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Abstract

The article considers a problem from Trokhimenko paper [13] con-
cerning the study of abstract properties of commutations of opera-
tions and their connection with the Menger and Mann superpositions.
Namely, abstract characterizations of some classes of operation alge-
bras, whose signature consists of arbitrary families of commutations
of operations, Menger and Mann superpositions and their various con-
nections are found. Some unsolved problems are given at the end of
the article.
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1. Introduction

Let Γn(Q) denote the set of all operations of the arity n + 1 defined on
an arbitrary fixed set Q. Let σ be a substitution (permutation) on the set
{0, . . . , n}, and let f be an arbitrary operation from Γn(Q). Denote by σf
an (n + 1)-ary operation determined by the equality∗

∗the sign := means “the left side is equal to the right one by the definition”.
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(σf)(x0, . . . , xn) := f(xσ0, . . . , xσn)(1)

for all x0, . . . , xn ∈ Q. The operation σf is said to be a commutation
or, more precisely, the σ-commutation of the operation f . It is called the
principal parastrophe of f in the quasigroup theory.

It is easy to see that every substitution σ of the set {0, . . . , n} determines
a unary operation on Γn(Q), which we will denote by the same symbol σ.
Different substitutions determine different operations. An algebra (Φ;U),
where Φ ⊆ Γn(Q) and U is a subset of the symmetrical group Sn+1, is said
to be a unar of commutations of (n+1)-ary operations or an operation com-
mutation unar. K. Menger (in [10]) introduced the notion of superposition
on the set Γn(Q):

(f [f0, . . . , fn]) (a0, . . . , an) := f (f0(a0, . . . , an), . . . , fn(a0, . . . , an))(2)

for all a0, . . . , an ∈ Q Some authors (see, for instance, [11]) call it Menger
superposition and the corresponding algebras (Φ;O) and (Φ;O, U), where
Φ ⊆ Γn(Q), U ⊆ Sn+1 and

O(f, f0, . . . , fn) := f [f0, . . . , fn],

are called Menger algebra and extended Menger algebra of (n + 1)-ary oper-
ations respectively. The abstract class of all Menger algebras of (n + 1)-ary
operations is described by the identity

(
x[y0, . . . , yn]

)
[z0, . . . , zn] = x

[
y0[z0, . . . , zn], . . . , yn[z0, . . . , zn]

]
,(3)

the so-called superassociativity ([11]).
A pair (M ; f) is called an n-ary groupoid, if M is a set and f is an n-ary

operation defined on the set M . A superassociative (n + 1)-ary groupoid is
called a Menger algebra of the rank n.

Selectors or projections play a special role in the theory of operations.
In most cases they are denoted by e0, . . . , en and are defined as follows

(4) ei(a0, . . . , ai−1, ai, ai+1, . . . , an) := ai (i = 0, . . . , n),

for all aj ∈ Q.
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An abstract analogue of the selectors are the elements e0, . . . , en of a Menger
algebra of the rank n + 1 such that

x[e0, . . . , en] = x, ei[x0, . . . , xn] = xi, i = 0, . . . , n,(5)

for all elements x, x0, . . . , xn of the Menger algebra.
They also are called selectors, and Menger algebras having a full collec-
tion of selectors are called unitary. If a unitary Menger algebra has unary
operations, then it will be called extended.

Consider binary superpositions of (n + 1)-ary operations ⊕
0
, ⊕

1
, . . . , ⊕

n
,

which many authors used in their investigations, in particular Mann (see
[9]), V.D. Belousov (see [1]–[3]) and many other authors (some review of
such works can be found in [6], [7]). This superpositions are defined by the
equalities

(6)
(

f ⊕
i

h

)
(a0, . . . , an) := f(a0, . . . , ai−1, h(a0, . . . , an), ai+1, . . . , an),

i = 0, . . . , n.

Sometimes they are called Mann superpositions, more precisely ⊕
i

is called

the i-th (Mann) superposition. Each of the operations ⊕
i
, i = 0, 1, . . . , n,

is associative. So, an algebra (Φ;⊕
0
,⊕

1
, . . . ,⊕

n
), where Φ ⊆ Γn(Q), will be

called multisemigroup of (n+1)-ary operations. When n = 1, it is known as
a bisemigroup, and when n = 0, the algebra (Γ0(Q);⊕

0
) coincides with the

semigroup of all transformations of the set Q.
It is easy to prove that the binary superpositions and selectors are

connected by the following equalities:

f ⊕
i

ei = f, ej ⊕
i

g =





g, if j = i;

ej , if j 6= i.
(7)

K.A. Zaretsky (in [15]) found an abstract characterization of the class of all
bisemigroups consisting of all binary operations of a set. T. Yakubov (in
[14]) generalized the mentioned result for the n-ary case. The main idea of
their method is in using all constant operations.
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V.S. Trokhimenko (in [13]) found an abstract characterizations of the class
of all Menger bisemigroups and Menger semigroups of binary operations
and some of their subclasses. He also emphasized that the axiomatic finding
problem of the class of all multisemigroups was still open. The other prob-
lem, stated in [13], deals with the finding of main abstract relations between
the commutation of operations and different kinds of superpositions.

The other method for solving these problems is proposed in [12]. It
permits to find abstract characterizations of classes of multisemigroups of
operations; of Menger multisemigroups of operations and some of their
special subclasses.

Here we suggest the improved method and solve the other Trokhi-
menko’s problems. Namely, we give main abstract properties of commu-
tation of operations and their relationships with Menger and Mann super-
positions. As a corollary we obtained the results from the article [12].

Note, that we follow the traditions in named of algebras. Namely, the
algebras of an abstract class of operations are called by the same way but
without the word “operations”. For example, “a Menger multisemigroup
of (n + 1)-ary operations” means an algebra, which consists of (n + 1)-ary
operations defined on a set; and “Menger multisemigroup” means an algebra
belonging to the abstract class of all Menger multisemigroups of (n+1)-ary
operations, i.e. the algebra is isomorphic to a Menger multisemigroup of
operations defined on a set.

Everywhere below the expression aj
i denotes the sequence ai, . . . , aj ,

when i 6 j, and the empty sequence, when i > j.

1. Unars of commutations

An abstract characterization of the class of all unars of operation commu-
tations is given in the following fact.

Theorem 1 . A unar is isomorphic to a unar of commutations of
(n + 1)-ary operations if and only if its signature generates a group em-
bedding in a symmetrical group of the degree n + 1.

Proof. One part of the theorem follows from (1) immediately.
Conversely, let a unar (G; V ) satisfy the conditions of the theorem, i.e.

the group 〈V 〉 generated by the set V of transformations of G is isomor-
phic to a subgroup U of the symmetrical group of the set {0, 1,. . . , n}, and
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let ϕ denotes an isomorphism from 〈V 〉 onto U and ε denotes the identical
transformation. Since the groups 〈V 〉 and U are isomorphic, 〈V 〉 is a finite
group of substitutions of the set G, and therefore 〈V 〉 determines an action
on G, i.e. the relationships

εg = g, σ(τg) = (στ)g(8)

hold for all elements g ∈ G and σ, τ ∈ 〈V 〉.
Let e0, . . . , en, c be pairwise different elements not belonging to the set

G and let
G0 := G ∪ {e0, . . . , en, c}.

To every element g ∈ G we assign an (n+1)-ary operation P (g) determined
on the set G0:

P (g)(x0, . . . , xn) :=





σg, if x0 = eϕ(σ)0, . . . , xn = eϕ(σ)n;

c, otherwise.
(9)

At first, we prove that the mapping P is an isomorphism between the alge-
bras (G; 〈V 〉) and (P (G);U).

If P (g1) = P (g2), then this in particular means that

P (g1)(e0, . . . , en) = P (g2)(e0, . . . , en),

i.e.
P (g1)

(
eϕ(ε)0, . . . , eϕ(ε)n

)
= P (g2)

(
eϕ(ε)0, . . . , eϕ(ε)n

)
.

According to (9), we obtain εg1 = εg2, therefore g1 = g2. Hence, the
mapping P is injective. It is surjective too, because P (G) is the set of all
images under the mapping P .

Now we will prove the homomorphism property of P , i.e. we will exam-
ine the equality

P (τg) = ϕ(τ)P (g),(10)

for all τ ∈ 〈V 〉. Indeed,

(ϕ(τ)P (g))
(
eϕ(σ)0, . . . , eϕ(σ)n

) (1)
= P (g)

(
eϕ(σ)ϕ(τ)0, . . . , eϕ(σ)ϕ(τ)n

)
=

= P (g)
(
eϕ(στ)0, . . . , eϕ(στ)n

) (9)
= (στ)g =

(8)
= σ(τg)

(9)
= P (τg)

(
eϕ(σ)0, . . . , eϕ(σ)n

)
.
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At last, let a tuple (x0, . . . , xn) does not fall under the considered cases,
so the tuple (xϕ(τ)0, . . . , xϕ(τ)n) has the same property, therefore

(ϕ(τ)P (g))(x0, . . . , xn)
(1)
= P (g)(xϕ(τ)0, . . . , xϕ(τ)n)

(9)
= c

(9)
= P (τg)(x0, . . . , xn).

The established isomorphism between the algebras (G; 〈V 〉) and (P (G);U)
determines an isomorphism between the algebras (G;V ) and (P (G);ϕ(V )),
since ϕ(V ) ⊂ U .

Note. Theorem 1 implies that the assigning of the corresponding commu-
tation of operations to a permutation of {0, 1, . . . , n} is an one-valued
mapping and it is an abstract property. An image of this mapping will be
denoted by the same symbol. This will not lead to misunderstanding, since
the unary operations and the corresponding permutations are determined
on different sets.

2. Menger superpositions and commutations

We find abstract connections between Menger superpositions and the com-
mutations.

Theorem 2 . An algebra (G;O, V ) is isomorphic to an extended Menger
algebra of (n + 1)-ary operations if and only if the operation O is superas-
sociative, the conditions of Theorem 1 are true in (G; V ) and the identities

(σx)[x0, . . . , xn] = x[xσ0, . . . , xσn],(11)

and

σ(x[x0, . . . , xn]) = x[σx0, . . . , σxn](12)

are valid for any σ ∈ V and for all x, x0,. . . , xn ∈ G.

Proof. Let (Φ;O, U) be an arbitrary extended Menger algebra of (n + 1)-
ary operations of a set Q. Suppose that f , f0, . . . , fn are operations from
the set Φ and σ ∈ U . Then for any elements a0, . . . , an ∈ Q we have:
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(σf)[f0, . . . , fn](an
0 )

(2)
= (σf)

(
f0(an

0 ), . . . , fn(an
0 )

)
=

(1)
= f

(
fσ0(an

0 ), . . . , fσn(an
0 )

)
=

(2)
= f [fσ0, . . . , fσn](an

0 ).

It means the validity of the identity (11) in (Φ;O, U). Next,

σ(f [f0, . . . , fn])(an
0 )

(1)
= f [f0, . . . , fn](aσ0, . . . , aσn) =

(2)
= f

(
f0(aσ0, . . . , aσn), . . . , fn(aσ0, . . . , aσn)

)
=

(1)
= f

(
σf0(an

0 ), . . . , σfn(an
0 )

) (2)
= f [σf0, . . . , σfn](an

0 ).

This is a proof of the identity (12). The truth of superassociativity is a
defining property of a Menger algebra of operations.

Vice versa, let an algebra (G;O, V ) satisfy the conditions of the theorem.
Henceforth, we will follow the notations of Theorem 1.

For every g ∈ G we determine an (n + 1)-ary operation P (g) on the set
G0:

P (g)(x0, . . . , xn) :=





g[x0, . . . , xn], if x0, . . . , xn ∈ G; (i)

σg, if x0 = eσ0, . . . , xn = eσn; (ii)

c, otherwise. (iii)
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Now we will prove the equality (10). The proofs of the cases (ii) and (iii)
repeat the corresponding reasoning from the proof of Theorem 1, therefore
we shall only consider the case (i):

τP (g)(x0, . . . , xn)
(1)
= P (g)(xτ0, . . . , xτn) =

(i)
= g[xτ0, . . . , xτn]

(11)
= (τg)[x0, . . . , xn] =

(i)
= P (τg)(x0, . . . , xn).

Hence, (10) holds for an arbitrary τ ∈ 〈V 〉.
To prove that the mapping P has the homomorphism property with re-

spect to the operation O, we have to consider the correctness of the equation

P (g[g0, . . . , gn]) = P (g)[P (g0), . . . , P (gn)](13)

for arbitrary g, g0, ...gn ∈ G.

According to the definition of P (g), we have to consider the three cases.

(α) Let x0, . . . , xn be arbitrary elements from the set G, then:

P (g[g0, . . . , gn])(x0, . . . , xn)
(i)
=

(
g[g0, . . . , gn]

)
[x0, . . . , xn] =

(3)
= g

[
g0[x0, . . . , xn], . . . , gn[x0, . . . , xn]

]
=

(i)
= P (g)

(
g0[x0, . . . , xn], . . . , gn[x0, . . . , xn]

)
=

(i)
= P (g)

(
P (g0)(xn

0 ), . . . , P (gn)(xn
0 )

)
=

(2)
= P (g)

[
P (g0), . . . , P (gn)

]
(xn

0 ).
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(β) Let x0 = eτ0, . . . , xn = eτn. Then

P (g[g0, . . . , gn]) (eτ0, . . . , eτn)
(ii)
= τ(g[g0, . . . , gn]) =

(12)
= g[τg0, . . . , τgn]

(i)
= P (g)(τg0, . . . , τgn) =

(ii)
= P (g) (P (g0) (eτ0, . . . , eτn) , . . . , P (gn) (eτ0, . . . , eτn)) =

(2)
= P (g)[P (g0), . . . , P (gn)] (eτ0, . . . , eτn) .

(γ) Otherwise, we obtain

P (g[g0, . . . , gn])(xn
0 )

(iii)
= c

(iii)
= P (g)(c, . . . , c) =

(iii)
= P (g)

(
P (g0)(xn

0 ), . . . , P (gn)(xn
0 )

)
=

(2)
= P (g)

[
P (g0), . . . , P (gn)

]
(xn

0 ).

Hence, the equality

P (g[g0, . . . , gn])(x0, . . . , xn) = P (g)
[
P (g0), . . . , P (gn)

]
(x0, . . . , xn)

holds for all elements x0, . . . , xn from G0. It means, that equation (13) is
true.

Therefore, the mapping P is a homomorphism from the algebra
(G;O, 〈V 〉) onto the constructed operation algebra (P (G);O, U). The
equality P (g0) = P (g1) implies

P (g0) (e0, . . . , en) = P (g1) (e0, . . . , en) ,

i.e. g0 = g1. Therefore, the mapping P is injective. The surjectivity follows
from the definition of the set P (G).
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Thus, the mapping P determines an isomorphism between the algebras
(G;O, 〈V 〉) and (P (G);O, U). It is easy to see that it is an isomorphism
between the algebras (G;O, V ) and (P (G);O, ϕ(V )) too, where ϕ denotes
an isomorphism of the groups 〈V 〉 and U (see the proof of Theorem 1).

By setting V = {ε} in this theorem, we obtain the correctness of the follow-
ing well known statement.

Theorem 3 (see [11]). An (n + 1)-ary groupoid is isomorphic to a Menger
algebra of n-ary operations rank n if and only if it is superassociative.

An abstract characterization of the class of extended unitary Menger
algebras of operations is given as follows:

Theorem 4 . A universal algebra is isomorphic to an extended unitary
Menger algebra of (n + 1)-ary operations if and only if the conditions of
Theorem 2 and the identities (5) hold.

Proof. Standard verification.

Corollary 5 (see [11]). A universal algebra is isomorphic to a unitary
Menger algebra of operations if and only if it is a unitary Menger algebra.

3. Binary algebras

Let (G; ◦
0
, . . . , ◦

n
) be an arbitrary binary algebra, i.e. an algebra, whose

signature consists of binary operations only. Let us introduce the following
agreements:

I. To short writings we put

(14) x
is◦
i0

ys
0 := x ◦

i0
y0 ◦

i1
y1 ◦

i2
. . . ◦

is
ys :=

(
. . .

((
x ◦

i0
y0

)
◦
i1

y1

)
◦
i2

. . .

)
◦
is

ys.

II. Consider an algebra (G; ◦
0
, . . . , ◦

n
, V ), where (G; ◦

0
, . . . , ◦

n
) is a binary

algebra and V is a set of unary operations defined on G. We define partial
operations •

0
, . . . , •

n
on the set G0 := G ∪ {e0, . . . , en, c}, e0, . . . , en, c 6= G,

by the condition
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x •
i
y :=





x ◦
i
y, if x, y ∈ G;

y, if x = ei;

ej , if x = ej and j 6= i;

x, if y = ei;

c, otherwise.

(15)

The elements e0, . . . , en are called selectors. Our aim does not need to
define σ(x) for x 6∈ G. It is easy to verify the property

ei
is•
i0

ys
0 =





yp •
ip+1

yp+1 •
ip+2

. . . •
is

ys, if ip = i,

but ik 6= i for all k < p;

ei, if i 6∈ {i0, . . . , is}

(16)

in the algebra (G0; •
0
, . . . , •

n
, V ). The algebra (Φ;⊕

0
,⊕

1
, . . . ,⊕

n
, U) of opera-

tions, where (Φ, U) is above and ⊕
i

are Mann superpositions, is an example

of such an algebra. The selectors are defined by the equalities (1).
Let (G0; •

0
, . . . , •

n
, V ) be an algebra as above such that the unary operations

of V are invertible.
Then, a tuple (x0, . . . , xn) of elements of this algebra is said to be

(σ, i)-labelled, i ∈ {0, 1, . . . , n}, σ ∈ V, if there exist elements y, y0, . . . , ys

and operations •
i0
, . . . , •

is
such that

xσ−1(j) =
(

ej •
i
y

)
is•
i0

ys
0(17)

for all j = 0, . . . , n. In this case the element xσ−1(i) is called labelled.
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A tuple (x0, . . . , xn) is called labelled, if there are σ and i as above such
that (x0, . . . , xn) is (σ, i)-labelled.

Note that the set of all labelled tuples is not empty. For example,
every tuple of the type (ei−1

0 , g, en
i+1), where g ∈ G, is (ε, i)-labelled, since

ej •
i
g = ej , for all j 6= i. Definition (15) implies that the tuple (e0, . . . , en)

is (ε, i)-labelled for every i = 0, . . . , n.
We also need the following statement.

Proposition 6 . For arbitrary elements of an algebra (G0; •
0
, . . . , •

n
, V ) the

next statements are true:

(a) if a tuple (x0, . . . , xn) is (σ, i)-labelled (see (17)), then the tuple (xτ(0),
. . . , xτ(n)) is (στ, i)-labelled;

(b) if a tuple (x0, . . . , xn) is not labelled, then for arbitrary τ the tuple
(xτ0, . . . , xτn) will not be labelled too;

(c) if a tuple (x0, . . . , xn) is (σ, i)-labelled (see (17)), then the tuple
(

x0, . . . , xσ−1(m)−1,

(
g •

i
y

)
is•
i0

ys
0, xσ−1(m)+1, . . . , xn

)

is (σ,m)-labelled, for any m = 0, 1,. . . , n.

Proof. (a): Rename the elements in the tuple (xτ0, . . . , xτn) according to
the order of ascending its indices:

(y0, . . . , yn) = (xτ0, . . . , xτn),

i.e. put yk := xτk for all k = 0, . . . , n. Then yτ−1(k) = xk. Set here
k := σ−1(j), hence

yτ−1σ−1(j) = xσ−1(j), j = 0, 1, . . . , n.

Comparing with (17), we obtain

y(στ)−1(j) =
(

ej •
i
y

)
is•
i0

ys
0

for all j = 0, . . . , n, i.e. the tuple (y0, . . . , yn) is (στ, i)-labelled.
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(b): Suppose that a tuple (xτ0, . . . , xτn) is (σ, i)-labelled for some
parameters σ and i, then, by (a), the tuple (x0, . . . , xn) is on (στ−1, i)-la-
belled. This is a contradiction to the assumption.

(c): If j 6= m, then

((
ej •

m
g
)
•
i
y

)
is•
i0

ys
0

(15)
=

(
ej •

i
y

)
is•
i0

ys
0

(17)
= xσ−1(j).

If j = m, then
((

ej •
m

g
)
•
i
y

)
is•
i0

ys
0

(15)
=

(
g •

i
y

)
is•
i0

ys
0

(17)
= xσ−1(j).

Hence, we have obtained an element, which is on the σ−1(m)-th place in the
tuple (x0, . . . , xn).

To find an abstract characterization of the class of extended multisemigroups
of operations we need the following

Lemma 7 . For arbitrary operations f , h0, h1, . . . , hs ∈ Γ(Q), for an arbi-
trary sequence of nonnegative integers i0, . . . , is and for arbitrary elements
a0, . . . , an ∈ Q the equation

(
f

is⊕
i0

hs
0

)
(an

0 ) = f

(
e0

is⊕
i0

hs
0(a

n
0 ), . . . , en

is⊕
i0

hs
0(a

n
0 )

)
(18)

holds (see (14) for notations).

Proof. We prove the statement by induction in s. When s = 0, we have
(

f ⊕
i

h

)
(a0, . . . , an)

(6)
= f(a0, . . . , ai−1, h(a0, . . . , an), ai+1, . . . , an) =

(4)
= f(e0(an

0 ), . . . , ei−1(an
0 ), h(an

0 ), ei+1(an
0 ), . . . , en(an

0 )) =

(7)
= f

((
e0 ⊕

i
h

)
(an

0 ) , . . . ,

(
ei ⊕

i
h

)
(an

0 ) , . . . ,

(
en ⊕

i
h

)
(an

0 )
)

.
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Suppose the lemma is true for s, i.e. (18) holds for all operations, number
sequences and elements of the set Q occurring in the lemma.

Let ξ be an arbitrary operation from Γ(Q) and let i ∈ {0, . . . , n}. Then,
by the inductive assumption, we obtain

((
ξ ⊕

i
f

)
is⊕
i0

hs
0

)
(a0, . . . , an)

(18)
=

(
ξ ⊕

i
f

)(
e0

is⊕
i0

hs
0(a

n
0 ), . . . , en

is⊕
i0

hs
0(a

n
0 )

)
=

(6)
= ξ

(
e0

is⊕
i0

hs
0(a

n
0 ), . . . , ei−1

is⊕
i0

hs
0(a

n
0 ), f

(
e0

is⊕
i0

hs
0(a

n
0 ), . . . , en

is⊕
i0

hs
0(a

n
0 )

)
,

ei+1

is⊕
i0

hs
0(a

n
0 ), . . . , en

is⊕
i0

hs
0(a

n
0 )

)
=

(18)
= ξ

(
e0

is⊕
i0

hs
0(a

n
0 ), . . . , ei−1

is⊕
i0

hs
0(a

n
0 ), f

is⊕
i0

hs
0(a

n
0 ), ei+1

is⊕
i0

hs
0(a

n
0 ),

. . . , en

is⊕
i0

hs
0(a

n
0 )

)
=

(7)
= ξ

((
e0 ⊕

i
f

)
is⊕
i0

hs
0(a

n
0 ), . . . ,

(
ei−1 ⊕

i
f

)
is⊕
i0

hs
0(a

n
0 ),

(
ei ⊕

i
f

)
is⊕
i0

hs
0(a

n
0 ),

(
ei+1 ⊕

i
f

)
is⊕
i0

hs
0(a

n
0 ), . . . ,

(
en ⊕

i
f

)
is⊕
i0

hs
0(a

n
0 )

)
.

Hence, the equality

((
ξ ⊕

i
f

)
is⊕
i0

hs
0

)
(an

0 ) = ξ

((
e0 ⊕

i
f

is⊕
i0

hs
0

)
(an

0 ), . . . ,
(

en ⊕
i

f
is⊕
i0

hs
0

)
(an

0 )
)

holds for all elements a0, . . . , an ∈ Q. Thus, the lemma’s statement is true
for s + 1. Therefore, according to the mathematical induction theorem, the
equality (18) is valid for every nonnegative integer s.

Let Φ be a set of (n + 1)-ary operations defined on an arbitrary fixed set
Q and let Φ be closed under the Mann superpositions ⊕

0
, . . . , ⊕

n
and under
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every commutation of a set U ⊆ Sn+1. Then the algebra (Φ;⊕
0
, . . . ,⊕

n
, U)

will be called extended multisemigroup of (n+1)-ary operations. An abstract
characterization of the class of all extended multisemigroups of operations
is given in the following ststment.

Theorem 8 . An algebra (G; ◦
0
, . . . , ◦

n
, V ) is isomorphic to an extended multi-

semigroup of (n + 1)-ary operations if and only if it satisfies the conditions
of Theorem 1 as well as the following relations are true:

σ

(
x ◦

i
y

)
= σx ◦

σi
σy(19)

and

(
i=n∧

i=0

eσi
is•
i0

ys
0 = eτi

jm•
j0

zm
0

)
=⇒ (σx)

is◦
i0

ys
0 = (τx)

jm◦
j0

zm
0(20)

for all x, y0, . . . , ys, z0, . . . , zm ∈ Q and for all τ , σ ∈ V (see (16)).

Note. In (19) and (20) σx denotes the image of x under σ ∈ V , but σi
denotes the image of the number i ∈ {0, . . . , n} under the substitution σ of
the set {0, . . . , n}, which corresponds to σ ∈ V according to Theorem 1.

Proof. Let (Φ;⊕
0
, . . . ,⊕

n
, U) be an arbitrary extended multisemigroup of

(n + 1)-ary operations defined on a set Q. The truth of (19) is proved by
the following equalities:

σ

(
f ⊕

i
h

)
(a0, . . . , an)

(1)
=

(
f ⊕

i
h

)
(aσ0, . . . , aσn) =

(6)
= f(aσ0, . . . , aσ(i−1), h(aσ0, . . . , aσn), aσ(i+1), . . . , aσn) =

(1)
= (σf)(a0, . . . , aσ(i)−1, σh(a0, . . . , an), aσ(i)+1, . . . , an) =

(6)
=

(
σf ⊕

σi
σh

)
(a0, . . . , an).
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To prove the relation (20), we define operations (•
0
),. . . , (•

n
) on the set Φ0 by

(15), where (◦
0
) = (⊕

0
),. . . , (◦

n
) = (⊕

n
), and e0,. . . , en are trivial operations

defined by (4) and c 6∈ Φ is an arbitrary symbol. We assume that

i=n∧

i=0

eσi
is•
i0

hs
0 = eτi

jm•
j0

χm
0(21)

for some operations hi, χi ∈ Φ and permutations σ, τ ∈ U . Since hi, χi ∈ Φ
and (7),

eσi
is•
i0

hs
0 = eσi

is⊕
i0

hs
0, eτi

jm•
j0

χm
0 = eτi

jm⊕
j0

χm
0

for all i=0, 1,. . . , n. So,

i=n∧

i=0

eσi

is⊕
i0

hs
0 = eτi

jm⊕
j0

χm
0(22)

and for every (n + 1)-ary operation f we obtain

(
σf

is⊕
i0

hs
0

)
(an

0 )
(18)
= σf

(
e0

is⊕
i0

hs
0(a

n
0 ), . . . , en

is⊕
i0

hs
0(a

n
0 )

)
=

(1)
= f

(
eσ0

is⊕
i0

hs
0(a

n
0 ), . . . , eσn

is⊕
i0

hs
0(a

n
0 )

)
=

(22)
= f

(
eτ0

jm⊕
j0

χm
0 (an

0 ), . . . , eτn

jm⊕
j0

χm
0 (an

0 )
)

=

(1)
= τf

(
e0

jm⊕
j0

χm
0 (an

0 ), . . . , en

jm⊕
j0

χm
0 (an

0 )
)

=

(18)
=

(
τf

jm⊕
j0

χm
0

)
(an

0 ).
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Since the elements a0, . . . , an are arbitrary, one obtains

σf
is⊕
i0

hs
0 = τf

jm⊕
j0

χm
0 .

So, the implication (20) holds in any multisemigroup of operations.

Vice versa, let an algebra (G; ◦
0
, . . . , ◦

n
, V ) satisfy the conditions of the

theorem. Henceforth, we will follow the notations of the proof of Theorem 1.
To every element g ∈ G we will assign an (n + 1)-ary operation P (g)

determined on the set G0:

P (g)(xn
0 ) :=

(23)

=





(σg) •
j
y

is•
i0

ys
0, if the tuple is (σ, j)-labelled (see (17)); (i)

c, otherwise. (ii)

To prove that P (g) is an operation for every g ∈ G, we have to establish
that for every tuple (x0, . . . , xn) the result P (g)(x0, . . . , xn) is uniquely de-
termined, i.e. it depends neither on the choice of a labelled element, nor on
its decomposition, nor on a permutation σ.

Let a tuple (x0, . . . , xn) be (σ, i)- and (τ, j)-labelled, that is

xσ−1(k) = ek •
i
y

is•
i0

ys
0, xτ−1(k) = ek •

j
z

jm•
j0

zm
0

for all k = 0, . . . , n. Replacing the indices, we obtain

n∧

k=0

eσk •
i
y

is•
i0

ys
0 = xk = eτk •

j
z

jm•
j0

zm
0 .

It means the truth of the antecedent of the implication (20), therefore the
consequent of (20) holds, i.e.

(σg) •
i
y

is•
i0

ys
0 = (τg) •

j
z

jm•
j0

zm
0 .

Thus P (g) is an operation for an arbitrary element g ∈ G.
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Now let us prove that P has the homomorphism property. According to
(23), for proving both of the equalities (10) and

P

(
g ◦

i
h

)
= P (g)⊕

i
P (h), i = 0, 1, . . . , n(24)

two cases (i) and (ii) have to be considered.
(i): Let (x0, . . . , xn) be (σ, j)-labelled (see (17)), then

P (τg)(x0, . . . , xn)
(i)
= σ(τg) •

j
y

is•
i0

ys
0

(8)
= (στg) •

j
y

is•
i0

ys
0.

Proposition 6 implies that the tuple (xτ0, . . . , xτn) is (στ, i)-labelled,
therefore

τP (g)(x0, . . . , xn)
(1)
= P (g)(xτ0, . . . , xτn)

(i)
= (στg) •

j
y

is•
i0

ys
0.

The right parts of the equalities are equal, so it implies the equality of the
left ones. Therefore, in the case (i), property (10) has been proved.

(ii): If the tuple (x0, . . . , xn) is not labelled, then, by Proposition 6, the
tuple (xτ0, . . . , xτn) is not labelled too. Therefore,

τP (g)(x0, . . . , xn)
(1)
= P (g)(xτ0, . . . , xτn)

(ii)
= c

(ii)
= P (τg)(x0, . . . , xn)

and equality (10) holds.
Let us now consider the equality (24). Let (x0, . . . , xn) be (σ, j)-labelled,

then proving the first case of (23) we have:

(
P (g)⊕

i
P (h)

)
(xn

0 )
(6)
=P (g)

(
xi−1

0 , P (h)(x0, . . . , xn), xn
i+1

)
=

(i)
=P (g)

(
x0, . . . , xi−1, σh •

j
y

is•
i0

ys
0, xi+1, . . . , xn

)
.
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According to statment (c) of Proposition 6, the tuple

(x0, . . . , xi−1, σh •
j
y

is•
i0

ys
0, xi+1, . . . , xn)

is (σ, σi)-labelled, therefore

(
P (g)⊕

i
P (h)

)
(xn

0 )
(i)
=

(
(σg) •

σ(i)
(σh)

)
•
j
y

is•
i0

ys
0 =

(15)
=

(
(σg) ◦

σ(i)
(σh)

)
•
j
y

is•
i0

ys
0

(19)
= σ

(
g ◦

i
h

)
•
j
y

is•
i0

ys
0 =

(i)
= P

(
g ◦

i
h

)
(x0, . . . , xn).

If for all σ ∈ 〈V 〉 the tuple (x0, . . . , xn) is not labelled, then, by the case (ii)
of (23), we have

(
P (g)⊕

i
P (h)

)
(x0, . . . , xn)

(6)
=P (g)(x0, . . . , xi−1, P (h)(x0, . . . , xn),xi+1, . . . , xn)=

(ii)
=P (g)(x0, . . . , xi−1, c, xi+1, . . . , xn) =

(ii)
=c

(ii)
= P

(
g ◦

i
h

)
(x0, . . . , xn).

So, the equality (24) is true and therefore, P has the homomorphism
property.

P is a surjective mapping from G on P (G), since the set P (G) is deter-
mined as a set of all images of the elements from G.

Suppose P (g) = P (h). Since the tuple (e0, . . . , en) is (ε, 0)-labelled,

P (g)(e0, . . . , en) = P (h)(e0, . . . , en)

implies g •
0

e0 = h •
0
e0, i.e. g = h. So, P is injective too.
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Thus, the mapping P is an isomorphism between the algebras
(G; ◦

0
, . . . , ◦

n
, 〈V 〉) and (P (G);⊕

0
, . . . ,⊕

n
, U). Therefore, P is an isomorphism

between the algebras (G; ◦
0
, . . . , ◦

n
, V ) and (P (G);⊕

0
, . . . ,⊕

n
, ϕ(V )), where

ϕ denotes an isomorphism of the groups 〈V 〉 and U (see the proof of
Theorem 1).

When V = {ε}, Theorem 8 implies the next statement, which gives an
abstract characterization of the class of all multisemigroups of operations.

Corollary 9 (see [12]). An algebra (G; ◦
0
, . . . , ◦

n
) with the binary operations

only is isomorphic to a multisemigroup of (n+1)-ary operations, if and only
if the following condition

(
i=n∧

i=0

ei
is•
i0

ys
0 = ei

jm•
j0

zm
0

)
=⇒ x

is◦
i0

ys
0 = x

jm◦
j0

zm
0(25)

holds for all x, y0, . . . , ys, z0, . . . , zm ∈ G (see (16)).

Note. It is easy to see that (25) implies the associativity of every binary
operation ◦

0
, . . . , ◦

n
. Indeed, if j 6= i, then

(
ej •

i
y

)
•
i
z

(15)
= ej

(15)
= ej •

i

(
y •

i
z

)

and
(

ei •
i
y

)
•
i
z

(15)
= y •

i
z

(15)
= ei •

i

(
y •

i
z

)
.

Therefore, by the formulas (25), (15) and (16) we have:

(
x ◦

i
y

)
◦
i
z = x ◦

i

(
y ◦

i
z

)
,

for any x ∈ G. It means the associativity of the operation ◦
i
, for all i = 0,

1, . . . , n. Hence, every operation of the algebra (G; ◦
0
, . . . , ◦

n
) is associative.
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4. Menger multisemigroups

An algebra (Φ;O,⊕
0
, . . . ,⊕

n
) is called a Menger multisemigroup of (n + 1)-

ary operations, if Φ ⊆ Γn(Q). An algebra (Φ;O,⊕
0
, . . . ,⊕

n
) will be called an

extended Menger multisemigroup of (n+1)-ary operations, if (Φ;O,⊕
0
, . . . ,⊕

n
)

is a Menger multisemigroup of (n + 1)-ary operations and V is a collection
of commutations.

By using (16) and Theorems 2 and 8, we have an abstract characteri-
zation of the class of all extended Menger multisemigroups of operations of
the same arity in the following theorem.

Theorem 10 . An algebra (G;O, ◦
0
, . . . , ◦

n
, V ) is isomorphic to an extended

Menger multisemigroup of (n + 1)-ary operations if and only if (G;O, V ) is
an extended Menger algebra, (G; ◦

0
, . . . , ◦

n
, V ) is an extended multisemigroup

and the following equalites are true:

(σg)
is◦
i0

ys
0 = g

[
eσ0 •

0
g

is◦
i0

ys
0, . . . , eσn •

n
g

is◦
i0

ys
0

]
,(26)

where {i0, . . . , is} = {0, . . . , n}.

Proof. The necessity of the theorem follows from Theorems 1 and 8, and
Lemma 7.

To prove its sufficiency we assign to every element g ∈ G an (n + 1)-
ary operation P (g), being determined on the set G0 (see the proof of the
previous theorem) by the equalities

P (g)(xn
0 ) :=





g[x0, . . . , xn], if x0, . . . , xn ∈ G; (i)

(σg) •
j
y

is•
i0

ys
0, if the tuple is (σ, j)-labelled; (ii)

c, otherwise. (iii)

At first we have to establish the correctness of the definition of P (g). The
independence of the result from a permutation σ, a choice of a labelled
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element and a respective decomposition may be proved in the same way as
in Theorem 8.

If a tuple (x0, . . . , xn) fulfills the conditions (i) and (ii) simultaneously,
then {i0, . . . , is}={0, 1, . . . , n} and property (26) guarantees the uniqueness
of the result.

The homomorphism property of the mapping P can be proved in the
same way as in Theorems 2 and 8 as well as its injectivity.

The next corollary follows from this theorem when V = {ε}.

Corollary 11 (see [12]). An algebra (G;O, ◦
0
, . . . , ◦

n
) is isomorphic to a

Menger multisemigroup of (n + 1)-ary operations if and only if (G;O) is
a Menger algebra, (G; •

0
, . . . , •

n
) is a multisemigroup and the relation

g
is◦
i0

ys
0 = g

[
e0 •

0
g

is◦
i0

ys
0, . . . , en •

n
g

is◦
i0

ys
0

]
(27)

holds, where {i0, . . . , is} = {0, . . . , n} (see (16), when V = {ε}).

5. Problems

Note that, in fact, the axioms (20), (25)–(27) are shorten writings of a
countable family of axioms, every of which is determined by a sequence of
nonnegative integers, namely by the indices of the binary operations.

A related recent investigation one can find in [4], [5] and [8]. We emphasize
some problems of this theory, which are still unsolved.

1 Find an abstract characterization of the class of all extended
unitary multisemigroups of operations, i.e. algebras of the type
(Φ;⊕

0
, . . . ,⊕

n
, U, e0, . . . , en) (an abstract characterization of the class

of all unitary multisemigroups of operations is unknown, too).

2 Find a description of classes of operation algebras with selected sets
of special kinds of operations such as quasigroup operations, pre-
quasigroup operations, continuous, linear, commutative operations
and others.
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3 Find an abstract characterization of the class all ordered multisemi-
groups of functions (partial operations), i.e. algebraic systems of the
type (Φ;⊕

0
, . . . ,⊕

n
,⊆), where ⊆ is an inclusion (or a partial order) of

functions.
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