ORTHORINGS

Ivan Chajda
Palacky University, Olomouc
Department of Algebra and Geometry Tomkova 40, 77900 Olomouc, Czech Republic
e-mail: chajda@inf.upol.cz
AND
Helmut Länger
Vienna University of Technology
Institute of Discrete Mathematics and Geometry
Research Unit Algebra
Wiedner Hauptstraße 8-10, 1040 Vienna, Austria
e-mail: h.laenger@tuwien.ac.at

Abstract

Certain ring-like structures, so-called orthorings, are introduced which are in a natural one-to-one correspondence with lattices with 0 every principal ideal of which is an ortholattice. This correspondence generalizes the well-known bijection between Boolean rings and Boolean algebras. It turns out that orthorings have nice congruence and ideal properties.

Keywords: ortholattice, generalized ortholattice, sectionally complemented lattice, orthoring, arithmetical variety, weakly regular variety, congruence kernel, ideal term, basis of ideal terms, subtractive term.
2000 Mathematics Subject Classification: 16Y99, 06C15, 81P10.

[^0]
1. Introduction

The well-known natural bijective correspondence between Boolean algebras and Boolean rings is widely used in applications, see [1] for details. This correspondence was generalized in different ways thus giving rise to natural connections between certain lattice structures on the one hand and certain ring-like structures on the other hand. On the lattice-theoretical side the following structures were considered: orthomodular lattices ([8] and [18]), ortholattices ([2]), bounded lattices with an involutory antiautomorphism ([9], [10], [11], [12], [13] and [14]), pseudocomplemented semilattices ([5]) and $M V$-algebras ([6]). The corresponding ring-like structures were called orthomodular Boolean quasirings or orhomodular pseudorings, orthopseudorings, orthopseudosemirings, Boolean quasirings and pseudorings, respectively. (No name was assigned to the ring-like structures induced by pseudocomplemented semilattices.) In [3] the ring-like structures introduced in [2] and [9], respectively, are related to each other. However, each one of the derived ring-like structures considered so far in this context was endowed with a constant 1 which plays a role similar to the unit element in rings. On the other hand, starting with so-called generalized Boolean algebras, one can derive Boolean rings which need not have a unit element (see [1]). A similar approach was used in [7], where so-called generalized orthomodular lattices (introduced by M.F. Janowitz in [17], see also [16]) were considered. Our aim is to investigate ring-like structures (so-called orthorings) which correspond to lattices with 0 such that every principal lattice ideal is an ortholattice. It should be pointed out that though these lattices do not form a variety, the term equivalent orthorings form a variety and hence allow the application of universal algebraic methods and results. Moreover, we are going to show that - in spite of their generality - orthorings have nice properties.

We recall that an ortholattice is an algebra ($L ; \vee, \wedge,{ }^{\prime}, 0,1$) of type $(2,2,1,0,0)$ such that $(L ; \vee, \wedge, 0,1)$ is a bounded lattice and $\left(x^{\prime}\right)^{\prime}=x$, $(x \vee y)^{\prime}=x^{\prime} \wedge y^{\prime},(x \wedge y)^{\prime}=x^{\prime} \vee y^{\prime}, x \vee x^{\prime}=1$ and $x \wedge x^{\prime}=0$ for all $x, y \in L$.

2. Orthorings

First we introduce the concept of a generalized ortholattice and distinguish generalized ortholattices from other classes of lattices.

Definition 2.1. (cf., e.g., [15]). A lattice $(L ; \vee, \wedge, 0)$ with 0 is called a sectionally complemented lattice if for each $a \in L,([0, a] ; \vee, \wedge)$ is a complemented lattice, i.e. for every $a, b \in L$ with $b \leq a$ there exists an element c of L with $c \leq a, b \vee c=a$ and $b \wedge c=0$.

Definition 2.2. $\left(L ; \vee, \wedge,\left({ }^{a} ; a \in L\right), 0\right)$ where $(L ; \vee, \wedge, 0)$ is a lattice with 0 is called a generalized ortholattice if for each $a \in L,([0, a] ; \vee, \wedge, a, 0, a)$ is an ortholattice.

Of course, if $\left(L ; \vee, \wedge,\left({ }^{a} ; a \in L\right), 0\right)$ is a generalized ortholattice, then $(L ; \vee, \wedge, 0)$ is a sectionally complemented lattice.

Example 2.1. The five-element modular non-distributive lattice is sectionally complemented but it cannot be considered as a generalized ortholattice since it has an odd number of elements.

Example 2.2. If $\left(L ; \vee, \wedge,^{\prime}, 0,1\right)$ is an orthomodular lattice, i.e. an ortholattice satisfying $y=x \vee\left(y \wedge x^{\prime}\right)$ for all $x, y \in L$ with $x \leq y$, then $\left(L ; \vee, \wedge,\left(x \mapsto x^{\prime} \wedge a ; a \in L\right), 0\right)$ is a generalized ortholattice.

Example 2.3. The following Hasse diagram shows a non-orthomodular generalized ortholattice:

Next we introduce ring-like structures corresponding to generalized ortholattices.

Definition 2.3. An orthoring is an algebra $(R ;+, \cdot, 0)$ of type $(2,2,0)$ satisfying

$$
\begin{aligned}
\text { (O1) } & x+y=y+x, \\
\text { (O2) } & x+0=x \\
\text { (O3) } & x y=y x \\
\text { (O4) } & (x y) z=x(y z), \\
\text { (O5) } & x x=x \\
\text { (O6) } & x 0=0 \\
\text { (O7) } & (x y+x)+x=x y \\
\text { (O8) } & ((x+y)+x y)+x y=x+y \\
\text { (O9) } & (x y+x) x=x y+x \\
\text { (O10) } & (x+y) x y=0 \\
\text { (O11) } & ((x+y)+x y) x=x \\
\text { (O12) } & ((x y+x z)+x y z) x=(x y+x z)+x y z \\
\text { and } &
\end{aligned}
$$

(O13) $\quad(x y z+x)(x y+x)=x y+x$.
Remark 2.1. Orthorings $\mathcal{R}=(R ;+, \cdot, 0)$ are of characteristic 2, i.e. $x+x=$ 0 for all $x \in R$.

Proof.

$$
\begin{aligned}
x+x & \stackrel{(\mathrm{O} 1),(\mathrm{O} 2)}{=}(0+x)+x \stackrel{(\mathrm{O} 4),(\mathrm{O} 10)}{=}((x+x) x x+x)+x \stackrel{(\mathrm{O} 3)-(\mathrm{O} 5)}{=} \\
& \stackrel{(\mathrm{O} 3)-(\mathrm{O} 5)}{=}(x(x+x)+x)+x \stackrel{(\mathrm{O} 7)}{=} x(x+x) \stackrel{(\mathrm{O} 3)-(\mathrm{O} 5)}{=}(x+x) x x \stackrel{(\mathrm{O} 10)}{=} 0 .
\end{aligned}
$$

Now we can state our main result describing a natural bijective correspondence between generalized ortholattices and orthorings.

Theorem 2.1. For fixed set L the formulas

$$
\begin{aligned}
& x+y:=(x \wedge y)^{x \vee y}, \\
& x y:=x \wedge y
\end{aligned}
$$

and

$$
\begin{aligned}
& x \vee y:=(x+y)+x y, \\
& x \wedge y:=x y, \\
& x^{y}:=x+y
\end{aligned}
$$

induce mutually inverse bijections between the set of all generalized ortholattices on L and the set of all orthorings on L.

Proof. Let $\mathcal{L}=\left(L ; \vee, \wedge,\left({ }^{a} ; a \in L\right), 0\right)$ be a generalized ortholattice and put $x+y:=(x \wedge y)^{x \vee y}$ and $x y:=x \wedge y$ for all $x, y \in L$. Let $x, y, z \in L$. Then

$$
\begin{aligned}
& (x+y)+x y=\left((x \wedge y)^{x \vee y} \wedge x \wedge y\right)^{(x \wedge y)^{x \vee y} \vee(x \wedge y)}=0^{x \vee y}=x \vee y, \\
& x+0=0^{x}=x, \\
& (x y+x)+x=\left((x \wedge y)^{x}\right)^{x}=x \wedge y=x y, \\
& ((x+y)+x y)+x y=(x \wedge y)^{x \vee y}=x+y, \\
& (x y+x) x=(x \wedge y)^{x} \wedge x=(x \wedge y)^{x}=x y+x, \\
& (x+y) x y=(x \wedge y)^{x \vee y} \wedge x \wedge y=0, \\
& ((x+y)+x y) x=(x \vee y) \wedge x=x, \\
& ((x y+x z)+x y z) x=((x y+x z)+(x y)(x z)) x=((x \wedge y) \vee(x \wedge z)) \wedge x= \\
& \quad=(x \wedge y) \vee(x \wedge z)=(x y+x z)+(x y)(x z)=(x y+x z)+x y z \text { and } \\
& (x y z+x)(x y+x)=(x \wedge y \wedge z)^{x} \wedge(x \wedge y)^{x}=(x \wedge y)^{x}=x y+x .
\end{aligned}
$$

Hence, $(L ;+, \cdot, 0)$ is an orthoring. Moreover,

$$
\begin{aligned}
& (x+y)+x y=x \vee y \\
& x y=x \wedge y
\end{aligned}
$$

and
$x \leq y$ implies $x+y=x^{y}$.

Therefore, the algebra induced by $(L ;+, \cdot, 0)$ according to the formulas given in the theorem coincides with \mathcal{L}.

Conversely, let $\mathcal{R}=(L ;+, \cdot, 0)$ be an orthoring and put $x \vee y:=$ $(x+y)+x y, x \wedge y:=x y$ and $x^{y}:=x+y$ for all $x, y \in L$. Let $(L ; \leq)$ denote the poset corresponding to the meet-semilattice $(L ; \cdot)$ and $x, y, z \in L$. Then

$$
\begin{aligned}
& x(x \vee y)=x((x+y)+x y) \stackrel{(\mathrm{O} 3)}{=}((x+y)+x y) x \stackrel{(\mathrm{O} 11)}{=} x, \text { i.e. } x \leq x \vee y, \\
& y(x \vee y)=y((x+y)+x y) \stackrel{(\mathrm{O} 1),(\mathrm{O} 3)}{=}((y+x)+y x) y \stackrel{(\mathrm{O} 11)}{=} y, \text { i.e. } y \leq x \vee y, \\
& x, y \leq z \text { implies }(x \vee y) z=((x+y)+x y) z \stackrel{(\mathrm{O} 3),(\mathrm{O} 4)}{=}((z x+z y)+z x y) z \\
& \quad(\mathrm{O} 4),(\mathrm{O} 12) \\
& = \\
& \\
& (z x+z y)+z x y{ }^{(\mathrm{O} 3),(\mathrm{O} 4)}(x+y)+x y=x \vee y, \text { i.e. } x \vee y \leq z,
\end{aligned}
$$ $x \leq y$ implies $x^{y} y=(x+y) y \stackrel{(\mathrm{O} 3)}{=}(y x+y) y \stackrel{(\mathrm{O} 9)}{=} y x+y \stackrel{(\mathrm{O} 3)}{=} x+y=x^{y}$, i.e. $x^{y} \leq y$, $x \leq y$ implies $\left(x^{y}\right)^{y}=(x+y)+y \stackrel{(\mathrm{O} 3)}{=}(y x+y)+y \stackrel{(\mathrm{O} 7)}{=} y x \stackrel{(\mathrm{O} 3)}{=} x$, $x \leq y \leq z$ implies $y^{z} x^{z}=(y+z)(x+z) \stackrel{(\mathrm{O} 3),(\mathrm{O} 4)}{=}(z y x+z)(z y+z)$

$$
\stackrel{(\mathrm{O} 4),(\mathrm{O} 13)}{=} z y+z \stackrel{(\mathrm{O} 3)}{=} y+z=y^{z}, \text { i.e. } y^{z} \leq x^{z} \text { and }
$$

$x \leq y$ implies $x \wedge x^{y}=x(x+y) \stackrel{(\mathrm{O}),(\mathrm{O} 4)}{=}(x+y) x y \stackrel{(\mathrm{O} 10)}{=} 0$.

Hence $\left(L ; \vee, \wedge,\left({ }^{a} ; a \in L\right), 0\right)$ is a generalized ortholattice. Moreover,

$$
\begin{aligned}
& (x \wedge y)^{x \vee y}=x y+((x+y)+x y) \stackrel{(\mathrm{O} 1)}{=}((x+y)+x y)+x y \stackrel{(\mathrm{O})}{=} x+y \text { and } \\
& x \wedge y=x y .
\end{aligned}
$$

This shows that the algebra induced by $\left(L ; \vee, \wedge,\left({ }^{a} ; a \in L\right), 0\right)$ according to the formulas of the theorem coincides with \mathcal{R}.

Remark 2.2. If $\left(L ; \vee, \wedge,^{\prime}, 0,1\right)$ is a Boolean algebra, then $x+y=(x \wedge y)^{x \vee y}$ is the well-known symmetric difference since $\left(x \wedge y^{\prime}\right) \vee\left(x^{\prime} \wedge y\right)=(x \wedge y)^{\prime} \wedge$ $(x \vee y)=(x \wedge y)^{x \vee y}$ for all $x, y \in L$.

Comparing the definition of an orthoring to the definition of a Boolean pseudoring introduced in [7] and comparing the definition of a generalized ortholattice with that of a generalized orthomodular lattice (cf. [17]), we obtain

Theorem 2.2. An orthoring $(R ;+, \cdot, 0)$ is a Boolean pseudoring if and only if $(x+y) x=x+x y$ and $(x y z+x) y=x y z+x y$ for all $x, y, z \in R$. A generalized ortholattice $\left(L ; \vee, \wedge,\left({ }^{a} ; a \in L\right), 0\right)$ is a generalized orthomodular lattice if and only if $x^{z} \wedge y=x^{y}$ for all $x, y, z \in L$ with $x \leq y \leq z$.

Proof. The second assertion can be proved as follows: Let $\mathcal{L}=(L ; \vee, \wedge$, $\left.\left({ }^{a} ; a \in L\right), 0\right)$ be a generalized ortholattice. If \mathcal{L} is a generalized orthomodular lattice, then $x^{z} \wedge y=x^{y}$ for all $x, y, z \in L$ with $x \leq y \leq z$ according to the definition of a generalized orthomodular lattice. Conversely, if $x^{z} \wedge y=x^{y}$ for all $x, y, z \in L$ with $x \leq y \leq z$, then $x \vee\left(y \wedge x^{z}\right)=x \vee x^{y}=y$ for all $x, y, z \in L$ with $x \leq y \leq z$ and, hence, $\left([0, z] ; \vee, \wedge,{ }^{z}, 0, z\right)$ is orthomodular for all $z \in L$. Therefore, \mathcal{L} is a generalized orthomodular lattice.

3. Congruence and ideal properties

For an overview on congruence conditions, their characterizations and the theory of ideals in universal algebras, see [4].

A variety is called arithmetical if it is both congruence permutable and congruence distributive. A variety with a constant term 0 is called weakly regular if any congruence of an algebra belonging to this variety is determined by its 0-class.

It is easy to see that the congruence lattice of an orthoring is a sublattice of the congruence lattice of the corresponding sectionally complemented lattice. Since it is well known that sectionally complemented lattices are arithmetical and weakly regular (see, e.g., [15]), this carries over to orthorings.

Here we will provide a different (and direct) proof of this result.

Theorem 3.1. Orthorings are arithmetical and weakly regular.

Proof. Consider the terms

$$
\begin{aligned}
& t_{1}(x, y):=x y+x \\
& t_{2}(x, y):=x y+y \\
& t(x, y, z, u):=(y+u)+z \text { and } \\
& m(x, y, z):=(x y+y z)+z x
\end{aligned}
$$

We show that t_{1}, t_{2} and t satisfy the identities

$$
\begin{aligned}
& t_{1}(x, x)=t_{2}(x, x)=0 \\
& t\left(x, y, t_{1}(x, y), t_{2}(x, y)\right)=x \text { and } \\
& t(x, y, 0,0)=y
\end{aligned}
$$

from which it follows that orthorings are permutable and weakly regular according to Theorem 6.4.11 of [4]. Moreover, we prove that m is a majority term, i.e. it satisfies

$$
m(x, x, y)=m(x, y, x)=m(y, x, x)=x
$$

from which we obtain that ortholattices are congruence distributive according to Corollary 3.2.4 of [4].

The following calculations yield the desired identities:

$$
\begin{aligned}
& (x+x y)+x y=\left((x \wedge y)^{x} \wedge(x \wedge y)\right)^{(x \wedge y)^{x} \vee(x \wedge y)}=0^{x}=x \\
& t_{1}(x, x)=x x+x \stackrel{(\mathrm{O} 5)}{=} x+x=0 \\
& t_{2}(x, x)=x x+x \stackrel{(\mathrm{O} 5)}{=} x+x=0 \\
& t\left(x, y, t_{1}(x, y), t_{2}(x, y)\right)=(y+(x y+y))+(x y+x)^{(\mathrm{O} 1),(\mathrm{O} 3)}= \\
& \quad(\mathrm{OO}),(\mathrm{O} 3) \\
& \quad((y x+y)+y)+(x y+x) \stackrel{(\mathrm{O} 7)}{=} y x+(x y+x) \stackrel{(\mathrm{O} 1),(\mathrm{O} 3),(\mathrm{O} 3)}{=}(x+x y)+x y=x
\end{aligned}
$$

$$
\begin{aligned}
& t(x, y, 0,0)=(y+0)+0 \stackrel{(\mathrm{O} 2)}{=} y, \\
& m(x, x, y)=(x x+x y)+y x \stackrel{(\mathrm{O} 3),(\mathrm{O} 5)}{=}(x+x y)+x y=x, \\
& m(x, y, x)=(x y+y x)+x x \stackrel{(\mathrm{O} 3),(\mathrm{O} 5)}{=}(x y+x y)+x \stackrel{(\mathrm{O}),(\mathrm{O} 2)}{=} x \text { and } \\
& m(y, x, x)=(y x+x x)+x y \stackrel{(\mathrm{O} 1),(\mathrm{OO}),(\mathrm{O} 5)}{=}(x+x y)+x y=x .
\end{aligned}
$$

Let \mathcal{V} be a variety with a constant term $0, \mathcal{A}$ an algebra belonging to \mathcal{V} and B a subset of the carrier set of \mathcal{A}. A term $t\left(x_{1}, \ldots, x_{n}\right)$ is called an ideal term with respect to the variables $x_{i}, i \in I,(I \subseteq\{1, \ldots, n\})$ if $t\left(x_{1}, \ldots, x_{n}\right)=0$ whenever $x_{i}=0$ for all $i \in I$. Let $t\left(x_{1}, \ldots, x_{n}\right)$ be an ideal term with respect to the variables $x_{i}, i \in I . B$ is called closed with respect to t if $t\left(a_{1}, \ldots, a_{n}\right) \in B$ provided $a_{1}, \ldots, a_{n} \in A$ and $a_{i} \in B$ for all $i \in I . B$ is called an ideal of \mathcal{A} if B is closed with respect to all ideal terms. A set T of ideal terms is called a basis of ideal terms if a subset of the carrier set of an algebra \mathcal{C} belonging to \mathcal{V} is an ideal of \mathcal{C} whenever it is closed with respect to all ideal terms belonging to T. If Θ is a congruence on \mathcal{A}, then the congruence class $[0] \Theta$ of 0 with respect to Θ is called the conguence kernel of Θ. It is easy to see that every congruence kernel is an ideal. If \mathcal{V} has a so-called subtractive term, i.e. a binary term s satisfying $s(x, 0)=x$ and $s(x, x)=0$, then, conversely, every ideal is a congruence kernel (cf. Theorems 6.6.11 and 10.1.10 of [4]). This is the case with orthorings, because the term $s(x, y):=x+y$ serves as a subtractive term.

Ideals in orthorings can now be characterized as follows:

Theorem 3.2. A subset I of the base set R of an orthoring \mathcal{R} containing 0 is an ideal of \mathcal{R} if and only if $x, y, z, u \in R$ and $x y+x, x y+y, z u+z, z u+u \in I$ together imply $(x+z)(y+u)+(x+z), x y z u+x z \in I$.

Proof. This follows from Theorem 10.3.1 of [4] by using the terms introduced in the proof of Theorem 3.1.

Corollary 3.1. Every ideal I of an orthoring $\mathcal{R}=(R ;+, \cdot, 0)$ is the kernel of the congruence $\Theta_{I}:=\{(x, y) \in R \times R \mid x y+x \in I$ and $x y+y \in I\}$ on \mathcal{R}.

Proof. It is almost evident that I is the kernel of Θ_{I} where Θ_{I} is reflexive and compatible. However, the variety of orthorings is congruence permutable according to Theorem 3.1, and by [19], every compatible reflexive relation on \mathcal{R} is a congruence on \mathcal{R} (see also Corollary 3.1.13 in [4]).

Finally, we present a finite basis of ideal terms for orthorings:
Theorem 3.3. The following terms form a basis of ideal terms for orthorings:

0 ,
$\left(\left(\left(x+y_{1}\right)+y_{2}\right)+\left(\left(z+y_{3}\right)+y_{4}\right)\right)(x+z)+\left(\left(\left(x+y_{1}\right)+y_{2}\right)+\left(\left(z+y_{3}\right)+y_{4}\right)\right)$,
$\left(\left(\left(x+y_{1}\right)+y_{2}\right)+\left(\left(z+y_{3}\right)+y_{4}\right)\right)(x+z)+(x+z)$,
$\left(\left(x+y_{1}\right)+y_{2}\right)\left(\left(z+y_{3}\right)+y_{4}\right) x z+\left(\left(x+y_{1}\right)+y_{2}\right)\left(\left(z+y_{3}\right)+y_{4}\right)$,
$\left(\left(x+y_{1}\right)+y_{2}\right)\left(\left(z+y_{3}\right)+y_{4}\right) x z+x z$,
and
$y_{1}+y_{2}$.

Proof. This follows from Theorem 10.3.4 of [4] by using the terms introduced in the proof of Theorem 3.1.

References

[1] G. Birkhoff, Lattice Theory, third edition, AMS Colloquium Publ. 25, Providence, RI, 1979.
[2] I. Chajda, Pseudosemirings induced by ortholattices, Czechoslovak Math. J. 46 (1996), 405-411.
[3] I. Chajda and G. Eigenthaler, A note on orthopseudorings and Boolean quasirings, Österr. Akad. Wiss. Math.-Natur. Kl. Sitzungsber. II 207 (1998), 83-94.
[4] I. Chajda, G. Eigenthaler and H. Länger, Congruence Classes in Universal Algebra, Heldermann Verlag, Lemgo 2003.
[5] I. Chajda and H. Länger, Ring-like operations in pseudocomplemented semilattices, Discuss. Math. Gen. Algebra Appl. 20 (2000), 87-95.
[6] I. Chajda and H. Länger, Ring-like structures corresponding to MV-algebras via symmetric difference, Österr. Akad. Wiss. Math.-Natur. Kl. Sitzungsber. II, to appear.
[7] I. Chajda, H. Länger and M. Mączyński, Ring-like structures corresponding to generalized orthomodular lattices, Math. Slovaca 54 (2004), 143-150.
[8] G. Dorfer, A. Dvurečenskij and H. Länger, Symmetric difference in orthomodular lattices, Math. Slovaca 46 (1996), 435-444.
[9] D. Dorninger, H. Länger and M. Ma̧czyński, The logic induced by a system of homomorphisms and its various algebraic characterizations, Demonstratio Math. 30 (1997), 215-232.
[10] D. Dorninger, H. Länger and M. Ma̧czyński, On ring-like structures occurring in axiomatic quantum mechanics, Österr. Akad. Wiss. Math.-Natur. Kl. Sitzungsber. II 206 (1997), 279-289.
[11] D. Dorninger, H. Länger and M. Mączyński, On ring-like structures induced by Mackey's probability function, Rep. Math. Phys. 43 (1999), 499-515.
[12] D. Dorninger, H. Länger and M. Ma̧czyński, Lattice properties of ring-like quantum logics, Intern. J. Theor. Phys. 39 (2000), 1015-1026.
[13] D. Dorninger, H. Länger and M. Ma̧czyński, Concepts of measures on ring-like quantum logics, Rep. Math. Phys. 47 (2001), 167-176.
[14] D. Dorninger, H. Länger and M. Mączyński, Ring-like structures with unique symmetric difference related to quantum logic, Discuss. Math. General Algebra Appl. 21 (2001), 239-253.
[15] G. Grätzer, General Lattice Theory, second edition, Birkhäuser Verlag, Basel 1998.
[16] J. Hedlíková, Relatively orthomodular lattices, Discrete Math. 234 (2001), 17-38.
[17] M. F. Janowitz, A note on generalized orthomodular lattices, J. Natur. Sci. Math. 8 (1968), 89-94.
[18] H. Länger, Generalizations of the correspondence between Boolean algebras and Boolean rings to orthomodular lattices, Tatra Mt. Math. Publ. 15 (1998), 97-105.
[19] H. Werner, A Mal'cev condition for admissible relations, Algebra Universalis 3 (1973), 263.

[^0]: *Research supported by ÖAD, Cooperation between Austria and Czech Republic in Science and Technology, grant No. 2003/1.

