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Abstract

Certain ring-like structures, so-called orthorings, are introduced
which are in a natural one-to-one correspondence with lattices with
0 every principal ideal of which is an ortholattice. This correspon-
dence generalizes the well-known bijection between Boolean rings and
Boolean algebras. It turns out that orthorings have nice congruence
and ideal properties.
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1. Introduction

The well-known natural bijective correspondence between Boolean algebras
and Boolean rings is widely used in applications, see [1] for details. This
correspondence was generalized in different ways thus giving rise to natural
connections between certain lattice structures on the one hand and certain
ring-like structures on the other hand. On the lattice-theoretical side the
following structures were considered: orthomodular lattices ([8] and [18]),
ortholattices ([2]), bounded lattices with an involutory antiautomorphism
([9], [10], [11], [12], [13] and [14]), pseudocomplemented semilattices ([5])
and M V-algebras ([6]). The corresponding ring-like structures were called
orthomodular Boolean quasirings or orhomodular pseudorings, orthopseu-
dorings, orthopseudosemirings, Boolean quasirings and pseudorings, respec-
tively. (No name was assigned to the ring-like structures induced by pseu-
docomplemented semilattices.) In [3] the ring-like structures introduced in
[2] and [9], respectively, are related to each other. However, each one of the
derived ring-like structures considered so far in this context was endowed
with a constant 1 which plays a role similar to the unit element in rings. On
the other hand, starting with so-called generalized Boolean algebras, one
can derive Boolean rings which need not have a unit element (see [1]). A
similar approach was used in [7], where so-called generalized orthomodular
lattices (introduced by M.F. Janowitz in [17], see also [16]) were considered.
Our aim is to investigate ring-like structures (so-called orthorings) which
correspond to lattices with 0 such that every principal lattice ideal is an or-
tholattice. It should be pointed out that though these lattices do not form
a variety, the term equivalent orthorings form a variety and hence allow
the application of universal algebraic methods and results. Moreover, we
are going to show that — in spite of their generality — orthorings have nice
properties.

We recall that an ortholattice is an algebra (L;V,A,,0,1) of type
(2,2,1,0,0) such that (L;V,A,0,1) is a bounded lattice and (2') = =z,
(xVy =2 Ny, (xANy) =2'Vy,zvae =1and z A2’ = 0 for all
x,y € L.

2. Orthorings

First we introduce the concept of a generalized ortholattice and distinguish
generalized ortholattices from other classes of lattices.
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Definition 2.1. (cf., e.g., [15]). A lattice (L;V,A,0) with 0 is called a
sectionally complemented lattice if for each a € L, ([0,al;V,A) is a comple-
mented lattice, i.e. for every a,b € L with b < a there exists an element ¢
of Lwithc<a,bVc=aand bAc=0.

Definition 2.2. (L;V, A, (*; a € L),0) where (L;V, A,0) is a lattice with 0
is called a generalized ortholattice if for each a € L, ([0,a]; V,A,%,0,a) is an

ortholattice.

Of course, if (L;V,A,(*;a € L),0) is a generalized ortholattice, then
(L; V, A, 0) is a sectionally complemented lattice.

Example 2.1. The five-element modular non-distributive lattice is section-
ally complemented but it cannot be considered as a generalized ortholattice
since it has an odd number of elements.

Example 2.2. If (L;V,A,,0,1) is an orthomodular lattice, i.e. an or-
tholattice satisfying y = =V (y A 2') for all z,y € L with z < y, then
(L; V,A, (x — 2/ Na;a € L),0) is a generalized ortholattice.

Example 2.3. The following Hasse diagram shows a non-orthomodular gen-

eralized ortholattice:

Next we introduce ring-like structures corresponding to generalized ortho-
lattices.

Definition 2.3. An orthoring is an algebra (R;+,-,0) of type (2,2,0)
satisfying
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(01) z+y=y+u,
(02) z4+0=ux,
(03)  wy =yz,
(04)  (zy)z = z(y2),
(05) zx ==,
(06) 20 =0,
(07) (zy+2)+ 2z =2y,
(08) ((z+y)+ay) +ay=2x+y,
(09)  (zy +2z)z =2y + 7,
(010)  (z+y)zy =0,
(011) ((z +y) +ay)z = =,
(012) ((zy 4+ z2) + zyz)r = (zy + x2) + zyz
and

(013) (zyz+x)(zy+ ) = 2y + .

Remark 2.1. Orthorings R = (R; +, -, 0) are of characteristic 2, i.e. z+z =
0 for all x € R.

Proof.

(04),(010)

N (R R () R =

(O7)

(x(x+z)+z)+2 =" z(z+x) (039)_(0%)

(x + z)xx (107,

|
Now we can state our main result describing a natural bijective correspon-
dence between generalized ortholattices and orthorings.

Theorem 2.1. For fized set L the formulas
T4y = (zAy)"vY,

Ty =T Ay
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and

xVy:=(r+y)+zy,
TNy =2y,

i=x+y

mduce mutually inverse bijections between the set of all generalized ortho-
lattices on L and the set of all orthorings on L.

(L;V,A, (*; a € L),0) be a generalized ortholattice and

Proof. Let L =
(x Ay)®™Y and zy := x Ay for all z,y € L. Let z,y,2 € L.

put x +vy =

Then

(@ +y) +ay = ((xAy)™Y Az Ay)@VEN) = 02V = g vy,
r+0=0" =z,

(my+a)+o=((xAy)*)" =z Ay =uay,
(x+y)tay)+ay= (@AY =z+y,
ry+zr)r=(xANy)*Ne=(zANy)* =zy+uz,

(@ +y) +ay)r = (xVy) e =z,

(zy + 22) + wyz)z = ((vy + 22) + (wy)(2z2))z = (A Y) V(€A 2)) Ao =
=(xAy)V(zAz)=(xy+zz)+ (2y)(zz) = (zy + x2) + zyz and

(zyz+z)(zy+x)=(x AyA2)" Az Ay)* = (x Ay)* =2y + 2.

(
(
(+y)ry=(xAy)*™" Az Ay =0,
(
(

Hence, (L;+,-,0) is an orthoring. Moreover,

(x4+y)+ay=2zVy,
Ty =T Ny
and

x <y implies z + y = zY.
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Therefore, the algebra induced by (L; +, -,0) according to the formulas given
in the theorem coincides with L.

Conversely, let R = (L;+,-,0) be an orthoring and put =z Vy :=
(x+y)+xy, e ANy :=zy and ¥ :=x+y for all z,y € L. Let (L; <) denote
the poset corresponding to the meet-semilattice (L;-) and z,y,z € L. Then

z(xzVy)=z((x+y)+ zy) Q8 ((x +y) + zy)x (2 x, ie.x <z Vy,

(01),(03) (011)

yvy) =yllz+y) +ay) = " (y+z)+yz)y ="y ley<azVy,
z,y < z implies (z Vy)z = ((x +y) + 2y)z (09)(04) ((zx + zy) + zzy)z
(04),(012) (zx + 2y) + zzy (03){04) (x+y)+ay=xVy, e zVy<z,

(03

. . 09 3
x <y implies 2%y = (z + y)y %) (yr +y)y (@ yr+y (

O
ie. 2¥ <y,

v <y implies () = (& + ) +y 'L (yr+y) +y L ye P,

v <y <z implies y*a* = (y + 2)(@ + 2) CE ey + 2)(zy + 2)

04),(0 O .
( 4):( 13) Zy+Z(:3)y+Z:yzy ie. yZSCCZ and

& <y implies 2 A a¥ = a(z +1) TEOY (@ + y)ay E 0.

Hence (L;V, A, (*; a € L),0) is a generalized ortholattice. Moreover,

@AY™ =y + ((z+y) +29) 2 ((z+y) +ay) + 2y 2 2 +y and

TNy =zxY.

This shows that the algebra induced by (L; V, A, (*; a € L),0) according to
the formulas of the theorem coincides with R. [
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Remark 2.2. If (L;V,A/,0,1) is a Boolean algebra, then z+y = (zAy)*"?
is the well-known symmetric difference since (z Ay') V (&' Ay) = (z Ay) A
(xVy)=(xAy)*v¥ for all x,y € L.

Comparing the definition of an orthoring to the definition of a Boolean
pseudoring introduced in [7] and comparing the definition of a generalized
ortholattice with that of a generalized orthomodular lattice (cf. [17]), we
obtain

Theorem 2.2. An orthoring (R;+,-,0) is a Boolean pseudoring if and only
if (x+y)r =x+ 2y and (zyz + x)y = zyz + xy for all x,y,z € R. A
generalized ortholattice (L;V, N\, (*;a € L),0) is a generalized orthomodular
lattice if and only if x* Ny = zY for all z,y,z € L with z <y < z.

Proof. The second assertion can be proved as follows: Let £ = (L;V, A,
(“; a € L),0) be a generalized ortholattice. If £ is a generalized orthomodu-
lar lattice, then x* Ay = ¥ for all x,y, z € L with z < y < z according to the
definition of a generalized orthomodular lattice. Conversely, if 2 Ay = z¥
for all z,y,z € L with x <y < z, then x V (y Az*) = 2 V¥ = y for all
x,y,z € L with z < y < z and, hence, ([0, z];V,A,*,0, 2z) is orthomodular
for all z € L. Therefore, L is a generalized orthomodular lattice. [

3. Congruence and ideal properties

For an overview on congruence conditions, their characterizations and the
theory of ideals in universal algebras, see [4].

A variety is called arithmetical if it is both congruence permutable and
congruence distributive. A variety with a constant term 0 is called weakly
regularif any congruence of an algebra belonging to this variety is determined
by its 0-class.

It is easy to see that the congruence lattice of an orthoring is a sublattice
of the congruence lattice of the corresponding sectionally complemented
lattice. Since it is well known that sectionally complemented lattices are
arithmetical and weakly regular (see, e.g., [15]), this carries over to ortho-
rings.

Here we will provide a different (and direct) proof of this result.
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Theorem 3.1. Orthorings are arithmetical and weakly reqular.

Proof. Consider the terms

ti(z,y) == zy + 1,

ta(z,y) =2y +y,

t(z,y,z,u) = (y +u) + z and
m(z,y,z) = (zy + yz) + zx.

We show that t1, t3 and t satisfy the identities

t1(z,x) = ta(z,z) = 0,
t(.’l)‘, Y, tl(:L" y)a tQ(ZL‘; y)) =z and
t($7 Y, 07 O) =Yy
from which it follows that orthorings are permutable and weakly regular

according to Theorem 6.4.11 of [4]. Moreover, we prove that m is a majority
term, i.e. it satisfies

m(z,z,y) =m(z,y,x) =m(y,z,x) =x
from which we obtain that ortholattices are congruence distributive accord-
ing to Corollary 3.2.4 of [4].
The following calculations yield the desired identities:
(x +zy) + 2y = (& Ay)* A (z Ay)EWVEW) = 07 = o,

tl(x,x):xfc+x(oz5)x+x:0,

tz(x,x):xfc+x(oz5)x+x:0,

01),(03
sy, ta(@,9), ta(,9)) = (v + (o + ) + (ay + ) O E
01),(03 o7 01),(03
1 )((yx+y)+y)+(:cy+x) (:)ygj+(xy+x)( ),(03)
(01),(03)

(z+xy) + xy = x,
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O
H2,9,0,0) = (y+0) + 0L y,
03),(0
m(z,z,y) = (zz + 2y) +yz 2 (@ + ay) + 2y = z,
m(z,y,z) = (vy + yx) + xx (08),(08) (xy +xy) +x (01),(02) x and

01),(03),(05
m(y,2,2) = (yo +a2) +ay PO @ 4 ay) +ay = 2. .

Let V be a variety with a constant term 0, A an algebra belonging to V and

B a subset of the carrier set of A. A term t(x1,...,xz,) is called an ideal term
with respect to the variables x;,i € I, (I C {1,...,n}) if t(x1,...,2,) =0
whenever z; = 0 for all ¢ € I. Let t(x1,...,2,) be an ideal term with

respect to the variables z;,7 € I. B is called closed with respect to t if
t(ay,...,a,) € B provided ay,...,a, € A and a; € B for alli € I. B is
called an ideal of A if B is closed with respect to all ideal terms. A set T
of ideal terms is called a basis of ideal terms if a subset of the carrier set
of an algebra C belonging to V is an ideal of C whenever it is closed with
respect to all ideal terms belonging to T'. If © is a congruence on A, then
the congruence class [0]© of 0 with respect to © is called the conguence
kernel of ©. It is easy to see that every congruence kernel is an ideal. If V
has a so-called subtractive term, i.e. a binary term s satisfying s(z,0) = x
and s(x,z) = 0, then, conversely, every ideal is a congruence kernel (cf.
Theorems 6.6.11 and 10.1.10 of [4]). This is the case with orthorings, because
the term s(z,y) := x + y serves as a subtractive term.
Ideals in orthorings can now be characterized as follows:

Theorem 3.2. A subset I of the base set R of an orthoring R containing 0 is
an ideal of R if and only if x,y,z,u € R and xy+x,xy+y, zu+z,zu+u € I
together imply (x + 2)(y +u) + (z + 2),zyzu + xz € I.

Proof. This follows from Theorem 10.3.1 of [4] by using the terms intro-
duced in the proof of Theorem 3.1. [

Corollary 3.1. Every ideal I of an orthoring R = (R;+,-,0) is the kernel
of the congruence Oy := {(x,y) E RXR|zy+xz €1 andxy+y € [} on R.
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Proof. It is almost evident that I is the kernel of ©; where Oy is reflex-
ive and compatible. However, the variety of orthorings is congruence per-
mutable according to Theorem 3.1, and by [19], every compatible reflexive
relation on R is a congruence on R (see also Corollary 3.1.13 in [4]). |

Finally, we present a finite basis of ideal terms for orthorings:

Theorem 3.3. The following terms form a basis of ideal terms for ortho-
TINgs:

(((@+y1) +y2) + ((z4ys) + ya)) (@ +2) + (((x+y1) + y2) + ((z+y3) + y4)),
(((z+y1) +y2) + (= +y3) +ya)) (@ +2) + (z + 2),

((z+y1) +y2)((z +y3) +ya)zz + (@ + y1) + y2) (2 + y3) + va),

(@ +y1) +y2)((z + y3) + ya)wz + 2z,

and

Y1 + yo.

Proof. This follows from Theorem 10.3.4 of [4] by using the terms intro-
duced in the proof of Theorem 3.1. [
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