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1. Preliminaries

The concept of interval has its origin in the theory of ordered sets. For
totally ordered sets a theory of interval decompositions, and of the corre-
sponding lexicographic sum construction, was developed by Hausdorff (see
[17] and [18]), followed by Gleyzal [14]. Decompositions into intervals and
lexicographic sum, as applied to well-ordered sets, are the fundamental op-
erations of the arithmetic of ordinal numbers (see e.g. Bachmann [1]). For
partially ordered sets, the basic theory of such decompositions is presented
e.g. in the texts of Bastiani [2], Trotter [28] and very recently Schröder [26].
In graph theory the analogous concepts of lexicographic joins and modules
appear in the articles of Sabidussi [25] and Gallai [12]; very recent work
on the structural and algorithmic aspects of graph decompositions include
the articles of McConnell and Spinrad [22] and Zverovich [29]. Still in the
context of graphs, decompositions into special types of modules were investi-
gated by Habib and Maurer [16]. The articles of Möhring and Radermacher
[24] and Möhring [23], while oriented towards optimizational and algorith-
mic issues, also propose unifying concepts of abstract decomposition theory
and contain numerous references, in particular to early work regarding de-
compositions of Boolean functions and set systems. Other early studies of
lexicographic sums of hypergraphs, and of directed graphs which include
both ordered sets and undirected graphs, are due to Dörfler and Imrich [5]
and Dörfler [4]. In the general context of n-ary relations and relational sys-
tems, an interval concept rooted in mathematical logic and based on the
extensibility of local automorphisms was proposed by Fraissé in [9] - [11]
and studied, e.g., by Gillam [13], one of the present authors ([6] and [7]),
and Ille [19] - [21] with some variations in definitions and terminology. An
attempt to transfer the lexicographic construction from the relational to the
universal-algebraic context was made in [8].

Given any concept of interval in some relational structure, or other type
of structure, the set of all decompositions into intervals of the structure’s
underlying set is a subset of the set of all partitions, naturally ordered by
refinement. We propose to study this ordered set of decompositions, where
following [23], intervals are defined abstractly as closed sets of some closure
system satisfying certain axioms.

Let V be a nonempty set and Q a subset of its power-set P(V ). If⋂
k∈K Ak ∈ Q holds for any system Ak ∈ Q, k ∈ K (K 6= ∅) and V ∈ Q,

then (V, Q) is called a closure system on V . A family H of subsets of V is
called updirected, if for any A,B ∈ H there exists a set C ∈ H such that
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A∪B j C. A closure system (V, Q) is called algebraic, if for any updirected
family H = {Ak | k ∈ K} j Q,

⋃
k∈K Ak ∈ Q holds.

Definition 1.1. An interval system (V, I) is an algebraic closure system
with the following properties:

(I0) {x} ∈ I for all x ∈ V and ∅ ∈ I,

(I1) A,B ∈ I and A ∩B 6= ∅ imply A ∪B ∈ I,

(I2) For any A, B ∈ I the relations A ∩B 6= ∅, A " B and B " A imply
A \B ∈ I (and B \A ∈ I).

Here we list some remarkable examples:

A) Let G = (V, E) be an undirected graph. For any x ∈ V we define
N(x) = {v ∈ V | (x, v) ∈ E}. A subset A j V is called a module of G if
N(x) \ A = N(y) \ A for all x, y ∈ A. Let M stand for the modules of the
graph G. Then (V,M) is an interval system.

B) Let n ≥ 2 and R j V n be an n-ary relation on the set V . An interval
of the structure (V, R) is a subset I j V with the property that for every
x = (x1, ..., xn) ∈ V n \ In with xi ∈ I for some i ∈ {1, ..., n}, if y is an n-
tuple obtained from x by replacing xi by some yi ∈ I, then x ∈ R ⇔ y ∈ R.
Denoting by I the set of the intervals of (V,R), we obtain an interval system
(V, I).

C) If G = (V, E) is a finite tree, then the vertex sets of its subtrees form a
closure system (V,Q) which satisfies conditions (I0) and (I1).

A particular case of B) is given by a linearly ordered set (V ;≤). In this
case the intervals of the relational structure are the usual intervals including
singletons, V and ∅.

Definition 1.2. A decomposition in a closure system (V,Q) is a partition
π = {Ai | i ∈ I} of the set V such that Ai ∈ Q, for all i ∈ I. If (V,Q) is
an interval system, then π is called an interval decomposition. The set of all
decompositions in (V,Q) is denoted by D(V,Q).

Let Part(V ) denote the lattice of all partitions of V . Restricting the partial
order ≤ in Part(V ) to D(V,Q) j Part(V ), we obtain again a partially
ordered set (D(V,Q);≤). Moreover, the following is true:
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Lemma 1.3. Let (V,Q) be a closure system. Then (D(V,Q);≤) is a com-
plete lattice with the greatest element ∇ = {V }.

Proof. As ∇ = {V } is the greatest element of (D(V,Q);≤), to prove that
(D(V,Q);≤) is a complete lattice, it is enough to show that for any sys-
tem πk ∈ D(V,Q), k ∈ K, its infimum exists in D(V,Q). Since D(V,Q) j
Part(V ), and (Part(V );∧,∨) is a complete lattice, it is enough to prove∧

k∈K πk ∈ D(V,Q). However, this is obvious, as all the blocks of the par-
tition

∧
k∈K πk being intersections of some blocks of the decompositions πk,

k ∈ K, belong to Q.

In graph theory, interval decompositions are closely related to the tran-
sitive orientation problem (see [12] and [22]). It is also important that, us-
ing decompositions we can define ”quotients” of various discrete structures.
For instance, if π = {Ai | i ∈ I} is an interval decomposition of a graph
G = (V, E) (or of a relational structure (V, R)), then a graph G∗ = (V/π,
E∗) (a relational structure (V/π, R∗)) is induced naturally on the factor set
V/π = {Ai | i ∈ I} which in some sense is a “quotient” of G (of (V, R)).
(See, e.g., [7] and [23].) In general, if π is a decomposition in a closure sys-
tem (V,Q), then the corresponding quotient (V/π,Q/π) is defined on the
set V/π = {Ai | i ∈ I} as follows: For J j I, we have

B = {Ai | i ∈ J} ∈ Q/π ⇔
⋃

i∈J

Ai ∈ Q.

It is easy to see that the quotient (V/π,Q/π) is a closure system; if (V,Q)
is an interval system then (V/π,Q/π) is an interval system, too.

Remark 1.4. If (V,Q) is a closure system satisfying condition (I0), then
clearly 4 = {{x} | x ∈ V } is the least element of D(V,Q), and to any
A ∈ Q \ {∅} corresponds the decomposition

πA = {A} ∪ {{x} | x ∈ V \A}.

An interval system (V, I) is called degenerate if I = P(V ). It is called
prime if | V |≥ 2 and I contains only nonproper intervals, i.e., ∅, V and
singletons {a}, a ∈ V . Remark 1.4 also implies:
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Lemma 1.5. Let (V, I) be an interval system. Then

(i) (V, I) is degenerate if and only if D(V, I) = Part(V );

(ii) (V, I) is prime if and only if D(V, I) = {4,∇} and | V |≥ 2.

A family of sets Aj j V , j ∈ J is called connected if for each k, l ∈ J there
exists a finite subset {j1, ..., jn} j J (n ∈ N) such that j1 = k, jn = l and
Aj ∩Aj+1 6= ∅, for all 1 ≤ j ≤ n− 1. If (V,Q) is a closure system satisfying
condition (I1) and {A1, ..., Ak} j Q is a connected family, then it can be
proved by an easy induction on k ∈ N that

⋃k
j=1 Aj ∈ Q. Moreover, as an

extension of Proposition 2 in [7], we get:

Proposition 1.6. If (V,Q) is an algebraic closure system satisfying condi-
tion (I1) and {Aj | j ∈ J} j Q is a connected family, then

⋃
j∈J Aj ∈ Q.

Proof. Let F denote the family of all those finite subsets F j J which
have the property that {Aj | j ∈ F} is a connected family and define
BF =

⋃
j∈F Aj , F ∈ F . Then BF ∈ Q and obviously {BF | F ∈ F} is

an updirected family. As (V,Q) is an algebraic closure system, we obtain⋃{BF | F ∈ F} ∈ Q. Clearly, BF j
⋃

j∈J Aj for all F ∈ F . Since
{Aj} itself is a connected family for each j ∈ J , we get {Aj | j ∈ J} j
{BF | F ∈ F}, whence

⋃
j∈J Aj j

⋃{BF | F ∈ F}. Thus we conclude⋃
j∈J

⋃
Aj =

⋃{BF | F ∈ F} ∈ Q.

2. Algebraic closure systems satisfying condition (I1)

The purpose of this section is to describe algebraic properties of the lattice
D(V,Q) corresponding to a closure system which satisfies condition (I1).

For a binary relation ρ j V × V and a ∈ V let ρ[a] = {x ∈ V |
(a, x) ∈ ρ}. Clearly, if ρ is an equivalence relation, then ρ[a] stands for the
equivalence class of a.

Proposition 2.1. Let (V,Q) be a closure system. If (V,Q) is algebraic and
satisfies condition (I1), then D(V,Q) is a complete sublattice of Part(V ). If
(V,Q) satisfies condition (I0) and D(V,Q) is a sublattice of Part(V ), then
(V,Q) satisfies condition (I1).
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Proof. Let (V,Q) be an algebraic closure system which satisfies condition
(I1) and take any πi ∈ D(V,Q), i ∈ I. Since

∧
i∈I πi ∈ D(V,Q), to prove

that D(V,Q) is a complete sublattice of Part(V ), we have to show that their
join

∨
i∈I πi in Part(V ) is also a decomposition in (V,Q).

Let ρi, i ∈ I denote the equivalence relations induced by the partitions
πi, i ∈ I on V . As

∨
i∈I ρi is the equivalence induced by

∨
i∈I πi, to prove∨

i∈I πi ∈ D(V,Q) it is enough to show that (
∨

i∈I ρi)[a] ∈ Q, for any a ∈ V .
Denote K = (

∨
i∈I ρi)[a]. Clearly, K =

⋃{ρi[x] | x ∈ K, i ∈ I}. We claim
that {ρi[x] | x ∈ K, i ∈ I} is a connected family of sets.

Indeed, take any ρk[x], ρl[y] j K, i.e. any k, l ∈ I and x, y ∈ K.
Then there exist {z0, z1, ..., zn} j K and {i1, i2, ..., in} j I with z0 = x,
i1 = k and zn = y, in = l and such that (zj−1, zj) ∈ ρij , 1 ≤ j ≤ n. As
zj ∈ ρij [zj−1]∩ρij+1 [zj ], the family {ρi[x] | x ∈ K, i ∈ I} is connected. Since
ρi[x] ∈ Q, for all x ∈ K and i ∈ I and since (V,Q) is an algebraic closure
system, Proposition 1.6 gives that

⋃{ρi[x] | x ∈ K, i ∈ I} ∈ Q. Hence
(
∨

i∈I ρi)[a] ∈ Q, for each a ∈ V .
Conversely, suppose that (V,Q) satisfies condition (I0) and D(V,Q) is

a sublattice of Part(V ). Take any A,B ∈ Q with A ∩ B 6= ∅. Then,
in view of Remark 1.4, πA = {A} ∪ {{x} | x ∈ V \ A} ∈ D(V,Q) and
πB = {B}∪ {{x} | x ∈ V \B} ∈ D(V,Q). Thus πA ∨πB = {A∪B}∪ {{x} |
x ∈ V \ (A∪B)} ∈ D(V,Q), whence we get A∪B ∈ Q. Thus (V,Q) satisfies
condition (I1).

As Part(V ) is an algebraic lattice and since any complete sublattice
of an algebraic lattice is an algebraic lattice, too (see, e.g., Crawley and
Dilworth [3]), we deduce:

Corollary 2.2. If an algebraic closure system (V,Q) satisfies condition (I1),
then D(V,Q) is an algebraic lattice.

Obviously, for any π1, π2 ∈ D(V,Q), π1 ≤ π2 holds if and only if any block
of π2 is the union of some blocks of π1.

Let ≺ denote the covering relation in a lattice L, i.e. for any a, b ∈ L
we write a ≺ b iff a < b and there is no c ∈ L with a < c < b.

Lemma 2.3. Let π1 = {Ai | i ∈ I} and π2 = {Bj | j ∈ J} be two
decompositions in a closure system (V,Q). If π1 ≺ π2 holds in D(V,Q),
then there exists a single j0 ∈ J and Ij0 j I with at least two elements such
that Bj0 =

⋃
i∈Ij0

Ai and Bj ∈ π1, for all j ∈ J \ {j0}.
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Proof. As π1 < π2, for each j ∈ J there exists a nonempty Ij j I such
that Bj =

⋃
i∈Ij

Ai and at least one set Ij has at least two elements. Assume
| Ik |≥ 2 and | Il |≥ 2, for some k, l ∈ J , k 6= l. Then π′ = {Bk} ∪ {Ai | i ∈
I \ Ik} and π′′ = {Bk, Bl}∪{Ai | i ∈ I \ (Ik ∪ Il)} are also decompositions in
(V,Q) and we get π1 < π′ < π′′ < π2 - contradicting π1 ≺ π2. Hence, there
is a single j0 ∈ J and Ij0 j I with | Ij0 |≥ 2 and Bj0 =

⋃
i∈Ij0

Ai. This gives
Bj ∈ π1, for all j ∈ J \ {j0}.

The lattice of decompositions is clearly not modular in general. In the
context of a somewhat different but related abstract axiomatization of de-
compositions, semimodularity, stated in the form of Birkhoff’s condition in
the case of decomposition lattices of finite length, was shown by Möhring
and Radermacher [24]. The following proposition is in the same spirit, but
finite length is not required and therefore the condition to be established is
the stronger version of the upper semimodularity condition. (For the various
forms of semimodularity, see Stern [27].) Infinite length lattices to which
the proposition applies include the lattices of decompositions, into usual or-
der intervals, of all infinite linearly ordered sets, such as the set of integers,
rational numbers, or real numbers.

Proposition 2.4. Let (V,Q) be an algebraic closure system satisfying con-
dition (I1). Then D(V,Q) is an algebraic semimodular lattice.

Proof. In view of Corollary 2.2 we have to show only that D(V,Q) is a
semimodular lattice. Take two decompositions π1 = {Bj | j ∈ J} and
π2 = {Ck | k ∈ K} with π1 ∧ π2 ≺ π1 in D(V,Q). Then π2 < π1 ∨ π2. We
have to prove that π2 ≺ π1 ∨ π2 also holds in D(V,Q).

Clearly, all the blocks of π1 ∧ π2 are nonempty intersections Bj ∩ Ck

(j ∈ J , k ∈ K). As π1 ∧ π2 ≺ π1, in view of Lemma 2.3, there is a single
j0 ∈ J and K0 j K with | K0 |≥ 2 such that Bj0 =

⋃
k∈K0

(Bj0 ∩ Ck) and
the sets Bj0 ∩Ck, k ∈ K0 are nonempty. Lemma 2.3 also gives Bj ∈ π1∧π2,
for all j 6= j0 and this implies

π1 ∧ π2 = {Bj | j ∈ J \ {j0}} ∪ {Bj0 ∩ Ck | k ∈ K0}.

As any Ck, k ∈ K0 has a nonempty intersection with Bj0 , {Bj0}∪ {Ck | k ∈
K0} is a connected subfamily of Q and hence
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M = Bj0

⋃

 ⋃

k∈K0

Ck


 ∈ Q.

As Bj0 j
⋃

k∈K0
Ck, we get M =

⋃
k∈K0

Ck. Clearly, π = {Ck | k ∈ K\K0}∪
{M} is a decomposition in (V,Q) and π1, π2 ≤ π. Since π2 < π1 ∨ π2 ≤ π,
to prove π2 ≺ π1 ∨ π2 it is sufficient to show π2 ≺ π.

By contradiction, assume that there exists a π3 = {Di | i ∈ I} ∈ D(V,Q)
such that π2 < π3 < π. Then, there exists a set I0 j I with | I0 |≥ 2 and
such that M =

⋃
i∈I0

Di and Di ∈ {Ck | k ∈ K \ K0}, for all i ∈ I \ I0.
Hence π3 has the form π3 = {Ck | k ∈ K \K0} ∪ {Di | i ∈ I0}. As π2 < π3,
there is at least one i∗ ∈ I0 and K∗ j K0 such that Di∗ =

⋃
k∈K∗ Ck and

| K∗ |≥ 2. Then Di∗ ∩Bj0 =
⋃

k∈K∗(Ck ∩ Bj0), and since K∗ j K0, all the
members of this union are nonempty, by the definition of K0. As | I0 |≥ 2
gives M 6= Di∗ , we get K∗ 6= K0.

Finally, let us consider the decomposition

π∗ = {Bj | j ∈ J \ {j0}} ∪ {Ck ∩Bj0 | k ∈ K0 \K∗} ∪ {Di∗ ∩Bj0}.

Since Di∗ ∩ Bj0 and Ck ∩ Bj0 , k ∈ K0 \K∗, are disjoint and nonempty
subsets of Bj0 , we have π∗ < π1. As | K∗ |≥ 2, the union

⋃
k∈K∗(Ck ∩

Bj0) = Di∗∩Bj0 has at least two (nonempty and disjoint) members and this
implies that

π1 ∧ π2 = {Bj | j ∈ J \ {j0}} ∪ {Bj0 ∩ Ck | k ∈ K0}

= {Bj | j ∈ J \ {j0}} ∪ {Bj0 ∩ Ck | k ∈ K0 \K∗} ∪ {Bj0 ∩ Ck | k ∈ K∗}

is strictly less than π∗. This gives π1 ∧ π2 < π∗ < π1, a contradiction.

Remark 2.5. If (V, I) is an interval system, then Theorem 2.4 gives that
D(V, I) is an algebraic semimodular lattice.

Let L be a complete lattice. An element m ∈ L\{1} is called completely
meet-irreducible, if for any nonempty system xi ∈ L, i ∈ I the equality
m =

∧{xi | i ∈ I} implies m = xi0 , for some i0 ∈ I. Let m# =
∧{x ∈ L |
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m < x}. It is easy to see that m is completely meet-irreducible if and only
if m# is the unique element of L satisfying m ≺ m#. If m# = 1, then m is
called a dual atom of L.

Theorem 2.6. Let (V,Q) be an algebraic closure system which satisfies
condition (I1) and µ a completely meet-irreducible element of D(V,Q). Then
the principal filter [µ) is a distributive lattice.

Proof. Let µ = {Ai | i ∈ I} ∈ D(V,Q) be completely meet-irreducible.
As µ < µ#, there is an I0 j I such that µ# = {B} ∪ {Ai | i ∈ I \ I0}
with B =

⋃
i∈I0

Ai and | I0 |≥ 2. First, we prove that any decomposition
π > µ has the form π = {C} ∪ {Ai | i ∈ I \ J0}, where J0 j I and
C =

⋃
i∈J0

Ai k B.
Indeed, µ# ≤ π implies that there exists a block C of π such that B j C.

Then C =
⋃

i∈J0
Ai, for some J0 j I with I0 j J0. We claim that any block

D 6= C of π coincides with some block Ai, i ∈ I \ J0.
By contradiction, assume D /∈ {Ai | i ∈ I \ J0}. As C ∩ D = ∅,

we also get D /∈ {Ai | i ∈ J0}. Therefore, D =
⋃

i∈K Ai with | K |> 2.
Then π∗ = {D} ∪ {Ai | i ∈ I \ K} is also a decomposition with µ < π∗.
Hence µ# ≤ π∗, and this implies B j D. Thus we get C ∩ D k B 6= ∅ –
a contradiction. This proves π = {C} ∪ {Ai | i ∈ I \ J0}.

Now, take π1 , π2 ∈ [µ), i.e. π1 , π2 ≥ µ. Then there are C1, C2 ∈ Q
such that π1 = {C1} ∪ {Ai | i ∈ I \ J1} and π2 = {C2} ∪ {Ai | i ∈ I \ J2},
where J1, J2 j I, C1 =

⋃
i∈J1

Ai, C2 =
⋃

i∈J2
Ai and C1 ∩ C2 k B 6= ∅. As

by Proposition 2.1 D(V,Q) is a sublattice of Part(V ), we obtain:

π1 ∧ π2 = {C1 ∩ C2} ∪ {Ai | i ∈ I \ (J1 ∩ J2)}, and

π1 ∨ π2 = {C1 ∪ C2} ∪ {Ai | i ∈ I \ (J1 ∪ J2)}.

Obviously, if C1 = C2, then it follows π1 = π2. Now, let ν ≥ µ be arbitrary
and denote by Cν that unique block of ν containing B. The above argument
gives that the map f : [µ) → {X ∈ P(V ) | B ⊆ X}, ν 7−→ Cν is a lattice
embedding. As all the subsets X of V with B ⊆ X form a distributive
lattice, the filter [µ) is distributive, too.
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3. Strong sets in a closure system

A set A ∈ Q is called a strong set in the closure system (V,Q), if for any
B ∈ Q, A∩B 6= ∅ implies A j B or B j A. If (V,Q) is an interval system,
then A is called a strong interval.

Clearly, ∅, V and any singleton {a} are strong sets in any closure sys-
tem which satisfies condition (I0). They are called improper strong sets in
(V,Q). The strong sets have an important role in applications of the in-
terval systems. For instance, if G = (V, E) is a graph, then its connected
components are strong intervals in G (see [16], [21] and [22]). In this section
we also show that the completely meet-irreducible elements of the lattice of
interval decompositions can be characterized by using strong intervals. Let
S stand for the set of the all strong sets in (V,Q). It is easy to see that
whenever S is finite, then the transitive reduction of (S \ {∅}, j) (i.e. its
Hasse diagram) is an updirected tree.

Proposition 3.1. If (V,Q) is a closure system, then (V,S) is a closure
system which satisfies conditions (I1) and (I2).

Proof. Take Ci ∈ S, i ∈ I. As V ∈ S, to prove that (V,S) is a closure
system we have to show only

⋂
i∈I Ci ∈ S. Since S j Q,

⋂
i∈I Ci ∈ Q is

clear. If there exist some k, l ∈ I with Ck ∩ Cl = ∅, then
⋂

i∈I Ci = ∅ ∈ S.
Suppose Ck ∩ Cl 6= ∅, for all k, l ∈ I. Then {Ci ∈ S | i ∈ I} is a chain,
since all the sets Ci are strong. In order to prove

⋂
i∈I Ci ∈ S, suppose(⋂

i∈I Ci

)∩A 6= ∅, for some A ∈ Q. Then clearly, Ci ∩A 6= ∅, for all i ∈ I.
Hence, we have by definition either Ci j A or A j Ci, for each i ∈ I. If each
Ci satisfies A j Ci, we get A j

⋂
i∈I Ci. If Ci0 j A holds for some i0 ∈ I,

we obtain
⋂

i∈I Ci j A. These inclusions show that
⋂

i∈I Ci is a strong set.
The remaining part is obvious.

A decomposition π = {Ai | i ∈ I} in a closure system (V,Q) is called a
strong decomposition if every Ai, i ∈ I is a strong set in (V,Q). Since the
strong decompositions in (V,Q) can be considered also as decompositions
in the closure system (V,S), they form a complete lattice D(V,S) whose
greatest element is O = {V }.

Proposition 3.2. Let (V,Q) be a closure system which satisfies condition
(I0). If (V,Q) has a greatest decomposition µmax 6= ∇, then µmax is a strong
decomposition.
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Proof. Let µmax = {Bj | j ∈ J} be the greatest decomposition of (V,Q)
with µmax 6= ∇. Suppose B ∩Bj 6= ∅, for some B ∈ Q \ {V } and Bj ∈ µmax

and consider the decomposition πB = {B}∪{{x} | x ∈ V \B}. As πB 6= ∇,
we have by assumption πB ≤ µmax . This implies B j Bj , proving that Bj

is a strong set in (V,Q).

Lemma 3.3. Let (V,Q) be a closure system, π1 ∈ D(V,S), π2 ∈ D(V,Q)
and let ρ1 and ρ2 be the equivalences induced by π1 and π2 on V . Then:

(i) for each a ∈ V either ρ1[a] j ρ2[a] or ρ2[a] j ρ1[a] holds;

(ii) we have ρ1 ∪ ρ2 = ρ1 ∨ ρ2, where ∨ denotes the join of equivalence
relations.

Proof. Ad (i): Since ρ1[a] is a strong set in (V,Q) for each a ∈ V , a ∈
ρ1[a] ∩ ρ2[a] implies (i).

Ad (ii): As the equivalence ρ1∨ρ2 is the transitive closure of the relation
ρ1∪ρ2, to show (ii), it is enough to prove ρ1∪ρ2 is transitive. Take a, b ∈ V
with (a, b), (b, c) ∈ ρ1 ∪ ρ2. Due to (i), (ρ1 ∪ ρ2)[b] = ρ1[b] ∪ ρ2[b] = ρi[b],
for some i ∈ {1, 2}, thus we get a, c ∈ ρi[b]. Now, (a, b), (b, c) ∈ ρi implies
(a, c) ∈ ρi j ρ1 ∪ ρ2, proving that ρ1 ∪ ρ2 is transitive.

An element a of a lattice L is called standard (see, e.g., Grätzer [15]), if

x ∧ (a ∨ y) = (x ∧ a) ∨ (x ∧ y) holds for all x, y ∈ L.

The standard elements of L form a distributive sublattice of L denoted by
S(L). If L is a bounded lattice, then 0, 1 ∈ S(L).

Let t, Y and ∨ stand for the join operation in lattices D(V,S), D(V,Q)
and Part(V ), respectively.

Theorem 3.4. Let (V,Q) be a closure system. Then the strong decomposi-
tions in (V,Q) are standard elements of D(V,Q) and D(V,S) is a distribu-
tive sublattice of D(V,Q) and of Part(V ). Moreover, if π1 ∈ D(V,S) and
π2 ∈ D(V,Q), then π1 Y π2 = π1 ∨ π2.

Proof. Clearly, the “meet” operation is the same in the lattices D(V,S),
D(V,Q) and Part(V ). As D(V,S) j D(V,Q) j Part(V ), we have π1∨π2 ≤
π1 Y π2 ≤ π1 t π2, for all π1, π2 ∈ D(V,S).
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Let ρ1, ρ2 j V × V be the equivalences induced by π1 and π2. By Lemma
3.3 we have either (ρ1 ∨ ρ2)[x] = (ρ1 ∪ ρ2)[x] = ρ1[x] ∪ ρ2[x] = ρ1[x] or
(ρ1 ∨ ρ2)[x] = (ρ1 ∪ ρ2)[x] = ρ1[x] ∪ ρ2[x] = ρ2[x], for all x ∈ V . As in the
both cases (ρ1 ∨ ρ2)[x] ∈ S, the partition π1 ∨ π2 induced by ρ1 ∨ ρ2 is a
strong decomposition, and hence π1 ∨ π2 = π1 t π2. This result also gives
π1 Y π2 = π1 t π2. Thus D(V,S) is a sublattice of Part(V ) and D(V,Q).

Similarly, for π1 ∈ D(V,S) and π2 ∈ D(V,Q) by using Lemma 3.3
again, we get (ρ1 ∨ ρ2)[x] = (ρ1 ∪ ρ2)[x] ∈ Q, for all x ∈ V and this implies
π1 ∨ π2 ∈ D(V,Q). Hence, we obtain π1 Y π2 = π1 ∨ π2.

Now, take any π ∈ D(V,S) and τ, ϕ ∈ D(V,Q) and denote the corre-
sponding equivalences by ρπ, ρτ and ρϕ, respectively. Clearly, in order to
show that π is a standard element of (D(V,Q),∧,Y), it is enough to prove
ϕ ∧ (π Y τ) ≤ (ϕ ∧ π) Y (ϕ ∧ τ). As π Y τ = π ∨ τ , we get

ϕ ∧ (π Y τ) = ϕ ∧ (π ∨ τ).

On the other hand, Lemma 3.3 implies

ρϕ∧ (ρπ ∨ρτ ) = ρϕ∩ (ρπ ∪ρτ ) = (ρϕ∩ρπ)∪ (ρϕ∩ρτ ) j (ρϕ∧ρπ)∨ (ρϕ∧ρτ ).

Hence, we obtain ϕ ∧ (π ∨ τ) ≤ (ϕ ∧ π) ∨ (ϕ ∧ τ) and this implies

ϕ ∧ (π Y τ) ≤ (ϕ ∧ π) ∨ (ϕ ∧ τ) ≤ (ϕ ∧ π) Y (ϕ ∧ τ),

proving that π is a standard element of D(V,Q).
Since D(V,S) is included as a sublattice in the distributive lattice gen-

erated by the standard elements of D(V,Q), it is distributive, too.

Lemma 3.5. Let (V,Q) be a closure system and π ∈ D(V,S), ϕ ∈ D(V,Q).
If π Y ϕ = ∇, then either π = ∇ or ϕ = ∇ holds.

Proof. In view of Theorem 3.4 we have π ∨ ϕ = π Y ϕ = ∇. Therefore,
there exists an a ∈ V such that (ρπ ∨ ρϕ)[a] = V . As, in view of Lemma
3.3(ii), (ρπ ∨ ρϕ)[a] = (ρπ ∪ ρϕ)[a], we get ρπ[a] ∪ ρϕ[a] = (ρπ ∪ ρϕ)[a] = V .
Now, Lemma 3.3(i) implies either ρπ[a] = V or ρϕ[a] = V . In the first case
we get π = ∇ and in the second ϕ = ∇.
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A lattice L with 1 is called dually atomistic if each x ∈ L \ {1} is a meet of
dual atoms of L. L is called discrete if any chain of L is finite.

Proposition 3.6. Let (V,Q) be a closure system. Then:

(i) any strong decomposition π 6= ∇ in (V,Q) is less than or equal to any
dual atom of D(V,Q);

(ii) if D(V,S) has a dual atom, then it is unique and it is the greatest
element of D(V,S) \ {∇}.

Proof. Ad (i): Let ν be a dual atom of D(V,Q) and π ∈ D(V,S), π 6= ∇.
Assume π � ν. Then ν < π ∨ ν and hence π ∨ ν = ∇. Now Lemma 3.5
implies that either π = ∇ or ν = ∇ is satisfied - i.e. a contradiction. Thus
π ≤ ν holds for all π ∈ D(V,S) \ {∇}.

Ad (ii): Suppose that µ is a dual atom of D(V,S) and take any π ∈
D(V,S), π 6= ∇. Then µ ≤ µ ∨ π ≤ ∇ and µ ∨ π ∈ D(V,S). As µ ∨ π = ∇
would imply either µ = ∇ or π = ∇, we must have µ = µ ∨ π, i.e. π ≤ µ.
Therefore, µ is the greatest element of (D(V,S) \ {∇},≤) - and hence it is
the unique dual atom in D(V,S).

Corollary 3.7.

(i) If a closure system (V,Q) satisfies condition (I0) and D(V,Q) is dually
atomistic, then (V,Q) has no proper strong sets.

(ii) If (V,Q) is a closure system and D(V,S) is a nontrivial discrete lat-
tice, then (V,Q) has a greatest strong decomposition ςmax 6= ∇.

Proof. Ad (i): Let A denote the family of dual atoms of D(V,Q). As
D(V,Q) is dually atomistic, we have

∧{π | π ∈ A} = 4. Now assume
that D is a proper strong set and consider the strong decomposition πD =
{D}∪{{x} | x ∈ V \A}. Then 4 < πD < ∇, and Proposition 3.6(i) implies
πD ≤ ∧{π | π ∈ A} = 4, a contradiction.

Ad (ii): As any nontrivial discrete lattice contains at least one dual
atom, (ii) is an easy consequence of Proposition 3.6(ii).

Theorem 3.8. Let (V, I) be an interval system, π = {Ai | i ∈ I} a com-
pletely meet-irreducible element in D(V, I) and π# the unique upper cover
of π. Then there exists a J j I, | J |≥ 2 and a strong interval B =

⋃
i∈J Ai,
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such that for any C ∈ I with the property C " Ai, for all i ∈ I, either
B j C or C j B holds, and such that

π# = {B} ∪ {Ai | i ∈ I \ J}.

Proof. As π 6= ∇, | I |≥ 2. If π is a dual atom of D(V, I), then take B = V
and J = I. Then V =

⋃
i∈I Ai, and our assertion is satisfied for any C ∈ I.

It is also clear that π# = ∇ = {V }.
Assume π# 6= ∇. As π < π#, there is a set J & I with | J |≥ 2, such

that B =
⋃

i∈J Ai ∈ I and π# = {B}∪{Ai | i ∈ I\J}. Take any C ∈ I\{∅}
and set K = {i ∈ I | Ai∩C 6= ∅}. Clearly, K 6= ∅ and V =

⋃
i∈I Ai implies

C =
⋃

i ∈ I(Ai ∩ C) =
⋃

i∈K(Ai ∩ C) j
⋃

i∈K Ai.
In order to prove that B is a strong interval, suppose C " B. Then

K " J . If C j Ai0 , for some i0 ∈ I, then Ai0 " B, whence C ∩ B = ∅. If
K = {i0}, for some i0 ∈ I, then C = Ai0 ∩ C implies C j Ai0 and hence
C∩B = ∅. Now, assume C " Ai, for all i ∈ I. Then the previous argument
gives | K |≥ 2. We prove B j C.

Let us prove first J j K. Indeed, {Ai | i ∈ K}∪{C} being a connected
family of intervals, Proposition 1.6 implies that

E =

( ⋃

i∈K

Ai

)
∪ C =

⋃

i∈K

Ai

is an interval and νE = {E} ∪ {Ai | i ∈ I \K} is a decomposition. Clearly,
νE > π. Then νE ≥ π# implies B j E, whence we get J j K.

Further, we prove Ai j C, for all i ∈ J .
By the way of contradiction, assume that Aj0 " C, for some j0 ∈ J . Then
{Ai | i ∈ K \ {j0}} ∪ {C} being also a connected family, we get

D =


 ⋃

i∈K\{j0}
Ai


 ∪ C ∈ I.

As j0 ∈ K, we have Aj0 ∩D k Aj0 ∩ C 6= ∅. Since D " Aj0 , Aj0 " D, the
set F = D \Aj0 is an interval. Now F = (D ∪Aj0) \Aj0 gives
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F =

[( ⋃

i∈K

Ai

)
∪ C

]
\Aj0 =

( ⋃

i∈K

Ai

)
\Aj0 =

⋃

i∈K\{j0}
Ai.

As K " J and J j K, we get | K |>| J |≥ 2, and hence K \ {j0} has
at least two elements. Therefore, νF = {F} ∪ {Aj0} ∪ {Ai | i ∈ I \ K}
is a decomposition and νF > π. Hence νF ≥ π#, and this implies that
B =

⋃
i∈J Ai is contained in one of the blocks of νF . As Aj0 j B and

Aj0 6= B, this is a contradiction. Thus we have Ai j C, for all i ∈ J . This
result implies B j C, proving that B is a strong interval.

Finally, observe that the above argument also gives that for any C ∈ I
with C " Ai, for all i ∈ I either C j B or B j C is satisfied.

Corollary 3.9. Let (V, I) be an interval system with | V |≥ 2. Then the
lattice D(V, I) is dually atomistic if and only if (V, I) has no proper strong
intervals.

Proof. The “only if part” was proved by Corollary 3.7(i). To prove the
“if part” of our assertion, assume that (V, I) has no proper strong intervals.
Now let π be a completely meet-irreducible element of D(V, I). Then, ac-
cording to Theorem 3.8, there exists a strong interval B ∈ π# with| B |≥ 2.
As our assumption gives B = V , we get π# = ∇, and hence π is a dual
atom of D(V, I). As D(V, I) is an algebraic lattice, any element of it is a
meet of its completely-meet irreducible elements, that is, of its dual atoms.
Thus D(V, I) is dually atomistic.

4. Fragile and nonfragile intervals

Let (V,Q) be a closure system. A set A ∈ Q is called fragile if it is the
union of two disjoint nonempty members of Q, otherwise A is called non-
fragile. Also, (V,Q) is called a fragile (nonfragile) closure system if the set
V is fragile (nonfragile). This generalizes the concept of fragility studied by
Habib and Maurer [16] in the context of the module systems of graphs. If
(V,Q) is an interval system, then its fragile and nonfragile intervals have
remarkable properties. Two sets B, C are said to be comparable if either
B j C or C j B holds.
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Proposition 4.1. Let (V, I) be an interval system. Then:

(i) any nonfragile interval A ∈ I is a strong interval;

(ii) if B,C are noncomparable intervals with B ∩C 6= ∅, then B ∪C is a
fragile interval.

Proof. Ad (i): Assume that A∩B 6= ∅, for some B ∈ I. If neither A j B
nor B j A would be satisfied, then A \ B ∈ I \ {∅}, A ∩ B 6= ∅ and
A = (A \B)∪ (A∩B) would imply that A is fragile – a contradiction. Thus
either A j B or B j A holds, proving that A is a strong interval.

Ad (ii): As B, C ∈ I and B ∩C 6= ∅, we have B ∪C ∈ I. Since B " C
and C " B, the sets C \B and B are nonempty disjoint intervals and hence
B ∪ C = B ∪ (C \B) implies that B ∪ C is fragile.

Proposition 4.2. Let (V, I) be a finite nonfragile interval system with
| V |≥ 2. Then:

(i) (V, I) has a greatest proper decomposition M, and M is a strong
decomposition;

(ii) the maximal proper fragile intervals are pairwise disjoint strong in-
tervals.

Proof. Ad (i): Denote by M the set of all maximal proper intervals of V .
As for any a ∈ A, {a} ∈ I is included in some M ∈ M, the members of M
form a covering of V . In order to prove that M is a decomposition, suppose
M1 ∩M2 6= ∅, for some M1,M2 ∈ M, M1 6= M2. Then M1 ∪M2 ∈ I, and
since neither M1 j M2 nor M2 j M1 is satisfied, we get M1 ⊂ M1 ∪M2.
Since M1 is a maximal element in I \ {V }, we obtain M1 ∪ M2 = V . As
M1 and M2 are noncomparable intervals and M1 ∩ M2 6= ∅, we get that
V = M1 ∪M2 is fragile, contrary to our assumption. Thus all the members
of M are pairwise disjoint (and nonempty) and hence M is an interval
decomposition.

Now let π = {Ai | i ∈ I} 6= ∇ be an arbitrary decomposition in (V, I).
As any Ai is strictly included in V , there exists an M (i) ∈M with Ai j M (i).
Hence π ≤ µ, i.e. M is the greatest element of D(V, I) \ {∇}. Now,
Proposition 3.1 implies that M is a strong decomposition.

Ad (ii): Let I be a maximal proper fragile interval and take a B ∈ I
with I ∩B 6= ∅. If I and B would be noncomparable, then I ∪B would be
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also a fragile interval with I ⊂ I ∪ B, and hence we would get V = I ∪ B,
i.e., V would be fragile, contrary to our assumption. Hence either I j B
or B j I holds, and this proves that I is a strong interval. If B is also a
maximal proper fragile interval, then both I j B and B j I give I = B.
Therefore, I 6= B implies I ∩B = ∅.

Proposition 4.3. Any finite interval system (V, I) contains a greatest de-
composition with the property that any block of it is either fragile or a sin-
gleton.

Proof. For a fragile V , ∇ = {V } is the greatest decomposition with the
above property. If V is nonfragile, then let F denote the set of maximal
proper fragile intervals of (V, I) and F their union. As the members of F
are disjoint, µF = F∪{{x} | x ∈ V \F} is a decomposition with the required
property. It is also clear that any decomposition µ = {Ai | i ∈ I}, whose
blocks Ai are either fragile or singletons, satisfies µ ≤ µF .

We note that a particular case of Proposition 4.2(i), where (V, I) is the
module system of a graph G = (V, E), is implicitly contained in [16].

A nonempty interval A ∈ I is called indecomposable, if in each disjoint
union A =

⋃{Bi | i ∈ I}, with Bi ∈ I \ {∅, A} all the intervals Bi, i ∈ I
are singletons. Obviously, any indecomposable interval with at least three
elements is nonfragile, and hence it is strong. If A is a fragile or indecom-
posable interval, then we call it a good interval. We call a decomposition
π = {Ai | i ∈ I} a good decomposition, if each one of its blocks Ai, i ∈ I is a
good interval. Clearly, 4 is a good decomposition in any interval system.

Lemma 4.4. If {Ai | 1 ≤ i ≤ n} is a finite connected set of good intervals
in (V, I), then B =

⋃n
i=1 Ai is also a good interval. If n ≥ 2 and B 6= Ai,

for each 1 ≤ i ≤ n, then B is fragile.

Proof. To prove the first assertion, we use induction on n ∈ N, n ≥ 1:
For n = 1 the assertion is obvious. Now, assume that our assertion is true
for n − 1. Then C =

⋃n−1
i=1 Ai is also a good interval. As {Ai | 1 ≤ i ≤ n}

is a connected family, C ∩ An 6= ∅. If An and C are comparable, then
C ∪ An is clearly a good interval. If An and B are noncomparable, then,
using Proposition 4.1(ii), we obtain that B =

⋃n
i=1 Ai = C ∪ An is fragile,

therefore it is a good interval. Using induction on n ∈ N, n ≥ 2, the same
argument implies our second assertion.
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Proposition 4.5. If (V, I) is a finite interval system, then the join
∨

i∈I πi

of any good decompositions πi ∈ D(V, I), i ∈ I, is also a good decomposition.

Proof. Let ρi j V × V , i ∈ I, be the equivalences induced by πi, i ∈ I.
As

∨
i∈I ρi is induced by

∨
i∈I πi, it is sufficient to show that for any a ∈ V ,

(
∨

i∈I ρi)[a] is a good interval. Denote K = (
∨

i∈I ρi)[a]. Using the same
argument as in the proof of Proposition 2.1, we get that{ρi[x] | x ∈ K,
i ∈ I} is a connected family and K =

⋃{ρi[x] | x ∈ K, i ∈ I}. Since (V, I)
is finite, the family {ρi[x] | x ∈ K, i ∈ I} contains only a finite number of
different equivalence classes ρi[x]. As any class ρi[x] is a good interval, we
obtain that K = (

∨
i∈I ρi)[a] is also a good interval.

As an immediate consequence, we obtain a result which extends of
Theorem 2 in [16].

Theorem 4.6. Any finite interval system (V, I) has a greatest good decom-
position.

Proof. Let πk ∈ D(V, I), k ∈ K denote the good decompositions in (V, I).
Since (V, I) is finite, D(V, I) and K are finite too. Hence, in view of Proposi-
tion 4.5,

∨
k∈K πk is also a good decomposition and clearly, it is the greatest

element of the set {πk | k ∈ K}.

Remark 4.7. 4 = {{x} | x ∈ V } being a good decomposition, Proposition
4.5 also implies that the good decompositions of a finite interval system
(V, I) form a lattice, however in general this is not a sublattice of D(V, I).
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