semigroup and a semiheap with some of their applications. In [8],
W.G. Lister characterized those additive subgroups of rings which are closed
under the triple ring product and he called this algebraic system a ternary
ring. He also studied the imbedding of ternary rings, representation of
ternary rings in terms of modules, semisimple ternary rings with minimum
condition, and radical theory of such rings.

In [1], we have introduced the notion of ternary semiring which is a
generalization of the ternary ring introduced by Lister [8]. Ternary semiring
arises naturally as follows – consider the ring of integers Z which plays a
vital role in the theory of ring. The subset Z+ of all positive integers of Z
is an additive semigroup which is closed under the ring product i.e. Z+ is
a semiring. Now, if we consider the subset Z− of all negative integers of Z,
then we see that Z− is an additive semigroup which is closed under the triple
ring product (however, Z− is not closed under the binary ring product), i.e.
Z− forms a ternary semiring. Thus, we see that in the ring of integers Z, Z+

forms a semiring whereas Z− forms a ternary semiring. More generally, in
an ordered ring, we can see that its positive cone forms a semiring, whereas
its negative cone forms a ternary semiring. Thus a ternary semiring may be
considered as a counterpart of semiring in an ordered ring.

The main purpose of this paper is to study ternary semifield. In Sec-
tion 2, we give some preliminary definitions and examples. In Section 3,
we introduce the notion of ternary semi-integral domain and ternary semi-
field and study some of their properties. In Section 4, we characterize the
maximal ideals of the ternary semiring Z−0 .

2. Some basic definitions and examples

Definition 2.1 (see [1]). A non-empty set S together with a binary opera-
tion, called addition and a ternary multiplication, denoted by juxtaposition,
is said to be a ternary semiring if S is an additive commutative semigroup
satisfying the following conditions:

(i) (abc)de = a(bcd)e = ab(cde),

(ii) (a + b)cd = acd + bcd,

(iii) a(b + c)d = abd + acd,

(iv) ab(c + d) = abc + abd

for all a, b, c, d, e ∈ S.
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Example. Let S be the set of all continous functions f : X −→ R−, where
X is a topological space and R− is the set of all negative real numbers.
Now we define a binary addition and a ternary multiplication on S in the
following way:

i) (f + g)(x) = f(x) + g(x),

ii) (fgh)(x) = f(x)g(x)h(x),
for all f, g, h ∈ S and x ∈ X.

Then together with the binary addition and the ternary multiplication, S
forms a ternary semiring.

Remark. We note that the positive real valued continnous functions form
a semiring, whereas the negative real valued continnuous functions form a
ternary semiring.

Definition 2.2 . A ternary semiring S is said to be
(i) commutative if abc = bac = bca for all a, b, c ∈ S;

(ii) laterally commutative if abc = cba for all a, b, c ∈ S.

We note that if S is commutative, then also abc = acb = cba = cab for all
a, b, c ∈ S.

Definition 2.3 . Let S be a ternary semiring. If there exists an element
0 ∈ S such that 0 + x = x and 0xy = x0y = xy0 = 0 for all x, y ∈ S, then
‘0’ is called the zero element (or simply the zero) of the ternary semiring S.
In this case we say that S is a ternary semiring with zero.

We note that a ternary semiring may not contain an identity but there
are certain ternary semirings which generate identities in the sense defined
below:

Definition 2.4 . A ternary semiring S admits an identity provided that
there exist elements ei, fi in S (i = 1, 2, ......, n) such that

∑n
i=1 eifit∑n

i=1 eitfi =
∑n

i=1 teifi = t for all t ∈ S. In this case, the ternary semiring
S is said to be a ternary semiring with identity (ei, fi).

Example. Let Z−0 be the set of all negetive integers with zero. Then with
the usual binary addition and ternary multiplication, Z−0 forms a commuta-
tive ternary semiring with zero and (−1,−1) is the identity of Z−0 .
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Throughout this paper, S will always denote a ternary semiring with zero
and unless otherwise stated a ternary semiring means a ternary semiring
with zero.

Let A,B, C be three subsets of S. Then by ABC, we mean the set of
all finite sums of the form

∑
aibici, with ai ∈ A, bi ∈ B, ci ∈ C.

Definition 2.5 . An additive subsemigroup I of S is called a left (right,
lateral) ideal of S if s1s2i ∈ I (respectively is1s2, s1is2 ∈ I) for all s1, s2 ∈ S
and i ∈ I. If I is simultaneously a left, a right, and a lateral ideal of S, then
I is called an ideal of S.

Definition 2.6 (see also [6], p. 79, for binary semirings). An ideal I of S
is called a k-ideal if x + y ∈ I, and x ∈ S, y ∈ I imply that x ∈ I.

Let A be an ideal of S. Then the k-closure of A, denoted by A, is
defined by A = {a ∈ S : a + b = c for some b, c ∈ A}. We can easily show
that A ⊆ A, A ⊆ B =⇒ A ⊆ B and A = A. We note that an ideal A of S
is a k-ideal if and only if A = A.

Remark. Let A be an ideal of a ternary semiring S. Then the k-closure of
A, i.e. A, is a k-ideal of S.

Note. We note that the intersection of any set of k-ideals of a ternary
semiring S is a k-ideal of S.

Definition 2.7 . A ternary semiring S is called a simple (k-simple) ternary
semiring if it contains no non-zero proper ideal (k-ideal, resp.) of S.

Note that every simple ternary semiring is a k-simple ternary semiring.

Definition 2.8 (see also [5], p. 78, for binary semirings). Let I be a proper
ideal of the ternary semiring S. Then the congruence on S, denoted by ρI

and defined by sρIs
′ if and only if s + a1 = s′ + a2 for some a1, a2 ∈ I, is

called the Bourne ternary congruence on S defined by the ideal I.

We denote the Bourne ternary congruence (ρI) class of an element r
of S by r/ρI (or simply by r/I) and denote the set of all such congruence
classes of S by S/ρI (or simply by S/I).

It should be noted that for any s ∈ S and for any proper ideal I of S,
s/I is not necessarily equal to s+ I = {s+a : a ∈ I} but surely contains it.
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Definition 2.9 (see [3]). A proper ideal P of a ternary semiring S is called
a prime ideal of S if ABC ⊆ P implies A ⊆ P or B ⊆ P or C ⊆ P for any
three ideals A, B,C of S.

Definition 2.10 . An element a in a ternary semiring S is called an idempo-
tent element if a3 = a. A ternary semiring S is called an idempotent ternary
semiring if every element of S is idempotent.

An ideal I of S is called idempotent if I3 = I.

Definition 2.11 . An element e in a ternary semiring S is called a bi-unital
element if eex = xee = x for all x ∈ S.

Example. In the ternary semiring Z−0 , the element (−1) is a bi-unital
element.

Definition 2.12 (see [1]). An element a in a ternary semiring S is called
regular if there exists an element x in S such that axa = a. A ternary
semiring is called regular if all of its elements are regular.

Definition 2.13 . A ternary semiring S is said to be semi-subtractive if for
any elements a, b ∈ S; there is always some x ∈ S or some y ∈ S such that
a + y = b or b + x = a.

Note. Each ternary ring is a semi-subtractive ternary semiring.

Definition 2.14 . A ternary semiring S is called zero-sum free if a + b = 0
always implies that a = b = 0.

Remark. Every additively-idempotent ternary semiring S is zero-sum free.

The notions of congruence, maximal ideal, and also additively cancella-
tive (AC, for short) or multiplicatively cancellative (MC) ternary semiring
are introduced similarly as in classical cases.

3. Ternary semi-integral domain and ternary semifield

Definition 3.1 . A ternary semiring (ring) S is said to be zero divisor free
(ZDF, for short) if for a, b, c ∈ S, abc = 0 implies that a = 0 or b = 0 or
c = 0.
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Definition 3.2 . A commutative ternary semiring (ring) is called a ternary
semi-integral (integral, resp.) domain if it is zero divisor free.

Lemma 3.3 . An MC ternary semiring S is ZDF.

Proof. Let S be an MC ternary semiring and abc = 0 for a, b, c ∈ S.
Suppose b 6= 0 and c 6= 0. Then by right cancellativity, abc = 0 = 0bc
implies that a = 0. Similarly, we can show that b = 0 if a 6= 0 and c 6= 0 or
c = 0 if a 6= 0 and b 6= 0. Consequently, S is ZDF.

For the converse part we have the following result:

Lemma 3.4 . A ZDF ternary semiring S is MC whenever it is AC and
semi-subtractive.

Proof. Let S be a ZDF, AC and semi-subtractive ternary semiring. Let
a, b ∈ S r {0} be such that abx = aby for x, y ∈ S. Since S is semi-
subtractive, for x, y ∈ S there is always some c ∈ S or some d ∈ S such
that y + c = x or x + d = y. Let y + c = x. Then aby + abc = abx implies
abc = 0 (by AC) which again implies that c = 0 (since S is ZDF). Similarly,
we can show that d = 0 when x + d = y. Consequently, we have x = y
and hence S is multiplicatively left cancelletive (MLC, for short). Similarly,
it can be proved that S is multiplicatively right cancelletive (MRC) and
multiplicatively leterally cancelletive (MLLC). Thus S is MC.

Definition 3.5 . An element a of a ternary semiring S is said to be invertible
in S if there exists an element b in S (called the ternary semiring-inverse of
a) such that abt = bat = tab = tba = t for all t ∈ S.

Definition 3.6 . A ternary semiring (ring) S with |S| ≥ 2 is called a ternary
division semiring (ring, resp.) if every non-zero element of S is invertible.

Remark. From the Definition 3.5, it follows that a bi-unital element of
S is invertible and any invertible element is regular. Hence every ternary
division semiring is a regular ternary semiring.

Definition 3.7 . A commutative ternary division semiring (ring) is called
a ternary semifield (field, resp.), i.e. a commutative ternary semiring (ring)
S with |S| ≥ 2 is a ternary semifield (field) if for every non-zero element a
of S, there exists an element b in S such that abx = x for all x ∈ S.
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Note that a ternary semifield (field) S has always an identity.

Example. Denote by R−
0 , Q−

0 and Z−0 the sets of all non-positive real num-
bers, non-positive rational numbers and non-positive integers, respectively.
Then R−

0 and Q−
0 form ternary semifields with usual binary addition and

ternary multiplication and Z−0 forms only a ternary semi-integral domain
but not a ternary semifield.

Lemma 3.8 . A ternary semifield S is MC.

Proof. Let S be a ternary semifield and let a, b ∈ S r {0} be such that

(i) abx = aby

where x, y ∈ S. Since S is a ternary semifield, there exist elements r, s ∈ S
such that

(ii) aru = u

and

(iii) bsv = v

for all u, v ∈ S.
Now, by (i)–(iii) and by associativity and commutativity of the tenary

multiplication, we have x = wx = ar(bsx) = (abx)rs = (aby)rs = y.
Consequently, S is MCL. Since S is commutative, it follows that S
is MC.

By Definitions 3.1, 3.2 and 3.7, and by Lemmas 3.3 and 3.8, we have:

Lemma 3.9 . A ternary semifield S is ZDF and S is a ternary semi-integral
domian.

Proposition 3.10 . A ternary semifield S does not possess any non-zero
proper ideal, i.e. S is simple.

Proof. Let P be any non-zero ideal of S and a(6= 0) ∈ P . Then there
exists an element b ∈ S such that abx = x for all x ∈ S. Then for any t ∈ S,
t = abt ∈ P . Consequently, P = S, and the proof is complete.

Proposition 3.11 . A commutative ternary semiring S is a ternary semi-
field if and only if it is ZDF and has no non-zero proper ideals.
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Proof. Let the commutative ternary semiring S be ZDF and have no non-
zero proper ideals. Let a(6= 0) ∈ S. Then aSx is an ideal of S for any
non-zero x ∈ S. Since S is ZDF, aSx 6= {0}. Thus aSx is a non-zero ideal
of S. Consequently, by hypothesis, aSx = S and hence for x(6= 0) ∈ S there
exists b ∈ S such that abx = x. Let y be any element of S. Then there exists
c ∈ S such that acx = y. Thus aby = ab(acx) = (abx)ac = xac = acx = y
for all y ∈ S. This shows that S is a ternary semifield.

The converse implication of the theorem follows from Lemma 3.9 and
Proposition 3.10.

So, it is easy to observe that a commutative simple ZDF ternary semiring
is a ternary semifield. Moreover, a commutative ZDF ternary semiring S is
a ternary semifield if and only if {0} is a maximal ideal of S.

By using Zorn’s Lemma we can state:
If S is any commutative ternary semiring with identity, then every ideal

I 6= S is contained in a maximal ideal S.

Note. The set Z−0 r {−1} is a maximal ideal of the ternary semiring Z−0
with identity, which contains all ideals of Z−0 . Note that this ideal is not a
principal ideal.

By standard verifications, we have

Lemma 3.12 . For any proper k-ideal P of a commutative ternary semir-
ing S with identity, the factor ternary semiring S/P is also a commutative
ternary semiring with identity.

Theorem 3.13 . Let M be a proper k-ideal of a commutative ternary semir-
ing S. Then M is a maximal ideal of S if and only if the factor ternary
semiring S/M has only two ideals {0/M} and S/M .

Proof. By Lemma 3.12, it follows that the factor ternary semiring S/M
is a commutative ternary semiring with zero element 0/M . Let the proper
k-ideal M be a maximal ideal of S. Then S/M 6= {0/M}. Let I be an
ideal of S/M properly containing {0/M}. Now let I0 = {x ∈ S : x/M ∈ I}.
Then I0 is an ideal of S. Let x ∈ M . Then x/M = 0/M ∈ I. So x ∈ I0.
Hence M ⊆ I0. Since I properly contains {0/M}, there exists a/M ∈ I such
that a/M 6= 0/M . Then a 6∈ M but a ∈ I0. Hence I0 properly contains M .
Since M is a maximal ideal of S, I0 = S. Thus I = S/M . This implies that
the zero ideal {0/M} of S/M is maximal. Hence S/M has only two ideals
{0/M} and S/M .
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Conversely, suppose that S/M has only two ideals {0/M} and S/M . Then
{0/M} is a maximal ideal of S/M . Next let J be an ideal of S properly
containing M and J1 = {x/M ∈ S/M : x ∈ J}. Then J1 is an ideal of
S/M . Since J ⊃ M , there exists x ∈ J \ M . Then x/M 6= 0/M ∈ J/M .
Consequently, J1 6= {0/M}. Therefore, J1 = S/M . Thus J = S and hence
M is a maximal ideal of the ternary semiring S. Hence the theorem.

Theorem 3.14 ([3]). Let S be a commutative ternary semiring. Then a
proper k-ideal P of S is prime if and only if the factor ternary semiring S/P
is a ternary semi-integral domain.

Theorem 3.15 . Let S be a commutative ternary semiring with identity.
Then a proper k-ideal M of S is maximal if and only if the factor ternary
semiring S/M is a ternary semifield.

Proof. Let M be a maximal k-ideal of a ternary semiring S with identity
(ei, fi)(i = 1, 2, ..., m). Since S is a commutative ternary semiring with
identity (ei, fi), it follows, by Lemma 3.12, that S/M is also a commutative
ternary semiring with identity. Let a/M 6= 0/M . Then a 6∈ M . Now
M +SSa is an ideal of S which properly contains M . Since M is a maximal
ideal, we have M + SSa = S. This implies that there exist mi ∈ M and
sij , tij ∈ S such that

e1 = m1 +
n∑

j=1

s1jt1ja;

e2 = m2 +
n∑

j=1

s2jt2ja;

..................................

ei = mi +
n∑

j=1

sijtija.
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From above we have,

e1f1x = m1f1x +




n∑

j=1

s1jt1ja


 f1x = m1f1x +




n∑

j=1

s1jt1jf1


 ax

e2f2x = m2f2x +




n∑

j=1

s2jt2ja


 f2x = m2f2x +




n∑

j=1

s2jt2jf2


 ax

.................................................................................................................

eifix = mifix +




n∑

j=1

sijtija


 fix = mifix +




n∑

j=1

sijtijfi


 ax

for all x ∈ S.
Adding all these equations, we have

m∑

i=1

eifix =
m∑

i=1

mifix +
m∑

i=1




n∑

j=1

sijtijfi


 ax

for all x ∈ S.
This implies that x = m′ + bax for all x ∈ S, m′ =

∑m
i=1 mifix ∈ M

and b =
∑m

i=1

∑n
j=1 sijtijfi ∈ S. Thus x + 0 = bax + m′. Consequently,

x/M = (bax)/M that is x/M = (b/M)(a/M)(x/M) for all x/M ∈ S/M .
Hence S/M is a ternary semifield.

Conversely, let the factor ternary semiring S/M be a ternary semi-
field. Since S/M is a ternary semifield, S 6= M . Let I be a k-ideal of
S such that M ⊂ I ⊆ S. Then there exists an element a ∈ I such that
a 6∈ M . Thus a/M 6= 0/M and hence there exists b/M ∈ S/M such that
(a/M)(b/M)(x/M) = x/M for all x/M ∈ S/M that is (abx)/M = x/M for
all x/M ∈ S/M . This implies that abx+s1 = x+s2 for some s1, s2 ∈ M ⊂ I
and for all x ∈ S. Since I is an ideal of S, a ∈ I implies that abx ∈ I and
hence abx+s1 = x+s2 ∈ I for all x ∈ S. Since I is a k-ideal, x+s2 ∈ I, s2 ∈ I
implies that x ∈ I for all x ∈ S. Consequently, I = S. Hence M is a maximal
ideal of S. This completes the proof of the theorem.
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Since every ternary semifield is always a ternary semi-integral domain,
from Theorems 3.14 and 3.15 we have the following corollary:

Corollary 3.16 . Every maximal ideal of a ternary semiring S is a prime
ideal of S.

Theorem 3.17 . A finite commutative MC ternary semiring S with |S| ≥ 2
is a ternary semifield.

Proof. Let S be a finite commutative MC ternary semiring. Let S =
{a1, a2, ..., an}. Suppose a ∈ S and a 6= 0. Then for a fixed a1 6= 0 ∈ S,
aa1ai ∈ S for all i and hence {aa1a1, aa1a2, ..., aa1an} ⊆ S. Since S is MC, if
aa1ai = aa1aj then ai = aj . Therefore, the elements aa1a1, aa1a2, ..., aa1an

must be distinct and hence S = {aa1a1, aa1a2, ..., aa1an}. This implies that
one of the product must be equal to a, say aa1ai = a. Let x be any element
of S. Then there exists aj ∈ S such that x = aa1aj . Since S is commutative,
a1aix = a1ai(aa1aj) = (a1aia)a1aj = (aa1ai)a1aj = aa1aj = x for all x ∈ S.
Since a1 is arbitrary, we find that S is a ternary semifield.

Theorem 3.18 . A ternary semifield S is a ternary field if and only if it is
not zero-sum free.

Proof. Let a ternary semifield S be a ternary field. Then S is an additive
group that is for every a(6= 0) ∈ S, there exists a′(6= 0) ∈ S (the additive
inverse of a) such that a + a′ = 0. Consequently, S is not zero-sum free.

Conversely, let a ternary semifield S be not zero-sum free. To show S is
a ternary field we have to show that S is an additive group. Since S is not
zero-sum free, there are elements a(6= 0), b(6= 0) ∈ S such that a + b = 0.
Let x(6= 0) ∈ S. Then axS = {axy|y ∈ S} is a non-zero proper ideal of S.
Since S is a ternary semifield, by Proposition 3.11, it follows that S = axS.
Then for any c ∈ S, there exists y ∈ S such that c = axy. Now a + b = 0
implies that axy + bxy = 0 which again implies that c + bxy = 0. Hence c
has an additive inverse. This shows that each element of S has an additive
inverse in S. Thus S is an additive group and hence S is a ternary ring.
Consequently, S is a ternary field.

Theorem 3.19 . Every finite ternary semifield S with |S∗| ≥ 2, where
S∗ = S r {0}, is a ternary field.



196 T.K. Dutta and S. Kar

Proof. Suppose a 6= 0 ∈ S. Since S is a ternary semifield, there exists a
unique b(6= 0) ∈ S such that abx = x for all x ∈ S. Since |S∗| ≥ 2, there
exists c ∈ S\{0, b}. Then (a, c) is not the identity of S. Let d 6= 0 ∈ S. Since
S is ZDF, (ac)id 6= 0 for i ≥ 1. Since S is finite, {acd, (ac)2d, (ac)3d, ...} is
finite. Then there exist i and j such that (ac)id = (ac)jd. Suppose i > j.
Then by MC, we have (ac)kd = d, where k = i− j. Suppose S is zero-sum
free. Let p = acd + (ac)2d + (ac)3d + ... + (ac)kd. Then since S is zero-sum
free, p 6= 0. Therefore, pac = p. Then by associativity and commutativity
of the ternary multiplication, we have p(acx)a = (pac)xa = pxa. By MC,
we get acx = x for all x ∈ S, which is a contradiction, since (a, c) is not the
identity of S. Consequently, S is not zero-sum free. Therefore, by Theorem
3.18, S is a ternary field.

Proposition 3.20 . Every finite commutative ternary semiring S, with
|S∗| ≥ 2, which is MC is a ternary field.

Proof. By Theorem 3.17, S is a ternary semifield. Since S is finite, the
proof of the theorem follows from Theorem 3.19.

4. Remarks on maximal ideals of the ternary semiring Z−0

In this section we recall some results prowed in [3] and [4], and add a few new
ones concerning maximal ideals. Through out this section Z−0 denotes the
set of all negative integers with zero and Z+

0 denotes the set of all positive
integers with zero.

For a subset I of Z−0 we define a subset I∗ of Z+
0 as follows : I∗ = {n ∈

Z+
0 | − n ∈ I}. Then we have:

Lemma 4.1 ( see [3]).

(i) I is an ideal (a k-ideal) of Z−0 if and only if I∗ is an ideal (a k-ideal,
resp.) of Z+

0 .

(ii) I = (−n)Z−0 Z−0 if and only if I∗ = nZ+
0 .

(iii) Let I(Z−0 ) denote the set of all ideals of Z−0 and I∗(Z+
0 ) denote the

set of all ideals of Z+
0 . Then there exists an order-preserving bijective

correspondence I ↔ I∗ from I(Z−0 ) to I∗(Z+
0 ).

(iv) (see [3] and [4]) I is a prime (semiprime) ideal of Z−0 if and only if
I∗ is a prime (semiprime, resp.) ideal of Z+

0 .
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From these results, we have immediately.

Corollary 4.2 . I is a maximal ideal (k-ideal) of Z−0 if and only if I∗ is a
maximal ideal (k-ideal, resp.) of Z+

0 .

Remark (see [3]). Not all ideals of the ternary semiring Z−0 are of the form
(−n)Z−0 Z−0 , since every ideal of the semiring Z+

0 is not of the form nZ+
0 ([6],

Example 8.3 (a), p. 77).
But since all k-ideals of the semiring Z+

0 are of the form nZ+
0 for n ∈ Z+

0

([5], Example 6.6, p. 66; [6], Corollary 8.10, p. 82), we have the following
result:

Proposition 4.3 (see [3]). All k-ideals of the ternary semiring Z−0 are of
the form (−n)Z−0 Z−0 and hence Z−0 is a principal k-ideal ternary semiring.

Remark. In [3], we have proved that the prime k-ideals of the ternary
semiring Z−0 are of the form (−p)Z−0 Z−0 , where p is a positive prime. In [4],
we have proved that the semiprime k-ideals of the ternary semiring Z−0 are
of the form (−n)Z−0 Z−0 , where n is a square free positive integer.

In [11], Sen and Adhikari proved that all maximal k-ideals of the semir-
ing Z+

0 are of the form pZ+
0 , where p is a positive prime. But none of

the maximal k-ideals pZ+
0 of Z+

0 is a maximal ideal of Z+
0 , since each ideal

A∗ = pZ+
0 is properly contained in the proper ideal B∗ = {b ∈ Z+

0 : b ≥ p}
of Z+

0 .
Now we have the following result regarding the maximal k-ideals of the

ternary semiring Z−0 :

Proposition 4.4 . All maximal k-ideals of the ternary semiring Z−0 are of
the form (−p)Z−0 Z−0 , where p is a positive prime. But none of the maximal
k-ideals (−p)Z−0 Z−0 of Z−0 is a maximal ideal of Z−0 , since each ideal A =
(−p)Z−0 Z−0 is properly contained in the proper ideal B = {b ∈ Z−0 : b ≤
(−p)}.

Remark. In the ternary semiring Z−0 , both the prime k-ideals and the
maximal k-ideals are of the form (−p)Z−0 Z−0 , where p is a positive prime.
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