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Palacký University of Olomouc

Tomkova 40; 779 00 Olomouc, Czech Republic
e-mail:chajda@inf.upol.cz

Abstract

We present a groupoid which can be converted into a Boolean al-
gebra with respect to term operations. Also conversely, every Boolean
algebra can be reached in this way.
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There are several characterizations of Boolean algebras by means of algebras
having various similarity types. Some of such characterizations are based
on groupoids (with constants). We can mention that J. Dudek in [3] de-
scribed some classes of (commutative) groupoids by number sequences of
distinct term operations (called there polynomials). Our starting point will
be the characterization of semi-boolean algebras done by J.C. Abbott in
[1]. His characterization is using a binary operation which is an algebraic
counterpart of the logic propositional connective ”implication”. Although
this characterization is simple, the axiom of exchange:

x ◦ (y ◦ z) = y ◦ (x ◦ z)

can be difficult to verify and also its interpretation is not immediately clear.
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We are going to substitute it by a weaker form

x ◦ (y ◦ 0) = y ◦ (x ◦ 0)

(where 0 is a constant) which is formulated in two variables only and hence
easily to check in groupoids; moreover, its interpretation is almost evident
because it is in fact the contraposition law

x ⇒ y iff ¬y ⇒ ¬x

whenever ”◦” is interpret as the implication. Of course, it works only if the
list of axioms is completed by one more axiom concerning the antitony of
the right multiplication.

On the other hand, our axioms (1)–(3) (see below) can be used also for
ortholattices when the mentioned weakened exchange axiom is deleted.

A mapping f of a set A 6= ∅ onto itself is called an involution if
f(f(x)) = x. Let (A,≤) be an ordered set. A mapping f of A into it-
self is called antitone if x ≤ y implies f(y) ≤ f(x).

The following result is a folklore in Lattice Theory (see, e.g., [2]).

Proposition. Let L = (L,∨,∧) be a lattice and ≤ its induced order and let
the mapping x 7→ x◦ be an antitone involution on (L,≤). Then this mapping
is a dualautomorphism of L, i.e., the so-called De Morgan laws

(x ∨ y)◦ = x◦ ∧ y◦ and (x ∧ y)◦ = x◦ ∨ y◦

are satisfied.

Remark that the dualautomorphism is also often called the antiauto-
morphism in other papers.

From now on, we will study an algebra A = (A, ◦, 0) of type (2, 0)
satisfying various axioms. Of course, A has an algebraic constant 0 ◦ 0
which will be denoted by 1 in the whole paper.

Lemma 1. Let A = (A, ◦, 0) satisfy the axioms

(1) x ◦ 1 = 1, 1 ◦ x = x, 0 ◦ x = 1;

(2) (x ◦ y) ◦ y = (y ◦ x) ◦ x;

(3) (((x ◦ y) ◦ y) ◦ z) ◦ (x ◦ z) = 1.
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Then A satisfies also x ◦x = 1. Define a binary relation ≤ on A as follows:

(∗) x ≤ y if and only if x ◦ y = 1.

Then ≤ is an order on A and 0 ≤ x ≤ 1 for each x ∈ A.

Proof. We can easily compute by (1) and (2):

x ◦ x = (1 ◦ x) ◦ x = (x ◦ 1) ◦ 1 = 1.

Hence, ≤ is reflexive. Suppose x ≤ y and y ≤ x. Then x ◦ y = 1 and
y ◦ x = 1, thus

x = 1 ◦ x = (y ◦ x) ◦ x = (x ◦ y) ◦ y = 1 ◦ y = y

proving antisymmetry of ≤.
Suppose x ≤ y and y ≤ z. Then x ◦ y = 1 and y ◦ z = 1. We can

substitute these in (3) to obtain x ◦ z = 1 thus x ≤ z. Hence, ≤ is also
transitive, i.e. it is an order on A. Applying (1), we conclude 0 ≤ x, x ≤ 1
for each x ∈ A.

The order ≤ involved by (?) of Lemma 1 will be called the induced order of
A = (A, ◦, 0).

Lemma 2. Let A = (A, ◦, 0) be an algebra satisfying (1),(2),(3) and ≤ be
its induced order. Then

x ≤ y implies y ◦ z ≤ x ◦ z (antitonity).

Proof. Suppose x ≤ y. Then x ◦ y = 1 and, substituting this into (3), we
get (y ◦ z) ◦ (x ◦ z) = 1, and thus, y ◦ z ≤ x ◦ z.

Remark. In accordance with Lemma 2, the identity (3) is in fact the
antitonity.

Theorem 1. Let A = (A, ◦, 0) satisfy (1),(2),(3) and ≤ be its induced
order. Then (A;≤) is a bounded lattice where for each p ∈ A the map-
ping x 7→ x ◦ p is an antitone involution of the interval [p, 1] onto itself.
The lattice join is the term operation x ∨ y = (x ◦ y) ◦ y. If, moreover, A
satisfies
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(4) ((x ◦ 0) ◦ x) ◦ x = 1,

then (A,≤) is an ortholattice where x ◦ 0 is an orthocomplement of x ∈ A.

Proof. By Lemma 1 and Lemma 2, y ≤ 1 and hence x = 1 ◦ x ≤ y ◦ x, i.e.
A satisfies

(∗∗) x ◦ (y ◦ x) = 1.

Let a, b ∈ A. Then by (2) we have

a ◦ ((a ◦ b) ◦ b) = a ◦ ((b ◦ a) ◦ a) = 1, i.e. a ≤ (a ◦ b) ◦ b,

b ◦ ((a ◦ b) ◦ b) = 1, i.e. b ≤ (a ◦ b) ◦ b,

thus (a◦ b)◦ b is a common upper bound of a, b. Suppose a ≤ c, b ≤ c. Then
b ◦ c = 1 and, by Lemma 2, c ◦ b ≤ a ◦ b, and hence (a ◦ b) ◦ b ≤ (c ◦ b) ◦ b =
(b ◦ c) ◦ c = 1 ◦ c = c. Thus, (a ◦ b) ◦ b is the least common upper bound of
a, b, i.e. a ∨ b = (a ◦ b) ◦ b.

Let p ∈ A and x ∈ [p, 1]. Then p ≤ x and (x ◦ p) ◦ p = x ∨ p = x,
i.e. the mapping x 7→ x ◦ p is an involution on [p, 1]. Suppose x, y ∈ [p, 1],
x ≤ y. By Lemma 2, we have y ◦ p ≤ x ◦ p thus the involution is antitone.
Consider p = 0, the least element of (A,≤). Then the mapping x 7→ x ◦ 0 is
an antitone involution on (A,≤), and by the Proposition,

x ∧ y = ((x ◦ 0) ∨ (y ◦ 0)) ◦ 0.

Thus, (A,≤) is a bounded lattice.
If A satisfies also (4), then (x ◦ 0)∨ x = ((x ◦ 0) ◦ x) ◦ x = 1 and, due to

De Morgan law, (x ◦ 0) ∧ x = 0, i.e. x ◦ 0 is a complement of x. By Lemma
2, x ≤ y implies y ◦ 0 ≤ x ◦ 0, and thus, x ◦ 0 is an orthocomplement of x
and (A,≤) is an ortholattice.

Corollary 1. Let A = (A, ◦, 0) satisfy (1),(2),(3) and ≤ be its induced
order. Then

(x ∨ y) ◦ y = x ◦ y,

i.e. A satisfies the identity ((x ◦ y) ◦ y) ◦ y = x ◦ y.
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Proof. By (∗∗), x ◦ y ≥ y thus x ◦ y ∈ [y, 1] and, by Theorem 1,
((x ◦ y) ◦ y) ◦ y = x ◦ y since the mapping a 7→ a ◦ y (for a ∈ [y, 1]) is an
involution. However, (x◦y)◦y = x∨y and thus, we conclude (x∨y)◦y = x◦y.

Theorem 2. Let A = (A, ◦, 0) satisfy (1),(2),(3) and

(5) x ◦ (y ◦ 0) = y ◦ (x ◦ 0).

Moreover, let ≤ be the induced order. Then (A,≤) is a distributive lattice.

Proof. By Theorem 1, (A,≤) is a bounded lattice where for each p ∈ A,
the mapping x 7→ x ◦ p is an antitone involution on the sublattice [p, 1].
Suppose that A satisfies (1),(2),(3),(5) and (A,≤) is not distributive. Then
it contains a sublattice isomorphic to

r r

r

r

r

¡
¡

¡
¡

@
@

@
@

@
@

@
@

¡
¡

¡
¡

r ts

p

q

r
r

r
r

r

¡
¡

¡
¡

@
@

@
@¡

¡

@
@ t

r

s

p

q

or

Consider the interval [p, 1]. The antitone involution x 7→ x◦p is a dualauto-
morphism ( or, in another terminology, an antiautomorphism) of [p, 1] thus
(A,≤) contains also the sublattice
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We can apply the involution x 7→ x◦0 to show that (A,≤) contains also the
sublattice
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where y = (q ◦ p) ◦ 0, a = (r ◦ p) ◦ 0, b = (s ◦ p) ◦ 0, c = (t ◦ p) ◦ 0.

Suppose (A,≤) contains M3. Then, by Corollary 1, (a ◦ 0) ◦ (c ◦ 0) =
((a ◦ 0) ∨ (c ◦ 0)) ◦ (c ◦ 0) = ((r ◦ p) ∨ (t ◦ p)) ◦ (c ◦ 0) = 1 ◦ (c ◦ 0) = c ◦ 0,
c ◦ ((a ◦ 0) ◦ 0) = c ◦ a = (c∨ a) ◦ a = y ◦ a. By (5), we have (a ◦ 0) ◦ (c ◦ 0) =
c◦((a◦0)◦0) thus c◦0 = y◦a. Interchanging b and c, we obtain analogously
b◦0 = y◦a, thus b◦0 = c◦0, i.e. b = (b◦0)◦0 = (c◦0)◦0 = c, a contradiction.

Suppose (A,≤) contains N5. By Corollary 1, we compute
(b◦0)◦(a◦0) = ((b◦0)∨(a◦0))◦(a◦0) = ((s◦p)∨(r◦p))◦(a◦0) = 1◦(a◦0) = a◦0
and a ◦ ((b ◦ 0) ◦ 0) = a ◦ b = (a ∨ b) ◦ b = y ◦ b.

Analogously, we obtain (b ◦ 0) ◦ (c ◦ 0) = c ◦ 0 and c ◦ ((b ◦ 0) ◦ 0) = y ◦ b.
Applying (5), we conclude

a ◦ 0 = y ◦ b = c ◦ 0

whence a = (a ◦ 0) ◦ 0 = (c ◦ 0) ◦ 0 = c, a contradiction again. Hence, the
lattice (A,≤) is distributive.

Corollary 2. Let A = (A, ◦, 0) satisfy (1)–(5) and ≤ be its induced order.
Then (A,≤) is a Boolean algebra, where

1 = 0 ◦ 0,

x ∨ y = (x ◦ y) ◦ y,

x′ = x ◦ 0,

x ∧ y = (x′ ∨ y′)′.
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Proof. By Theorem 1, (A,≤) is an ortholattice, by Theorem 2, it is dis-
tributive. Together, (A,≤) is a Boolean algebra. The expressions for ∨, ∧
and the complementation follow by Theorem 1 and the De Morgan law.

Now, we are going to prove the converse.

Theorem 3. Let B = (B,∨,∧,′ , 0, 1) be a Boolean algebra. Define a term
operation ◦ as follows

x ◦ y = x′ ∨ y.

Then A(B) = (B, ◦, 0) is an algebra satisfying te identities (1)–(5).

Proof.

(1): x ◦ 1 = x′ ∨ 1 = 1,

1 ◦ x = 1′ ∨ x = 0 ∨ x = x,

0 ◦ x = 0′ ∨ x = 1 ∨ x = 1.

(2): (x ◦ y) ◦ y = (x′ ∨ y)′ ∨ y = (x ∧ y′) ∨ y = x ∨ y.

Analogously, (y ◦ x) ◦ x = y ∨ x = x ∨ y.

(3): By (2), we have (x ◦ y) ◦ y = x ∨ y, thus (3) can be rewritten as

((x ∨ y) ◦ z) ◦ (x ◦ z) = 1.

To prove this, we compute (x ∨ y) ◦ z = (x ∨ y)′ ∨ z, x ◦ z = x′ ∨ z, thus
((x ∨ y) ◦ z) ◦ (x ◦ z) = ((x ∨ y)′ ∨ z)′ ∨ (x′ ∨ z) = ((x ∨ y) ∧ z′) ∨ (x′ ∨ z) =
(x ∨ y ∨ x′ ∨ z) ∧ (z′ ∨ x′ ∨ z) = 1.

(4): ((x ◦ 0) ◦ x) ◦ x = (x ◦ 0) ∨ x = x′ ∨ x = 1.

(5): x ◦ (y ◦ 0) = x ◦ y′ = x′ ∨ y′ = y′ ∨ x′ = y ◦ x′ = y ◦ (x ◦ 0).
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