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Abstract

It is well known that a semigroup S is a Clifford semigroup if and
only if S is a strong semilattice of groups. We have recently extended
this important result from semigroups to semirings by showing that a
semiring S is a Clifford semiring if and only if S is a strong distributive
lattice of skew-rings. In this paper, we introduce the notions of Clifford
semidomain and Clifford semifield. Some structure theorems for these
semirings are obtained.

Keywords: skew-ring, Clifford semiring, Clifford semidomain, Clif-
ford semifield, Artinian Clifford semiring.

2000 Mathematics Subject Classification: 16Y60, 20N10, 20M07,
12K10.

∗The research is supported by CSIR, India.



126 M.K. Sen, S.K. Maity and K.-P. Shum

1. Introduction

Recall that a semiring (S; +, ·) is a type (2, 2) algebra whose semigroup
reducts (S; +) and (S; ·) are connected by distributivity, that is, a(b + c) =
ab + ac and (b + c)a = ba + ca for all a, b, c ∈ S. We call a semiring
(S; +, ·) additive regular if for every element a ∈ S there exists an element
x ∈ S such that a + x + a = a. Additive regular semirings were first
studied by J. Zeleznekow [7] in 1981. We call a semiring (S; +, ·) an additive
inverse semiring if (S; +) is an additive inverse semigroup. Additive inverse
semirings were first studied by Karvellas [3] in 1974. Throughout this paper,
we always let E+(S) be the set of all additive idempotents of the semiring S.
Also we denote the set of all inverse elements of a in the regular semigroup
(S; +) by V +(a).

We call an element a of a semiring (S; +, ·) completely regular (see [6])
if there exists an element x ∈ S such that

(i) a + x + a = a,

(ii) a + x = x + a

and

(iii) a(a + x) = a + x.

Naturally, we call a semiring (S; +, ·) completely regular ([6]) if every element
a of S is completely regular. The condition (iii) can be replaced by the
condition

(iii’) (a + x)a = a + x.

If a ∈ S is completely regular, and (iii’) is satisfied, then y = x + a + x ∈
V +(a) and the conditions (i), (ii) and (iii) hold. Moreover, y = x + a + x ∈
V +(a) is unique and is denoted by a′. Also we proved in [6] (cf. Lemmas
2.5-2.7) the following:

Theorem 1.1. Let S be a completely regular semiring. Then for any a, b ∈
S and e ∈ E+(S) we have

(i) (a′)′ = a,

(ii) ab′ = (ab)′ = a′b,

(iii) ab = a′b′ and

(iv) e′ = e and e2 = e.
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Recall that an ideal I of a semiring S is a k-ideal of S if a ∈ I and either
a + x ∈ I or x + a ∈ I for some x ∈ S implies x ∈ I. Also, an ideal I of a
semiring S is called a full ideal if E+(S) ⊆ I. Again, if I is a k-ideal of a
semiring S, then the quotient semiring of S by I is denoted by S/I.

If S is a completely regular semiring as well as an additive inverse
semiring, then E+(S) is an ideal of S but E+(S) may not be a k-ideal
of S. For instance, let S = {0, a, b} be a semiring with the following
Cayley tables:

+ 0 a b

0 0 a b
a a 0 b
b b b b

· 0 a b

0 0 0 0
a 0 0 0
b 0 0 b .

Then we can easily see that the additive reduct (S; +) is an additive inverse
semigroup. It is also easy to see that (S; +, ·) is a completely regular semiring
because a(a+a) = a0 = 0 = a+a and b(b+ b) = bb = b = b+ b hold. In this
example, E+(S) = {0, b} is clearly an ideal of S but since a+b = b ∈ E+(S)
and a /∈ E+(S), E+(S) is not a k-ideal of S.

In view of the above example, we call a completely regular semiring S a
Clifford semiring if S is an additive inverse semiring such that E+(S) forms
a distributive lattice as well as a k-ideal of S.

According to M.P. Grillet [2], a semiring (S; +, ·) is called a skew-ring
if its additive reduct (S; +) is a group.

Definition 1.2. Let D be distributive lattice and {Sα : α ∈ D} be a family
of pairwise disjoint semirings which are indexed by the elements of D. For
each α ≤ β in D, we now embed Sα in Sβ via a semiring monomorphism
φ

α,β
satisfying the following conditions

(1.1) φα,α = ISα , the identity mapping on Sα

(1.2) φ
α,β

φ
β,γ

= φα,γ if α ≤ β ≤ γ

(1.3) Sαφα,γSβφ
β,γ
⊆ Sαβφ

αβ,γ
if α + β ≤ γ

On S =
⋃

α∈D Sα we define addition + and multiplication · for a ∈ Sα, b ∈
Sβ, as follows

(1.4) a + b = aφ
α,α+β

+ bφ
β,α+β
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and a · b = c ∈ Sαβ such that (1.5) cφ
αβ,α+β

= aφ
α,α+β

· bφ
β,α+β

.
Like the notation of strong semilattice of semigroups, we denote the above
system by S =< D, Sα, φ

α,β
> and call it the strong distributive lattice D of

the semirings Sα, α ∈ D.
In our paper [5], we have proved the following theorem.

Theorem 1.3. A semiring S is a Clifford semiring if and only if S is a
strong distributive lattice of skew-rings.

By using Theorem 1.3, we see at once that if S is additive commutative,
then S is a Clifford semiring if and only if S is strong distributive lattice of
rings.

In this paper, we introduce the notions of Clifford semidomain and Clif-
ford semifield. We show that any Artinian semidomain is a Clifford semifield.
Also we prove that a Clifford semiring S with 1 and 0 is k-ideal free if and
only if S is a field or S = {0, 1}.

2. Clifford semifields

Throughout the paper, we let S denote a semiring with commutative ad-
dition. We first introduce the concept of Clifford semidomain and Clifford
semifield.

Definition 2.1. Let S be a semiring with E+(S) 6= φ. We say that S is
without additive idempotent divisors if for any a, b ∈ S, ab ∈ E+(S) implies
either a ∈ E+(S) or b ∈ E+(S). Otherwise we say that S has additive
idempotent divisors.

Definition 2.2. Let S be a Clifford semiring with 1 such that 1 /∈ E+(S).
A non additive idempotent element a ∈ S is said to be left invertible if there
exists an element r ∈ S such that ra + 1 + 1′ = 1. In this case, r is called
the left inverse of a. Similarly, we can define right invertible element in a
Clifford semiring. An element is said to be invertible if it is left invertible
as well as right invertible. If a is invertible, we say that a is a unit in S.

Definition 2.3. A Clifford semiring S is called a Clifford semidomain if

(i) 1 ∈ S such that 1 6∈ E+(S),

(ii) S is multiplicative commutative
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and

(iii) S does not contain any additive idempotent divisor.

Example 2.4. Let R be an integral domain with an identity 1R and D be
a distributuve lattice with a greatest element 1D. Then R×D is a Clifford
semidomain.

Definition 2.5. A Clifford semiring S is called a Clifford semifield if

(i) 1 ∈ S such that 1 6∈ E+(S),

(ii) S is multiplicative commutative

and

(iii) every non additive idempotent element of S is a unit.

Example 2.6. Let F be a field and D be a distributuve lattice with a
greatest element 1D. Then F ×D is a Clifford semifield.

Definition 2.7. An ideal P of a semiring S is called a prime ideal of S if
for any two ideals A,B of S such that AB ⊆ P implies either A ⊆ P or
B ⊆ P .

Proposition 2.8. Let S be a Clifford semiring such that (S, ·) is commu-
tative. Then an ideal P is prime if and only if ab ∈ P implies either a ∈ P
or b ∈ P .

The proof is similar to a characterizations of prime ideals in semigroups and
we omit the proof.

Definition 2.9. An ideal M of a semiring S is called a maximal ideal of S
if there exists no ideal I of S such that M ⊆/ I ⊆/ S.

It is easy to verify the following lemma:

Lemma 2.10. Let S be a Clifford semiring. Then any maximal ideal of S
is a prime ideal.

We now prove the following theorem:
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Theorem 2.11. Let S be a Clifford semiring with 1 such that (S, ·) is
commutative. Then a k-ideal P is a prime ideal if and only if S/P is a
Clifford semidomain.

Proof. First suppose that a k-ideal P is prime. Let a + P, b + P ∈ S/P be
such that (a+P )(b+P ) ∈ E+(S/P ). Then ab ∈ P . Since P is prime either
a ∈ P or b ∈ P . So either a + P ∈ E+(S/P ) or b + P ∈ E+(S/P ). Thus,
S/P has no additive idempotent divisor. This proves that S/P is a Clifford
semidomain.

Conversely, let a k-ideal P be such that S/P is a Cliffod semidomain.
Let a, b ∈ S be such that ab ∈ P . Then ab+P ∈ E+(S/P ), i.e., (a+P )(b+
P ) ∈ E+(S/P ). Since S/P is a Clifford semidomain, so either a + P ∈
E+(S/P ) or b + P ∈ E+(S/P ), i.e., either a ∈ P or b ∈ P . Thus, P is a
prime ideal of S.

By the definition of Clifford semifield, we now prove the following theorem.

Theorem 2.12. Let S be a Clifford semiring with 1 such that (S, ·) is
commutative. Then a k-ideal M is a maximal ideal if and only if S/M is a
Clifford semifield.

Proof. First we suppose that a k-ideal M is maximal. Let a + M 6∈
E+(S/M). Then a 6∈ M . Let M ′ =< M, a >, where < M, a > denotes
the ideal of S generated by M and a. Then M ⊆/ M ′. Since M is maximal,
M ′ = S. Thereby, we have 1 = m + sa for some m ∈ M and s ∈ S. This
leads to 1+M = (m+M)+(sa+M) = ((m+m′)+M)+(sa+M). Hence,
1+M = (sa+M)+((1+1′)+M), i.e., (s+M)(a+M)+(1+M)+(1′+M) =
1 + M . This means that a + M is invertible in S/M and hence S/M is a
Clifford semifield.

Conversely, let M be a k-ideal so that S/M is a Cliffod semifield. Let
M ⊆/ I ⊆ S be an ideal of S. Then there exists an element a ∈ I such
that a 6∈ M . This leads to a + M 6∈ E+(S/M) and hence there exists an
element s + M ∈ S/M such that (s + M)(a + M) + (1 + M) + (1′ + M) =
1 + M , i.e., sa + 1 + 1′ + 1′ ∈ M . This implies that sa + 1′ ∈ M , i.e.,
1 + s′a ∈ M ⊆ I. Also, a ∈ I implies sa ∈ I, and thereby, we have 1 =
1+ s′a+ sa ∈ I. Hence, we have I = S and this shows that M is a maximal
ideal of S.
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3. Artinian Clifford semiring

Definition 3.1. A Clifford semiring S is called Artinian Clifford semiring
if any descending chain of full ideals of S terminates, i.e. for any descending
chain of full ideals I1 ⊇ I2 ⊇ .... there exists a positive integer n such that
In = In+1 = In+2 = ....

Example 3.2. Let R be a Artinian ring and D = {0, 1} be the two element
distributuve lattice. Then F ×D is an Artinian Clifford semiring.

We can easily prove that a semiring S is Artinian if and only if any non
empty collection of full ideals contains a minimal element. One can also
easily verify that the homomorphic image of an Artinian Clifford semiring
is again Artinian Clifford.

We first prove two lemmas.

Lemma 3.3. Let S be an Artinian Clifford semiring with 1. Then S has a
finite number of maximal full ideals.

Proof. Suppose if possible that there exists an infinite sequence {Mi} of
distinct maximal full ideals of S. Then we consider the following descending
chain of full ideals M1 ⊇ M1M2 ⊇ M1M2M3 ⊇ . . .

Since S is Artinian, there exists a positive integer n such that M1M2...Mn

= M1M2...Mn+1. Consequently, we have M1M2...Mn ⊆ Mn+1 and whence
Mk ⊆ Mn+1 for some k ≤ n [by Lemma 2.10]. But since Mk is maximal
ideal of S, we have Mk = Mn+1. This contradicts to the fact that Mi are
all distinct. Hence, we obtain the required result.

Lemma 3.4. Every prime ideal of a Clifford semiring S with 1 is a k-
ideal S.

Proof. Let S be a Clifford semiring with 1 and P be a prime ideal of S. Let
a, a+b ∈ P . We prove that b ∈ P . Since a, a+b ∈ P , we have a′+a+b ∈ P .
This leads to, b(a′ + a) + b2 ∈ P , i.e. b2 ∈ P . Since P is prime, this shows
that b ∈ P . Hence, P is a k-ideal of S.

The converse of the above lemma does not hold in general. For instance, we
consider the following example.

Example 3.5. Let R be a ring. Then any ideal I of R is a k-ideal of R but
not a prime ideal of R.
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From Theorem 2.10. and Lemma 3.4, it immediately follows that, every
maximal ideal of a Clifford semiring S with 1 is a k-ideal of S.

Definition 3.6. Let S be a semiring and A be non-empty subset of S.
Then we call the set A = {x ∈ S : x+a = b for some a, b ∈ S} the k-closure
of A.

Proposition 3.7. If S is a semisimple Artinian Clifford semiring with 1,
then S is a k-closure of sum of finite number of proper k-ideal of S.

Proof. Since S is Artinian Clifford semiring, S has a finite number of
maximal full ideals. Let M1,M2, ...,Mn be the finite number of maximal
full ideals of S such that

⋂n
i=1 Mi = E+(S) but Ii =

⋂n
k=1
k 6=i

Mk 6= E+(S) for

every i. Because each Mi is full maximal ideal of S, we see that each Mi

is k-ideal and so is each Ii. Since Mi is maximal, we have Ii + Mi = S for
every i and Ii ∩Mi = E+(S).

Now, S = Ii + Mi, so we have, for a ∈ S, a = xi + yi, where xi ∈ Ii

and yi ∈ Mi, i = 1, 2, ..., n. This leads to a + x′k = xk + x′k + yk ∈ Mk and
x′i = 1′xi ∈ Ii ⊆ Mk for i 6= k. Thus a +

∑n
i=1 x′i ∈

⋂n
i=1 Mi = E+(S).

Consequently, we have a +
∑n

i=1 x′i = e for some e ∈ E+(S). Now since∑n
i=1 xi ∈ I1 + I2 + ... + In and e = e + e + ... + e ∈ I1 + I2 + ... + In, we see

that a ∈ I1 + I2 + ... + In. Hence, we have that S ⊆ I1 + I2 + ... + In. The
reverse inclusion is obvious and consequently, S = I1 + I2 + ... + In.

Definition 3.8. Let S be a Clifford semiring. We define a relation θ on S
by θ = {(a, b) ∈ S × S : a + b′ ∈ E+(S)}. One can easily verify that θ is a
congruence relation on S such that S/θ is a ring.

Let S be a Clifford semidomain. Then S/θ is an integral domain, where
θ is defined in Definition 3.8. Conversely, if S is an additive inverse semiring
such that E+(S) is a k-ideal of S and S/θ is an integral domain, then S
may not be a Clifford semiring. This follows from the following example.

Example 3.9. Let R be an integral domain and Y be a semiring which is
not a distributive lattice but (Y,+) is a band. Then the semiring S = R×Y
is an additive inverse semiring such that E+(S) = {0} × Y is a k-ideal of
S, where 0 is the zero of the integral domain R. In this semiring, one can
easily see that S/θ is is an integral domain but E+(S) is not a distributive
lattice of S. Hence, S is not a Clifford semiring.
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We now formulate an important theorem. This theorem characterizes the
Clifford semidomain.

Theorem 3.10. If S is a Clifford semidomain, then S is, up to the isomor-
phism, a subdirect product of an integral domain and a distributive lattice
with a greatest element.

Proof. Let S be a Clifford semidomain. Then S is a Clifford semiring
and hence S is a strong distributive lattice D of rings Rα , α ∈ D. Clearly,
D is a bounded distributive lattice with a greatest element. Again since S is
a Clifford semidomain, one can easily show that S/θ is an integral domain,
where θ is defined in Definition 3.8.

We now define a mapping ψ : S → S/θ ×D by aψ = (aθ, α), a ∈ Rα .
We can easily see that ψ is a monomorphism. Also the projection homo-
morphisms map Sψ onto S/θ and D. Thus S is isomorphic to a subdirect
product of an integral domain and a distributive lattice.

Theorem 3.11. Any Artinian semidomain (Clifford semidomain and
Artinian Clifford semiring) is a Clifford semifield.

Proof. To complete the proof, it suffices to prove that every non additive
idempotent in S is a unit. For this purpose, we let a ∈ S be such that
a 6∈ E+(S). We consider the descending chain of full ideals E+(S) + Sa ⊇
E+(S) + Sa2 ⊇ E+(S) + Sa3 ⊇ . . ..

Since S is an Artinian semidomain, there exists a positive integer n such
that E+(S)+San = E+(S)+San+1. Now, it is clear that an ∈ E+(S)+San

and therefore there exists e ∈ E+(S) and s ∈ S such that an = e + san+1,
i.e., e+san+1+(an)′ = an+(an)′. This leads to e+(sa+1′)an = an+(an)′ =
an−1(a + a′) = a + a′. Clearly, a + a′, e ∈ E+(S) and E+(S) is a k-ideal of
S. Hence, (sa + 1′)an ∈ E+(S). Because S does not contain any additive
idempotent divisor of S and a 6∈ E+(S), we must have sa + 1′ ∈ E+(S).
This leads to sa + 1′ = f for some f ∈ E+(S). Hence, we deduce that
sa + 1 + 1′ = 1 + f = 1 and consequently a is left invertible so that a is unit
of S. This proves that S is a Clifford semifield.

Theorem 3.12. If S is an Artinian Clifford semiring, then every proper
prime ideal of S is a maximal ideal.

Proof. Let P be any proper prime ideal of S. Then P is a k-ideal of S
and S/P is a Clifford semidomain. Moreover, S/P is an Artinian Clifford
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semiring. Hence, by Theorem 3.11, S/P is a Clifford semifield. Conse-
quently, P is a maximal ideal of S.

The proof of the next Proposition is similar to the proof of Theorem 3.10.
So, we omit the proof.

Proposition 3.13. If S is a Clifford semifield, then S is, up to the isomor-
phisms, a subdirect product of a field and a distributive lattice with a greatest
element.

Recall that a semiring S is full ideal free if S has only two ideals, namely,
E+(S) and the semiring S itself. Also, a semiring S with 0 is k-ideal
free if S has only two k-ideals, namely, the ideal {0} and the semiring
S itself.

Finally, we prove the following two theorems.

Theorem 3.14. A multiplicative commutative Clifford semiring S with 1
is a Clifford semifield if and only if S is full ideal free.

Proof. First suppose that S is a Clifford semifield and I be an ideal of
S such that E+(S)⊆/ I. Then there exists an element a ∈ I such that
a 6∈ E+(S). Now for a ∈ S, a 6∈ E+(S), there exists an element r ∈ S such
that ar+1+1′ = 1. Now ar ∈ I and also 1+1′ ∈ I. Thus, 1 = ar+1+1′ ∈ I
and hence I = S.

Conversely, let S be a Clifford semiring which is full ideal free. Let
a ∈ S be such that a 6∈ E+(S). Now Sa + E+(S) is an ideal of S such that
E+(S)⊆/ Sa + E+(S). So Sa + E+(S) = S. Hence, 1 = ra + e for some
r ∈ S and e ∈ E+(S). Then 1 = 1 + 1′ + 1 = ra + e + 1′ + 1 = ra + 1 + 1′.
Thus a is unit in S and consequently, S is a Clifford semifield.

Theorem 3.15. An additive commutative and multiplicative commutative
Clifford semiring S with 1 and 0 is k-ideal free if and only if S is a field
or S = {0, 1}.

Proof. First suppose that S is a k-ideal free. Now E+(S) is a k-ideal of S.
So either E+(S) = {0} or E+(S) = S. Let E+(S) = {0}. Then S is a ring
with 1. Let a ∈ S be such that a 6= 0. Then Sa is a k-ideal of S. Hence,
Sa = S and thus we get 1 = ta for some t ∈ S. Consequently, S is a field.

Next, let E+(S) = S. Then every element of S is additive idempotent
and, hence, multiplicative idempotent. Now, Sa is a non-zero ideal of S for
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every a(6= 0) ∈ S. Let ra+b = ta for some r, t ∈ S. Then a+ra+b = a+ta,
i.e., a + b = a. Therefore, ba + b2 = ba, i.e., ba + b = ba. Then b = ba ∈ Sa.
Hence, Sa is a k-ideal of S. Thus Sa = S and it follows that, ta = 1 for
some t ∈ S i.e., ta2 = a. Then ta = a i.e., a = 1. Consequently, S = {0, 1}.

Converse is obvious.
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