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Abstract

Certain ring-like structures, so-called orthorings, are introduced
which are in a natural one-to-one correspondence with lattices with
0 every principal ideal of which is an ortholattice. This correspon-
dence generalizes the well-known bijection between Boolean rings and
Boolean algebras. It turns out that orthorings have nice congruence
and ideal properties.
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1. Introduction

The well-known natural bijective correspondence between Boolean algebras
and Boolean rings is widely used in applications, see [1] for details. This
correspondence was generalized in different ways thus giving rise to natural
connections between certain lattice structures on the one hand and certain
ring-like structures on the other hand. On the lattice-theoretical side the
following structures were considered: orthomodular lattices ([8] and [18]),
ortholattices ([2]), bounded lattices with an involutory antiautomorphism
([9], [10], [11], [12], [13] and [14]), pseudocomplemented semilattices ([5])
and MV-algebras ([6]). The corresponding ring-like structures were called
orthomodular Boolean quasirings or orhomodular pseudorings, orthopseu-
dorings, orthopseudosemirings, Boolean quasirings and pseudorings, respec-
tively. (No name was assigned to the ring-like structures induced by pseu-
docomplemented semilattices.) In [3] the ring-like structures introduced in
[2] and [9], respectively, are related to each other. However, each one of the
derived ring-like structures considered so far in this context was endowed
with a constant 1 which plays a role similar to the unit element in rings. On
the other hand, starting with so-called generalized Boolean algebras, one
can derive Boolean rings which need not have a unit element (see [1]). A
similar approach was used in [7], where so-called generalized orthomodular
lattices (introduced by M.F. Janowitz in [17], see also [16]) were considered.
Our aim is to investigate ring-like structures (so-called orthorings) which
correspond to lattices with 0 such that every principal lattice ideal is an or-
tholattice. It should be pointed out that though these lattices do not form
a variety, the term equivalent orthorings form a variety and hence allow
the application of universal algebraic methods and results. Moreover, we
are going to show that – in spite of their generality – orthorings have nice
properties.

We recall that an ortholattice is an algebra (L;∨,∧,′ , 0, 1) of type
(2, 2, 1, 0, 0) such that (L;∨,∧, 0, 1) is a bounded lattice and (x′)′ = x,
(x ∨ y)′ = x′ ∧ y′, (x ∧ y)′ = x′ ∨ y′, x ∨ x′ = 1 and x ∧ x′ = 0 for all
x, y ∈ L.

2. Orthorings

First we introduce the concept of a generalized ortholattice and distinguish
generalized ortholattices from other classes of lattices.
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Definition 2.1. (cf., e.g., [15]). A lattice (L;∨,∧, 0) with 0 is called a
sectionally complemented lattice if for each a ∈ L, ([0, a];∨,∧) is a comple-
mented lattice, i.e. for every a, b ∈ L with b ≤ a there exists an element c
of L with c ≤ a, b ∨ c = a and b ∧ c = 0.

Definition 2.2. (L;∨,∧, (a ; a ∈ L), 0) where (L;∨,∧, 0) is a lattice with 0
is called a generalized ortholattice if for each a ∈ L, ([0, a];∨,∧,a , 0, a) is an
ortholattice.

Of course, if (L;∨,∧, (a ; a ∈ L), 0) is a generalized ortholattice, then
(L;∨,∧, 0) is a sectionally complemented lattice.

Example 2.1. The five-element modular non-distributive lattice is section-
ally complemented but it cannot be considered as a generalized ortholattice
since it has an odd number of elements.

Example 2.2. If (L;∨,∧,′ , 0, 1) is an orthomodular lattice, i.e. an or-
tholattice satisfying y = x ∨ (y ∧ x′) for all x, y ∈ L with x ≤ y, then
(L;∨,∧, (x 7→ x′ ∧ a; a ∈ L), 0) is a generalized ortholattice.

Example 2.3. The following Hasse diagram shows a non-orthomodular gen-
eralized ortholattice:
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Next we introduce ring-like structures corresponding to generalized ortho-
lattices.

Definition 2.3. An orthoring is an algebra (R; +, ·, 0) of type (2, 2, 0)
satisfying
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(O1) x + y = y + x,

(O2) x + 0 = x,

(O3) xy = yx,

(O4) (xy)z = x(yz),

(O5) xx = x,

(O6) x0 = 0,

(O7) (xy + x) + x = xy,

(O8) ((x + y) + xy) + xy = x + y,

(O9) (xy + x)x = xy + x,

(O10) (x + y)xy = 0,

(O11) ((x + y) + xy)x = x,

(O12) ((xy + xz) + xyz)x = (xy + xz) + xyz

and

(O13) (xyz + x)(xy + x) = xy + x.

Remark 2.1. OrthoringsR = (R; +, ·, 0) are of characteristic 2, i.e. x+x =
0 for all x ∈ R.

Proof.

x + x
(O1),(O2)

= (0 + x) + x
(O4),(O10)

= ((x + x)xx + x) + x
(O3)−(O5)

=

(O3)−(O5)
= (x(x + x) + x) + x

(O7)
= x(x + x)

(O3)−(O5)
= (x + x)xx

(O10)
= 0.

Now we can state our main result describing a natural bijective correspon-
dence between generalized ortholattices and orthorings.

Theorem 2.1. For fixed set L the formulas

x + y := (x ∧ y)x∨y,

xy := x ∧ y
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and

x ∨ y := (x + y) + xy,

x ∧ y := xy,

xy := x + y

induce mutually inverse bijections between the set of all generalized ortho-
lattices on L and the set of all orthorings on L.

Proof. Let L = (L;∨,∧, (a ; a ∈ L), 0) be a generalized ortholattice and
put x + y := (x ∧ y)x∨y and xy := x ∧ y for all x, y ∈ L. Let x, y, z ∈ L.
Then

(x + y) + xy = ((x ∧ y)x∨y ∧ x ∧ y)(x∧y)x∨y∨(x∧y) = 0x∨y = x ∨ y,

x + 0 = 0x = x,

(xy + x) + x = ((x ∧ y)x)x = x ∧ y = xy,

((x + y) + xy) + xy = (x ∧ y)x∨y = x + y,

(xy + x)x = (x ∧ y)x ∧ x = (x ∧ y)x = xy + x,

(x + y)xy = (x ∧ y)x∨y ∧ x ∧ y = 0,

((x + y) + xy)x = (x ∨ y) ∧ x = x,

((xy + xz) + xyz)x = ((xy + xz) + (xy)(xz))x = ((x ∧ y) ∨ (x ∧ z)) ∧ x =

= (x ∧ y) ∨ (x ∧ z) = (xy + xz) + (xy)(xz) = (xy + xz) + xyz and

(xyz + x)(xy + x) = (x ∧ y ∧ z)x ∧ (x ∧ y)x = (x ∧ y)x = xy + x.

Hence, (L; +, ·, 0) is an orthoring. Moreover,

(x + y) + xy = x ∨ y,

xy = x ∧ y

and

x ≤ y implies x + y = xy.
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Therefore, the algebra induced by (L; +, ·, 0) according to the formulas given
in the theorem coincides with L.

Conversely, let R = (L; +, ·, 0) be an orthoring and put x ∨ y :=
(x + y) + xy, x∧ y := xy and xy := x + y for all x, y ∈ L. Let (L;≤) denote
the poset corresponding to the meet-semilattice (L; ·) and x, y, z ∈ L. Then

x(x ∨ y) = x((x + y) + xy)
(O3)
= ((x + y) + xy)x

(O11)
= x, i.e. x ≤ x ∨ y,

y(x ∨ y) = y((x + y) + xy)
(O1),(O3)

= ((y + x) + yx)y
(O11)
= y, i.e. y ≤ x ∨ y,

x, y ≤ z implies (x ∨ y)z = ((x + y) + xy)z
(O3),(O4)

= ((zx + zy) + zxy)z

(O4),(O12)
= (zx + zy) + zxy

(O3),(O4)
= (x + y) + xy = x ∨ y, i.e. x ∨ y ≤ z,

x ≤ y implies xyy = (x + y)y
(O3)
= (yx + y)y

(O9)
= yx + y

(O3)
= x + y = xy,

i.e. xy ≤ y,

x ≤ y implies (xy)y = (x + y) + y
(O3)
= (yx + y) + y

(O7)
= yx

(O3)
= x,

x ≤ y ≤ z implies yzxz = (y + z)(x + z)
(O3),(O4)

= (zyx + z)(zy + z)

(O4),(O13)
= zy + z

(O3)
= y + z = yz, i.e. yz ≤ xz and

x ≤ y implies x ∧ xy = x(x + y)
(O3),(O4)

= (x + y)xy
(O10)
= 0.

Hence (L;∨,∧, (a ; a ∈ L), 0) is a generalized ortholattice. Moreover,

(x ∧ y)x∨y = xy + ((x + y) + xy)
(O1)
= ((x + y) + xy) + xy

(O8)
= x + y and

x ∧ y = xy.

This shows that the algebra induced by (L;∨,∧, (a ; a ∈ L), 0) according to
the formulas of the theorem coincides with R.
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Remark 2.2. If (L;∨,∧,′ , 0, 1) is a Boolean algebra, then x+y = (x∧y)x∨y

is the well-known symmetric difference since (x ∧ y′) ∨ (x′ ∧ y) = (x ∧ y)′ ∧
(x ∨ y) = (x ∧ y)x∨y for all x, y ∈ L.

Comparing the definition of an orthoring to the definition of a Boolean
pseudoring introduced in [7] and comparing the definition of a generalized
ortholattice with that of a generalized orthomodular lattice (cf. [17]), we
obtain

Theorem 2.2. An orthoring (R; +, ·, 0) is a Boolean pseudoring if and only
if (x + y)x = x + xy and (xyz + x)y = xyz + xy for all x, y, z ∈ R. A
generalized ortholattice (L;∨,∧, (a; a ∈ L), 0) is a generalized orthomodular
lattice if and only if xz ∧ y = xy for all x, y, z ∈ L with x ≤ y ≤ z.

Proof. The second assertion can be proved as follows: Let L = (L;∨,∧,
(a ; a ∈ L), 0) be a generalized ortholattice. If L is a generalized orthomodu-
lar lattice, then xz∧y = xy for all x, y, z ∈ L with x ≤ y ≤ z according to the
definition of a generalized orthomodular lattice. Conversely, if xz ∧ y = xy

for all x, y, z ∈ L with x ≤ y ≤ z, then x ∨ (y ∧ xz) = x ∨ xy = y for all
x, y, z ∈ L with x ≤ y ≤ z and, hence, ([0, z];∨,∧,z , 0, z) is orthomodular
for all z ∈ L. Therefore, L is a generalized orthomodular lattice.

3. Congruence and ideal properties

For an overview on congruence conditions, their characterizations and the
theory of ideals in universal algebras, see [4].

A variety is called arithmetical if it is both congruence permutable and
congruence distributive. A variety with a constant term 0 is called weakly
regular if any congruence of an algebra belonging to this variety is determined
by its 0-class.

It is easy to see that the congruence lattice of an orthoring is a sublattice
of the congruence lattice of the corresponding sectionally complemented
lattice. Since it is well known that sectionally complemented lattices are
arithmetical and weakly regular (see, e.g., [15]), this carries over to ortho-
rings.

Here we will provide a different (and direct) proof of this result.
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Theorem 3.1. Orthorings are arithmetical and weakly regular.

Proof. Consider the terms

t1(x, y) := xy + x,

t2(x, y) := xy + y,

t(x, y, z, u) := (y + u) + z and

m(x, y, z) := (xy + yz) + zx.

We show that t1, t2 and t satisfy the identities

t1(x, x) = t2(x, x) = 0,

t(x, y, t1(x, y), t2(x, y)) = x and

t(x, y, 0, 0) = y

from which it follows that orthorings are permutable and weakly regular
according to Theorem 6.4.11 of [4]. Moreover, we prove that m is a majority
term, i.e. it satisfies

m(x, x, y) = m(x, y, x) = m(y, x, x) = x

from which we obtain that ortholattices are congruence distributive accord-
ing to Corollary 3.2.4 of [4].

The following calculations yield the desired identities:

(x + xy) + xy = ((x ∧ y)x ∧ (x ∧ y))(x∧y)x∨(x∧y) = 0x = x,

t1(x, x) = xx + x
(O5)
= x + x = 0,

t2(x, x) = xx + x
(O5)
= x + x = 0,

t(x, y, t1(x, y), t2(x, y)) = (y + (xy + y)) + (xy + x)
(O1),(O3)

=

(O1),(O3)
= ((yx + y) + y) + (xy + x)

(O7)
= yx + (xy + x)

(O1),(O3)
=

(O1),(O3)
= (x + xy) + xy = x,
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t(x, y, 0, 0) = (y + 0) + 0
(O2)
= y,

m(x, x, y) = (xx + xy) + yx
(O3),(O5)

= (x + xy) + xy = x,

m(x, y, x) = (xy + yx) + xx
(O3),(O5)

= (xy + xy) + x
(O1),(O2)

= x and

m(y, x, x) = (yx + xx) + xy
(O1),(O3),(O5)

= (x + xy) + xy = x.

Let V be a variety with a constant term 0, A an algebra belonging to V and
B a subset of the carrier set of A. A term t(x1, . . . , xn) is called an ideal term
with respect to the variables xi, i ∈ I, (I ⊆ {1, . . . , n}) if t(x1, . . . , xn) = 0
whenever xi = 0 for all i ∈ I. Let t(x1, . . . , xn) be an ideal term with
respect to the variables xi, i ∈ I. B is called closed with respect to t if
t(a1, . . . , an) ∈ B provided a1, . . . , an ∈ A and ai ∈ B for all i ∈ I. B is
called an ideal of A if B is closed with respect to all ideal terms. A set T
of ideal terms is called a basis of ideal terms if a subset of the carrier set
of an algebra C belonging to V is an ideal of C whenever it is closed with
respect to all ideal terms belonging to T . If Θ is a congruence on A, then
the congruence class [0]Θ of 0 with respect to Θ is called the conguence
kernel of Θ. It is easy to see that every congruence kernel is an ideal. If V
has a so-called subtractive term, i.e. a binary term s satisfying s(x, 0) = x
and s(x, x) = 0, then, conversely, every ideal is a congruence kernel (cf.
Theorems 6.6.11 and 10.1.10 of [4]). This is the case with orthorings, because
the term s(x, y) := x + y serves as a subtractive term.

Ideals in orthorings can now be characterized as follows:

Theorem 3.2. A subset I of the base set R of an orthoring R containing 0 is
an ideal of R if and only if x, y, z, u ∈ R and xy+x, xy+y, zu+z, zu+u ∈ I
together imply (x + z)(y + u) + (x + z), xyzu + xz ∈ I.

Proof. This follows from Theorem 10.3.1 of [4] by using the terms intro-
duced in the proof of Theorem 3.1.

Corollary 3.1. Every ideal I of an orthoring R = (R; +, ·, 0) is the kernel
of the congruence ΘI := {(x, y) ∈ R×R |xy + x ∈ I and xy + y ∈ I} on R.
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Proof. It is almost evident that I is the kernel of ΘI where ΘI is reflex-
ive and compatible. However, the variety of orthorings is congruence per-
mutable according to Theorem 3.1, and by [19], every compatible reflexive
relation on R is a congruence on R (see also Corollary 3.1.13 in [4]).

Finally, we present a finite basis of ideal terms for orthorings:

Theorem 3.3. The following terms form a basis of ideal terms for ortho-
rings:

0,

(((x+y1) + y2) + ((z+y3) + y4))(x+z) + (((x+y1) + y2) + ((z+y3) + y4)),

(((x + y1) + y2) + ((z + y3) + y4))(x + z) + (x + z),

((x + y1) + y2)((z + y3) + y4)xz + ((x + y1) + y2)((z + y3) + y4),

((x + y1) + y2)((z + y3) + y4)xz + xz,

and

y1 + y2.

Proof. This follows from Theorem 10.3.4 of [4] by using the terms intro-
duced in the proof of Theorem 3.1.
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