ORTHORINGS

Ivan Chajda

Palacký University, Olomouc Department of Algebra and Geometry Tomkova 40, 77900 Olomouc, Czech Republic

e-mail: chajda@inf.upol.cz

AND

HELMUT LÄNGER

Vienna University of Technology Institute of Discrete Mathematics and Geometry Research Unit Algebra Wiedner Hauptstraße 8–10, 1040 Vienna, Austria

e-mail: h.laenger@tuwien.ac.at

Abstract

Certain ring-like structures, so-called orthorings, are introduced which are in a natural one-to-one correspondence with lattices with 0 every principal ideal of which is an ortholattice. This correspondence generalizes the well-known bijection between Boolean rings and Boolean algebras. It turns out that orthorings have nice congruence and ideal properties.

Keywords: ortholattice, generalized ortholattice, sectionally complemented lattice, orthoring, arithmetical variety, weakly regular variety, congruence kernel, ideal term, basis of ideal terms, subtractive term.

2000 Mathematics Subject Classification: 16Y99, 06C15, 81P10.

^{*}Research supported by ÖAD, Cooperation between Austria and Czech Republic in Science and Technology, grant No. 2003/1.

1. Introduction

The well-known natural bijective correspondence between Boolean algebras and Boolean rings is widely used in applications, see [1] for details. This correspondence was generalized in different ways thus giving rise to natural connections between certain lattice structures on the one hand and certain ring-like structures on the other hand. On the lattice-theoretical side the following structures were considered: orthomodular lattices ([8] and [18]), ortholattices ([2]), bounded lattices with an involutory antiautomorphism ([9], [10], [11], [12], [13] and [14]), pseudocomplemented semilattices ([5]) and MV-algebras ([6]). The corresponding ring-like structures were called orthomodular Boolean quasirings or orhomodular pseudorings, orthopseudorings, orthopseudosemirings, Boolean quasirings and pseudorings, respectively. (No name was assigned to the ring-like structures induced by pseudocomplemented semilattices.) In [3] the ring-like structures introduced in [2] and [9], respectively, are related to each other. However, each one of the derived ring-like structures considered so far in this context was endowed with a constant 1 which plays a role similar to the unit element in rings. On the other hand, starting with so-called generalized Boolean algebras, one can derive Boolean rings which need not have a unit element (see [1]). A similar approach was used in [7], where so-called generalized orthomodular lattices (introduced by M.F. Janowitz in [17], see also [16]) were considered. Our aim is to investigate ring-like structures (so-called orthorings) which correspond to lattices with 0 such that every principal lattice ideal is an ortholattice. It should be pointed out that though these lattices do not form a variety, the term equivalent orthorings form a variety and hence allow the application of universal algebraic methods and results. Moreover, we are going to show that – in spite of their generality – orthorings have nice properties.

We recall that an *ortholattice* is an algebra $(L; \vee, \wedge,', 0, 1)$ of type (2, 2, 1, 0, 0) such that $(L; \vee, \wedge, 0, 1)$ is a bounded lattice and (x')' = x, $(x \vee y)' = x' \wedge y'$, $(x \wedge y)' = x' \vee y'$, $x \vee x' = 1$ and $x \wedge x' = 0$ for all $x, y \in L$.

2. Orthorings

First we introduce the concept of a generalized ortholattice and distinguish generalized ortholattices from other classes of lattices.

Definition 2.1. (cf., e.g., [15]). A lattice $(L; \vee, \wedge, 0)$ with 0 is called a sectionally complemented lattice if for each $a \in L$, $([0, a]; \vee, \wedge)$ is a complemented lattice, i.e. for every $a, b \in L$ with $b \leq a$ there exists an element c of L with $c \leq a$, $b \vee c = a$ and $b \wedge c = 0$.

Definition 2.2. $(L; \vee, \wedge, (^a; a \in L), 0)$ where $(L; \vee, \wedge, 0)$ is a lattice with 0 is called a *generalized ortholattice* if for each $a \in L$, $([0, a]; \vee, \wedge, ^a, 0, a)$ is an ortholattice.

Of course, if $(L; \vee, \wedge, (^a; a \in L), 0)$ is a generalized ortholattice, then $(L; \vee, \wedge, 0)$ is a sectionally complemented lattice.

Example 2.1. The five-element modular non-distributive lattice is sectionally complemented but it cannot be considered as a generalized ortholattice since it has an odd number of elements.

Example 2.2. If $(L; \vee, \wedge,', 0, 1)$ is an orthomodular lattice, i.e. an ortholattice satisfying $y = x \vee (y \wedge x')$ for all $x, y \in L$ with $x \leq y$, then $(L; \vee, \wedge, (x \mapsto x' \wedge a; a \in L), 0)$ is a generalized ortholattice.

Example 2.3. The following Hasse diagram shows a non-orthomodular generalized ortholattice:

Next we introduce ring-like structures corresponding to generalized ortholattices.

Definition 2.3. An *orthoring* is an algebra $(R; +, \cdot, 0)$ of type (2, 2, 0) satisfying

$$(O1) \quad x + y = y + x,$$

(O2)
$$x + 0 = x$$
,

(O3)
$$xy = yx$$
,

$$(O4) \quad (xy)z = x(yz),$$

$$(O5)$$
 $xx = x$,

$$(O6) \quad x0 = 0,$$

$$(O7) \quad (xy+x) + x = xy,$$

(O8)
$$((x+y) + xy) + xy = x + y$$
,

$$(O9) \quad (xy+x)x = xy+x,$$

$$(O10) \quad (x+y)xy = 0,$$

(O11)
$$((x+y) + xy)x = x$$
,

(O12)
$$((xy + xz) + xyz)x = (xy + xz) + xyz$$

and

(O13)
$$(xyz + x)(xy + x) = xy + x$$
.

Remark 2.1. Orthorings $\mathcal{R} = (R; +, \cdot, 0)$ are of characteristic 2, i.e. x + x = 0 for all $x \in R$.

Proof.

$$x + x \stackrel{\text{(O1),(O2)}}{=} (0+x) + x \stackrel{\text{(O4),(O10)}}{=} ((x+x)xx + x) + x \stackrel{\text{(O3)-(O5)}}{=}$$
$$\stackrel{\text{(O3)-(O5)}}{=} (x(x+x) + x) + x \stackrel{\text{(O7)}}{=} x(x+x) \stackrel{\text{(O3)-(O5)}}{=} (x+x)xx \stackrel{\text{(O10)}}{=} 0.$$

Now we can state our main result describing a natural bijective correspondence between generalized ortholattices and orthorings.

Theorem 2.1. For fixed set L the formulas

$$x + y := (x \land y)^{x \lor y},$$
$$xy := x \land y$$

and

$$x \lor y := (x + y) + xy,$$

$$x \land y := xy,$$

$$x^{y} := x + y$$

induce mutually inverse bijections between the set of all generalized ortholattices on L and the set of all orthorings on L.

Proof. Let $\mathcal{L} = (L; \vee, \wedge, (^a; a \in L), 0)$ be a generalized ortholattice and put $x + y := (x \wedge y)^{x \vee y}$ and $xy := x \wedge y$ for all $x, y \in L$. Let $x, y, z \in L$. Then

$$(x + y) + xy = ((x \land y)^{x \lor y} \land x \land y)^{(x \land y)^{x \lor y} \lor (x \land y)} = 0^{x \lor y} = x \lor y,$$

$$x + 0 = 0^{x} = x,$$

$$(xy + x) + x = ((x \land y)^{x})^{x} = x \land y = xy,$$

$$((x + y) + xy) + xy = (x \land y)^{x \lor y} = x + y,$$

$$(xy + x)x = (x \land y)^{x} \land x = (x \land y)^{x} = xy + x,$$

$$(x + y)xy = (x \land y)^{x \lor y} \land x \land y = 0,$$

$$((x + y) + xy)x = (x \lor y) \land x = x,$$

$$((xy + xz) + xyz)x = ((xy + xz) + (xy)(xz))x = ((x \land y) \lor (x \land z)) \land x = x$$

$$= (x \land y) \lor (x \land z) = (xy + xz) + (xy)(xz) = (xy + xz) + xyz \text{ and}$$

$$(xyz + x)(xy + x) = (x \land y \land z)^{x} \land (x \land y)^{x} = (x \land y)^{x} = xy + x.$$

Hence, $(L; +, \cdot, 0)$ is an orthoring. Moreover,

$$(x+y)+xy=x\vee y,$$
 $xy=x\wedge y$ and $x\leq y$ implies $x+y=x^y.$

Therefore, the algebra induced by $(L; +, \cdot, 0)$ according to the formulas given in the theorem coincides with \mathcal{L} .

Conversely, let $\mathcal{R} = (L; +, \cdot, 0)$ be an orthoring and put $x \vee y := (x+y) + xy$, $x \wedge y := xy$ and $x^y := x+y$ for all $x, y \in L$. Let $(L; \leq)$ denote the poset corresponding to the meet-semilattice $(L; \cdot)$ and $x, y, z \in L$. Then

$$x(x \vee y) = x((x+y) + xy) \stackrel{\text{(O3)}}{=} ((x+y) + xy)x \stackrel{\text{(O11)}}{=} x, \text{ i.e. } x \leq x \vee y,$$

$$y(x \vee y) = y((x+y) + xy) \stackrel{\text{(O1)},(O3)}{=} ((y+x) + yx)y \stackrel{\text{(O11)}}{=} y, \text{ i.e. } y \leq x \vee y,$$

$$x, y \leq z \text{ implies } (x \vee y)z = ((x+y) + xy)z \stackrel{\text{(O3)},(O4)}{=} ((zx+zy) + zxy)z$$

$$\stackrel{\text{(O4)},(O12)}{=} (zx+zy) + zxy \stackrel{\text{(O3)},(O4)}{=} (x+y) + xy = x \vee y, \text{ i.e. } x \vee y \leq z,$$

$$x \leq y \text{ implies } x^y y = (x+y)y \stackrel{\text{(O3)}}{=} (yx+y)y \stackrel{\text{(O9)}}{=} yx + y \stackrel{\text{(O3)}}{=} x + y = x^y,$$

$$\text{i.e. } x^y \leq y,$$

$$x \leq y \text{ implies } (x^y)^y = (x+y) + y \stackrel{\text{(O3)}}{=} (yx+y) + y \stackrel{\text{(O7)}}{=} yx \stackrel{\text{(O3)}}{=} x,$$

$$x \leq y \leq z \text{ implies } y^z x^z = (y+z)(x+z) \stackrel{\text{(O3)},(O4)}{=} (zyx+z)(zy+z)$$

$$\stackrel{\text{(O4)},(O13)}{=} zy + z \stackrel{\text{(O3)}}{=} y + z = y^z, \text{ i.e. } y^z \leq x^z \text{ and}$$

$$x \leq y \text{ implies } x \wedge x^y = x(x+y) \stackrel{\text{(O3)},(O4)}{=} (x+y)xy \stackrel{\text{(O10)}}{=} 0.$$

Hence $(L; \vee, \wedge, (a; a \in L), 0)$ is a generalized ortholattice. Moreover,

$$(x \wedge y)^{x \vee y} = xy + ((x+y) + xy) \stackrel{\text{(O1)}}{=} ((x+y) + xy) + xy \stackrel{\text{(O8)}}{=} x + y \text{ and } x \wedge y = xy.$$

This shows that the algebra induced by $(L; \vee, \wedge, (a; a \in L), 0)$ according to the formulas of the theorem coincides with \mathcal{R} .

Remark 2.2. If $(L; \vee, \wedge, ', 0, 1)$ is a Boolean algebra, then $x+y=(x\wedge y)^{x\vee y}$ is the well-known symmetric difference since $(x\wedge y')\vee (x'\wedge y)=(x\wedge y)'\wedge (x\vee y)=(x\wedge y)^{x\vee y}$ for all $x,y\in L$.

Comparing the definition of an orthoring to the definition of a Boolean pseudoring introduced in [7] and comparing the definition of a generalized ortholattice with that of a generalized orthomodular lattice (cf. [17]), we obtain

Theorem 2.2. An orthoring $(R; +, \cdot, 0)$ is a Boolean pseudoring if and only if (x + y)x = x + xy and (xyz + x)y = xyz + xy for all $x, y, z \in R$. A generalized ortholattice $(L; \vee, \wedge, (^a; a \in L), 0)$ is a generalized orthomodular lattice if and only if $x^z \wedge y = x^y$ for all $x, y, z \in L$ with $x \leq y \leq z$.

Proof. The second assertion can be proved as follows: Let $\mathcal{L} = (L; \vee, \wedge, (^a; a \in L), 0)$ be a generalized ortholattice. If \mathcal{L} is a generalized orthomodular lattice, then $x^z \wedge y = x^y$ for all $x, y, z \in L$ with $x \leq y \leq z$ according to the definition of a generalized orthomodular lattice. Conversely, if $x^z \wedge y = x^y$ for all $x, y, z \in L$ with $x \leq y \leq z$, then $x \vee (y \wedge x^z) = x \vee x^y = y$ for all $x, y, z \in L$ with $x \leq y \leq z$ and, hence, $([0, z]; \vee, \wedge, ^z, 0, z)$ is orthomodular for all $z \in L$. Therefore, \mathcal{L} is a generalized orthomodular lattice.

3. Congruence and ideal properties

For an overview on congruence conditions, their characterizations and the theory of ideals in universal algebras, see [4].

A variety is called *arithmetical* if it is both congruence permutable and congruence distributive. A variety with a constant term 0 is called *weakly regular* if any congruence of an algebra belonging to this variety is determined by its 0-class.

It is easy to see that the congruence lattice of an orthoring is a sublattice of the congruence lattice of the corresponding sectionally complemented lattice. Since it is well known that sectionally complemented lattices are arithmetical and weakly regular (see, e.g., [15]), this carries over to orthorings.

Here we will provide a different (and direct) proof of this result.

Theorem 3.1. Orthorings are arithmetical and weakly regular.

Proof. Consider the terms

$$t_1(x, y) := xy + x,$$

 $t_2(x, y) := xy + y,$
 $t(x, y, z, u) := (y + u) + z$ and
 $m(x, y, z) := (xy + yz) + zx.$

We show that t_1 , t_2 and t satisfy the identities

$$t_1(x, x) = t_2(x, x) = 0,$$

 $t(x, y, t_1(x, y), t_2(x, y)) = x$ and
 $t(x, y, 0, 0) = y$

from which it follows that orthorings are permutable and weakly regular according to Theorem 6.4.11 of [4]. Moreover, we prove that m is a majority term, i.e. it satisfies

$$m(x, x, y) = m(x, y, x) = m(y, x, x) = x$$

from which we obtain that ortholattices are congruence distributive according to Corollary 3.2.4 of [4].

The following calculations yield the desired identities:

$$(x + xy) + xy = ((x \land y)^x \land (x \land y))^{(x \land y)^x \lor (x \land y)} = 0^x = x,$$

$$t_1(x, x) = xx + x \stackrel{\text{(O5)}}{=} x + x = 0,$$

$$t_2(x, x) = xx + x \stackrel{\text{(O5)}}{=} x + x = 0,$$

$$t(x, y, t_1(x, y), t_2(x, y)) = (y + (xy + y)) + (xy + x) \stackrel{\text{(O1)}, \text{(O3)}}{=}$$

$$\stackrel{\text{(O1)}, \text{(O3)}}{=} ((yx + y) + y) + (xy + x) \stackrel{\text{(O7)}}{=} yx + (xy + x) \stackrel{\text{(O1)}, \text{(O3)}}{=}$$

$$\stackrel{\text{(O1)}, \text{(O3)}}{=} (x + xy) + xy = x,$$

$$t(x, y, 0, 0) = (y + 0) + 0 \stackrel{\text{(O2)}}{=} y,$$

$$m(x, x, y) = (xx + xy) + yx \stackrel{\text{(O3),(O5)}}{=} (x + xy) + xy = x,$$

$$m(x, y, x) = (xy + yx) + xx \stackrel{\text{(O3),(O5)}}{=} (xy + xy) + x \stackrel{\text{(O1),(O2)}}{=} x \text{ and}$$

$$m(y, x, x) = (yx + xx) + xy \stackrel{\text{(O1),(O3),(O5)}}{=} (x + xy) + xy = x.$$

Let \mathcal{V} be a variety with a constant term 0, \mathcal{A} an algebra belonging to \mathcal{V} and B a subset of the carrier set of A. A term $t(x_1,\ldots,x_n)$ is called an *ideal term* with respect to the variables $x_i, i \in I, (I \subseteq \{1, ..., n\})$ if $t(x_1, ..., x_n) = 0$ whenever $x_i = 0$ for all $i \in I$. Let $t(x_1, \ldots, x_n)$ be an ideal term with respect to the variables $x_i, i \in I$. B is called closed with respect to t if $t(a_1,\ldots,a_n)\in B$ provided $a_1,\ldots,a_n\in A$ and $a_i\in B$ for all $i\in I$. B is called an *ideal* of A if B is closed with respect to all ideal terms. A set Tof ideal terms is called a basis of ideal terms if a subset of the carrier set of an algebra \mathcal{C} belonging to \mathcal{V} is an ideal of \mathcal{C} whenever it is closed with respect to all ideal terms belonging to T. If Θ is a congruence on \mathcal{A} , then the congruence class $[0]\Theta$ of 0 with respect to Θ is called the *conguence* kernel of Θ . It is easy to see that every congruence kernel is an ideal. If \mathcal{V} has a so-called subtractive term, i.e. a binary term s satisfying s(x,0) = xand s(x,x) = 0, then, conversely, every ideal is a congruence kernel (cf. Theorems 6.6.11 and 10.1.10 of [4]). This is the case with orthorings, because the term s(x,y) := x + y serves as a subtractive term.

Ideals in orthorings can now be characterized as follows:

Theorem 3.2. A subset I of the base set R of an orthoring R containing 0 is an ideal of R if and only if $x, y, z, u \in R$ and $xy+x, xy+y, zu+z, zu+u \in I$ together imply $(x+z)(y+u)+(x+z), xyzu+xz \in I$.

Proof. This follows from Theorem 10.3.1 of [4] by using the terms introduced in the proof of Theorem 3.1.

Corollary 3.1. Every ideal I of an orthoring $\mathcal{R} = (R; +, \cdot, 0)$ is the kernel of the congruence $\Theta_I := \{(x, y) \in R \times R \mid xy + x \in I \text{ and } xy + y \in I\}$ on \mathcal{R} .

Proof. It is almost evident that I is the kernel of Θ_I where Θ_I is reflexive and compatible. However, the variety of orthorings is congruence permutable according to Theorem 3.1, and by [19], every compatible reflexive relation on \mathcal{R} is a congruence on \mathcal{R} (see also Corollary 3.1.13 in [4]).

Finally, we present a finite basis of ideal terms for orthorings:

Theorem 3.3. The following terms form a basis of ideal terms for orthorings:

0, $(((x+y_1)+y_2)+((z+y_3)+y_4))(x+z)+(((x+y_1)+y_2)+((z+y_3)+y_4)),$ $(((x+y_1)+y_2)+((z+y_3)+y_4))(x+z)+(x+z),$ $((x+y_1)+y_2)((z+y_3)+y_4)xz+((x+y_1)+y_2)((z+y_3)+y_4),$ $((x+y_1)+y_2)((z+y_3)+y_4)xz+xz,$ and $y_1+y_2.$

Proof. This follows from Theorem 10.3.4 of [4] by using the terms introduced in the proof of Theorem 3.1.

References

- [1] G. Birkhoff, *Lattice Theory*, third edition, AMS Colloquium Publ. **25**, Providence, RI, 1979.
- [2] I. Chajda, Pseudosemirings induced by ortholattices, Czechoslovak Math. J. 46 (1996), 405–411.
- [3] I. Chajda and G. Eigenthaler, A note on orthopseudorings and Boolean quasirings, Österr. Akad. Wiss. Math.-Natur. Kl. Sitzungsber. II **207** (1998), 83–94.
- [4] I. Chajda, G. Eigenthaler and H. Länger, Congruence Classes in Universal Algebra, Heldermann Verlag, Lemgo 2003.
- [5] I. Chajda and H. Länger, Ring-like operations in pseudocomplemented semilattices, Discuss. Math. Gen. Algebra Appl. 20 (2000), 87–95.

[6] I. Chajda and H. Länger, Ring-like structures corresponding to MV-algebras via symmetric difference, Österr. Akad. Wiss. Math.-Natur. Kl. Sitzungsber. II, to appear.

- [7] I. Chajda, H. Länger and M. Mączyński, Ring-like structures corresponding to generalized orthomodular lattices, Math. Slovaca 54 (2004), 143–150.
- [8] G. Dorfer, A. Dvurečenskij and H. Länger, Symmetric difference in orthomodular lattices, Math. Slovaca 46 (1996), 435–444.
- [9] D. Dorninger, H. Länger and M. Mączyński, The logic induced by a system of homomorphisms and its various algebraic characterizations, Demonstratio Math. 30 (1997), 215–232.
- [10] D. Dorninger, H. Länger and M. Mączyński, On ring-like structures occurring in axiomatic quantum mechanics, Österr. Akad. Wiss. Math.-Natur. Kl. Sitzungsber. II 206 (1997), 279–289.
- [11] D. Dorninger, H. Länger and M. Mączyński, On ring-like structures induced by Mackey's probability function, Rep. Math. Phys. 43 (1999), 499–515.
- [12] D. Dorninger, H. Länger and M. Mączyński, *Lattice properties of ring-like quantum logics*, Intern. J. Theor. Phys. **39** (2000), 1015–1026.
- [13] D. Dorninger, H. Länger and M. Mączyński, Concepts of measures on ring-like quantum logics, Rep. Math. Phys. 47 (2001), 167–176.
- [14] D. Dorninger, H. Länger and M. Mączyński, Ring-like structures with unique symmetric difference related to quantum logic, Discuss. Math. General Algebra Appl. 21 (2001), 239–253.
- [15] G. Grätzer, General Lattice Theory, second edition, Birkhäuser Verlag, Basel 1998.
- [16] J. Hedlíková, Relatively orthomodular lattices, Discrete Math. 234 (2001), 17–38.
- [17] M. F. Janowitz, A note on generalized orthomodular lattices, J. Natur. Sci. Math. 8 (1968), 89–94.
- [18] H. Länger, Generalizations of the correspondence between Boolean algebras and Boolean rings to orthomodular lattices, Tatra Mt. Math. Publ. 15 (1998), 97–105.
- [19] H. Werner, A Mal'cev condition for admissible relations, Algebra Universalis 3 (1973), 263.

Received 2 March 2004 Revised 9 June 2004