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Abstract

It is well known that a semigroup S is a Clifford semigroup if and
only if S is a strong semilattice of groups. We have recently extended
this important result from semigroups to semirings by showing that a
semiring S is a Clifford semiring if and only if S is a strong distributive
lattice of skew-rings. In this paper, we introduce the notions of Clifford
semidomain and Clifford semifield. Some structure theorems for these
semirings are obtained.
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1. INTRODUCTION

Recall that a semiring (S;+,-) is a type (2,2) algebra whose semigroup
reducts (S;+) and (S;-) are connected by distributivity, that is, a(b+¢) =
ab + ac and (b + c)a = ba + ca for all a,b,c € S. We call a semiring
(S;+,-) additive regular if for every element a € S there exists an element
x € S such that a + x + a = a. Additive regular semirings were first
studied by J. Zeleznekow [7] in 1981. We call a semiring (S; +, -) an additive
inverse semiring if (S;+) is an additive inverse semigroup. Additive inverse
semirings were first studied by Karvellas [3] in 1974. Throughout this paper,
we always let E1(S) be the set of all additive idempotents of the semiring S.
Also we denote the set of all inverse elements of a in the regular semigroup
(S;+) by V*(a).

We call an element a of a semiring (S;+,-) completely regular (see [6])
if there exists an element x € S such that

(i) a+z+a=naqa,
i) a+z=z+a
and
(iii) ala+z)=a+z.

Naturally, we call a semiring (S; +, -) completely regular ([6]) if every element
a of S is completely regular. The condition (iii) can be replaced by the
condition

(iii") (a+x)a=a+zx.

If a € S is completely regular, and (iii’) is satisfied, then y = z +a+ x €
V*(a) and the conditions (i), (i) and (iii) hold. Moreover, y = x +a+x €
V*(a) is unique and is denoted by a’. Also we proved in [6] (cf. Lemmas
2.5-2.7) the following:

Theorem 1.1. Let S be a completely reqular semiring. Then for any a,b €
S and e € ET(S) we have

() @) =a
) ab = (ab) = a'b,

(i) ab = d't’ and
)

¢ =eand e? =e.
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Recall that an ideal I of a semiring S is a k-ideal of S if a € I and either
a+x €l orx+aclfor some x € S implies z € I. Also, an ideal I of a
semiring S is called a full ideal if ET(S) C I. Again, if I is a k-ideal of a
semiring S, then the quotient semiring of S by I is denoted by S/I.

If S is a completely regular semiring as well as an additive inverse
semiring, then ET(S) is an ideal of S but E*(S) may not be a k-ideal
of S. For instance, let S = {0,a,b} be a semiring with the following
Cayley tables:

o>~ Q O+
- o oo

SO QR
S o oo

Then we can easily see that the additive reduct (S;+) is an additive inverse
semigroup. It is also easy to see that (S; 4+, -) is a completely regular semiring
because a(a+a) = a0 =0 =a+a and b(b+b) = bb = b = b+b hold. In this
example, ET(S) = {0, b} is clearly an ideal of S but since a+b=b € E*(S)
and a ¢ E1(S), ET(S) is not a k-ideal of S.

In view of the above example, we call a completely regular semiring S a
Clifford semiring if S is an additive inverse semiring such that E*(S) forms
a distributive lattice as well as a k-ideal of .S.

According to M.P. Grillet [2], a semiring (S;+,-) is called a skew-ring
if its additive reduct (S;+) is a group.

Definition 1.2. Let D be distributive lattice and {S,, : @ € D} be a family
of pairwise disjoint semirings which are indexed by the elements of D. For
each < 8in D, we now embed S, in Sg via a semiring monomorphism
¢, 5 satisfying the following conditions

(1.1) ¢, = Is,, the identity mapping on S,

(12) 6,,6,, = ., ifa<f<y

(1.3) So[gbowS/g(]sﬁpY - Soéﬁgf)af“Y ifa+p8<y

On S = Uyep Sa we define addition + and multiplication - for a € S,,b €
S, as follows

(14) a+ b = a¢a,a+ﬁ + bd)ﬁ,a-‘rﬁ
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and a-b = c € S,p such that (1.5) ch_, .5 = ad, ., s bDs .. 5
Like the notation of strong semilattice of semigroups, we denote the above
system by S =< D, Sy, ¢, , > and call it the strong distributive lattice D of
the semirings Sy, € D.

In our paper [5], we have proved the following theorem.

Theorem 1.3. A semiring S is a Clifford semiring if and only if S is a
strong distributive lattice of skew-rings. [

By using Theorem 1.3, we see at once that if S is additive commutative,
then S is a Clifford semiring if and only if .S is strong distributive lattice of
rings.

In this paper, we introduce the notions of Clifford semidomain and Clif-
ford semifield. We show that any Artinian semidomain is a Clifford semifield.
Also we prove that a Clifford semiring S with 1 and 0 is k-ideal free if and
only if S is a field or S = {0, 1}.

2. CLIFFORD SEMIFIELDS

Throughout the paper, we let S denote a semiring with commutative ad-
dition. We first introduce the concept of Clifford semidomain and Clifford
semifield.

Definition 2.1. Let S be a semiring with E*(S) # ¢. We say that S is
without additive idempotent divisors if for any a,b € S,ab € ET(S) implies
either a € ET(S) or b € E*(S). Otherwise we say that S has additive
idempotent divisors.

Definition 2.2. Let S be a Clifford semiring with 1 such that 1 ¢ E*(5).
A non additive idempotent element a € S is said to be left invertible if there
exists an element r € S such that ra + 1+ 1’ = 1. In this case, r is called
the left inverse of a. Similarly, we can define right invertible element in a
Clifford semiring. An element is said to be invertible if it is left invertible
as well as right invertible. If a is invertible, we say that a is a unit in S.

Definition 2.3. A Clifford semiring S is called a Clifford semidomain if

(i) 1€ S such that 1 € E*(S),

(ii) S is multiplicative commutative
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and

(iii) S does not contain any additive idempotent divisor.

Example 2.4. Let R be an integral domain with an identity 1z and D be
a distributuve lattice with a greatest element 1p. Then R x D is a Clifford
semidomain.

Definition 2.5. A Clifford semiring S is called a Clifford semifield if

(i) 1€ S such that 1 € E*(S),

(ii) S is multiplicative commutative
and

(iii) every non additive idempotent element of S is a unit.

Example 2.6. Let F be a field and D be a distributuve lattice with a
greatest element 1p. Then F' x D is a Clifford semifield.

Definition 2.7. An ideal P of a semiring S is called a prime ideal of S if
for any two ideals A, B of S such that AB C P implies either A C P or
BCP.

Proposition 2.8. Let S be a Clifford semiring such that (S,-) is commu-
tative. Then an ideal P is prime if and only if ab € P implies either a € P
orbe P.

The proof is similar to a characterizations of prime ideals in semigroups and
we omit the proof. [

Definition 2.9. An ideal M of a semiring S is called a maximal ideal of S
if there exists no ideal I of S such that M &1 ¢S.

It is easy to verify the following lemma:

Lemma 2.10. Let S be a Clifford semiring. Then any maximal ideal of S
s a prime ideal. [

We now prove the following theorem:
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Theorem 2.11. Let S be a Clifford semiring with 1 such that (S,-) is
commutative. Then a k-ideal P is a prime ideal if and only if S/P is a
Clifford semidomain.

Proof. First suppose that a k-ideal P is prime. Let a4+ P,b+ P € S/P be
such that (a+ P)(b+ P) € ET(S/P). Then ab € P. Since P is prime either
a € Porbe P. Soeither a+ P € ET(S/P) or b+ P € E*(S/P). Thus,
S/ P has no additive idempotent divisor. This proves that S/P is a Clifford
semidomain.

Conversely, let a k-ideal P be such that S/P is a Cliffod semidomain.
Let a,b € S be such that ab € P. Then ab+ P € E*(S/P), i.e., (a+ P)(b+
P) € ET(S/P). Since S/P is a Clifford semidomain, so either a + P €
E*(S/P) or b+ P € ET(S/P), i.e., either a € P or b € P. Thus, P is a
prime ideal of S. [

By the definition of Clifford semifield, we now prove the following theorem.

Theorem 2.12. Let S be a Clifford semiring with 1 such that (S,-) is
commutative. Then a k-ideal M is a maximal ideal if and only if S/M is a
Clifford semifield.

Proof. First we suppose that a k-ideal M is maximal. Let a + M ¢
E*(S/M). Then a ¢ M. Let M’ =< M,a >, where < M,a > denotes
the ideal of S generated by M and a. Then M G M ’. Since M is maximal,
M' = S. Thereby, we have 1 = m + sa for some m € M and s € S. This
leads to 1+ M = (m+ M)+ (sa+ M) = ((m+m')+ M)+ (sa+ M). Hence,
1+ M = (sa+M)+((1+1)+ M), ie., (s+M)(a+M)+(1+M)+(1'+ M) =
14 M. This means that a + M is invertible in S/M and hence S/M is a
Clifford semifield.

Conversely, let M be a k-ideal so that S/M is a Cliffod semifield. Let
M &I C S be an ideal of S. Then there exists an element a € I such
that @ ¢ M. This leads to a + M ¢ ET(S/M) and hence there exists an
element s + M € S/M such that (s+ M)(a+ M)+ (1+ M)+ (1'+ M) =
1+ M, ie., sa+1+1 +1 € M. This implies that sa + 1" € M, i.e.,
1+ sae M CI. Also, a € I implies sa € I, and thereby, we have 1 =
1+ s’a+sa € I. Hence, we have I = S and this shows that M is a maximal
ideal of S. ]
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3. ARTINIAN CLIFFORD SEMIRING

Definition 3.1. A Clifford semiring S is called Artinian Clifford semiring
if any descending chain of full ideals of S terminates, i.e. for any descending
chain of full ideals I; D I D .... there exists a positive integer n such that
I, = n+l = dn42 = ...

Example 3.2. Let R be a Artinian ring and D = {0, 1} be the two element
distributuve lattice. Then F' x D is an Artinian Clifford semiring.

We can easily prove that a semiring S is Artinian if and only if any non
empty collection of full ideals contains a minimal element. One can also
easily verify that the homomorphic image of an Artinian Clifford semiring
is again Artinian Clifford.

We first prove two lemmas.

Lemma 3.3. Let S be an Artinian Clifford semiring with 1. Then S has a
finite number of mazimal full ideals.

Proof. Suppose if possible that there exists an infinite sequence {M;} of
distinct maximal full ideals of S. Then we consider the following descending
chain of full ideals M1 :_) M1M2 :_) MlMQMg 2 .

Since S is Artinian, there exists a positive integer n such that My Ms... M,
= MiMs...My,+1. Consequently, we have M Ms...M,, C M,,+; and whence
My, C My, for some k < n [by Lemma 2.10]. But since M} is maximal
ideal of S, we have My = M, +1. This contradicts to the fact that M; are
all distinct. Hence, we obtain the required result. [

Lemma 3.4. FEvery prime ideal of a Clifford semiring S with 1 is a k-
ideal S.

Proof. Let S be a Clifford semiring with 1 and P be a prime ideal of S. Let
a,a+b € P. We prove that b € P. Since a,a+b € P, we have a’ +a+b € P.
This leads to, b(a’ + a) +b* € P, i.e. b> € P. Since P is prime, this shows
that b € P. Hence, P is a k-ideal of S. [

The converse of the above lemma does not hold in general. For instance, we
consider the following example.

Example 3.5. Let R be a ring. Then any ideal I of R is a k-ideal of R but
not a prime ideal of R.
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From Theorem 2.10. and Lemma 3.4, it immediately follows that, every
maximal ideal of a Clifford semiring .S with 1 is a k-ideal of S.

Definition 3.6. Let S be a semiring and A be non-empty subset of S.
Then we call the set A = {z € S : z+a = b for some a,b € S} the k-closure
of A.

Proposition 3.7. If S is a semisimple Artinian Clifford semiring with 1,
then S is a k-closure of sum of finite number of proper k-ideal of S.

Proof. Since S is Artinian Clifford semiring, S has a finite number of
maximal full ideals. Let My, Mo, ..., M,, be the finite number of maximal
full ideals of S such that (i, M; = ET(S) but [; = ﬂk 1 My, # E*(S) for

every . Because each M; is full maximal ideal of S, We see that each M;
is k-ideal and so is each I;. Since M; is maximal, we have I; + M; = S for
every i and I; N M; = E*(9).
Now, S = I, + M;, so we have, for a € S, a = x; + y;, where z; € I;
and yi € M;,i=1,2,...,n. This leads to a + 2} = xk + 2}, + yr € M}, and
= 1x; € I; C My for i # k. Thusa+zz (@€ Niey M; = ET(S9).
Consequently, we have a + lel x, = e for some e € ET(S). Now since
Srjzieh+Ih+..+L,ande=e+e+...+ee€ 1 + o +..+ I, wesee
that a € Iy + Is + ... + I,,. Hence, we have that S C Iy + Is + ... + I,,. The
reverse inclusion is obvious and consequently, S =11 + I + ... + I,,. [

Definition 3.8. Let S be a Clifford semiring. We define a relation 6 on S
by 6 = {(a,b) € Sx S:a+¥ € ET(S)}. One can easily verify that 6 is a
congruence relation on S such that S/0 is a ring.

Let S be a Clifford semidomain. Then S/6 is an integral domain, where
0 is defined in Definition 3.8. Conversely, if S is an additive inverse semiring
such that ET(S) is a k-ideal of S and S/6 is an integral domain, then S
may not be a Clifford semiring. This follows from the following example.

Example 3.9. Let R be an integral domain and Y be a semiring which is
not a distributive lattice but (Y, +) is a band. Then the semiring S = Rx Y
is an additive inverse semiring such that ET(S) = {0} x Y is a k-ideal of
S, where 0 is the zero of the integral domain R. In this semiring, one can
easily see that S/ is is an integral domain but ET(S) is not a distributive
lattice of S. Hence, S is not a Clifford semiring.
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We now formulate an important theorem. This theorem characterizes the
Clifford semidomain.

Theorem 3.10. If S is a Clifford semidomain, then S is, up to the isomor-
phism, a subdirect product of an integral domain and a distributive lattice
with a greatest element.

Proof. Let S be a Clifford semidomain. Then S is a Clifford semiring
and hence S is a strong distributive lattice D of rings R, a € D. Clearly,
D is a bounded distributive lattice with a greatest element. Again since S is
a Clifford semidomain, one can easily show that S/6 is an integral domain,
where 6 is defined in Definition 3.8.

We now define a mapping ¢ : S — S/6 x D by aip = (ab,a), a € R,,.
We can easily see that ¢ is a monomorphism. Also the projection homo-
morphisms map S onto S/0 and D. Thus S is isomorphic to a subdirect
product of an integral domain and a distributive lattice. [

Theorem 3.11. Any Artinian semidomain (Clifford semidomain and
Artinian Clifford semiring) is a Clifford semifield.

Proof. To complete the proof, it suffices to prove that every non additive
idempotent in S is a unit. For this purpose, we let a € S be such that
a & ET(S). We consider the descending chain of full ideals E*(S) + Sa 2
ET(S)+Sa? 2D ET(S)+Sa®>D ...

Since S is an Artinian semidomain, there exists a positive integer n such
that Et(S)+Sa™ = E*(S)+Sa™!. Now, it is clear that a™ € ET(S)+Sa™
and therefore there exists e € E*(S) and s € S such that a" = e + sa" ™1,
i.e., e+sa™t 1+ (a") = a"+(a™)’. This leads to e+ (sa+1')a" = a"+(a") =
a" Ya+d)=a+d. Clarly, a+d',e € ET(S) and ET(S) is a k-ideal of
S. Hence, (sa + 1")a™ € ET(S). Because S does not contain any additive
idempotent divisor of S and a ¢ E*(S), we must have sa + 1" € E*(S).
This leads to sa + 1’ = f for some f € ET(S). Hence, we deduce that
sa+1+1 =1+ f =1 and consequently a is left invertible so that a is unit
of S. This proves that S is a Clifford semifield. [

Theorem 3.12. If S is an Artinian Clifford semiring, then every proper
prime ideal of S is a mazximal ideal.

Proof. Let P be any proper prime ideal of S. Then P is a k-ideal of S
and S/P is a Clifford semidomain. Moreover, S/P is an Artinian Clifford
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semiring. Hence, by Theorem 3.11, S/P is a Clifford semifield. Conse-
quently, P is a maximal ideal of S. [

The proof of the next Proposition is similar to the proof of Theorem 3.10.
So, we omit the proof.

Proposition 3.13. If S is a Clifford semifield, then S is, up to the isomor-
phisms, a subdirect product of a field and a distributive lattice with a greatest
element. [ ]

Recall that a semiring S is full ideal free if S has only two ideals, namely,
E*t(S) and the semiring S itself. Also, a semiring S with 0 is k-ideal
free if S has only two k-ideals, namely, the ideal {0} and the semiring
S itself.

Finally, we prove the following two theorems.

Theorem 3.14. A multiplicative commutative Clifford semiring S with 1
1s a Clifford semifield if and only if S is full ideal free.

Proof. First suppose that S is a Clifford semifield and I be an ideal of
S such that E*(S)GI. Then there exists an element a € I such that
a & E*(S). Now for a € S,a € ET(S), there exists an element r € S such
that ar+1+1"=1. Nowar € T and also 1+1' € I. Thus, 1 =ar+1+1 €1
and hence I = S.

Conversely, let S be a Clifford semiring which is full ideal free. Let
a € S be such that a € ET(S). Now Sa + E1(S) is an ideal of S such that
E*(S)@Sa+ E*(S). So Sa+ E*(S) = S. Hence, 1 = ra + e for some
reSandeec ET(S). Thenl=1+1+1=rat+e+1+1=ra+1+1.
Thus a is unit in S and consequently, S is a Clifford semifield. [

Theorem 3.15. An additive commutative and multiplicative commutative
Clifford semiring S with 1 and 0 is k-ideal free if and only if S is a field
or S =1{0,1}.

Proof. First suppose that S is a k-ideal free. Now ET(S) is a k-ideal of S.
So either ET(S) = {0} or ET(S) = S. Let ET(S) = {0}. Then S is a ring
with 1. Let a € S be such that a # 0. Then Sa is a k-ideal of S. Hence,
Sa = S and thus we get 1 = ta for some t € S. Consequently, S is a field.
Next, let ET(S) = S. Then every element of S is additive idempotent
and, hence, multiplicative idempotent. Now, Sa is a non-zero ideal of S for



CLIFFORD SEMIFIELDS 135

every a(# 0) € S. Let ra+b = ta for some r,t € S. Then a+ra+b = a+ta,
i.e., a + b= a. Therefore, ba + b> = ba, i.e., ba + b = ba. Then b = ba € Sa.
Hence, Sa is a k-ideal of S. Thus Sa = S and it follows that, ta = 1 for
some t € S i.e., ta’? = a. Then ta = a i.e., a = 1. Consequently, S = {0, 1}.

Converse is obvious. [
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