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Abstract
We present a construction of finite distributive lattices with a given

skeleton. In the case of an H-irreducible skeleton K the construction
provides all finite distributive lattices based on K, in particular the
minimal one.
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Decomposition of a lattice into a system of overlapping intervals indexed by
another lattice has been a powerful tool for structural analysis of lattices.
This tool was provided by Herrmann in [10] as a generalization of the original
Hall-Dilworth gluing of a filter and an ideal (see [9]). This was further
extended in one direction by means of tolerance relations (see [5] and [1])
and in the other, which was widely applied in the concept analysis, by the
notion of K-atlases (see [12] and [6]).

In this paper we want to reverse the operation of decomposition into
the operation of reconstruction of all distributive lattices based on the same
skeleton. Some tools for that reconstruction were provided by Herrmann
(in [10]) and Day and Herrmann in [5]. There were also some exemplary
constructions in [10], [12] and [2]. Our aim is to generalize these ideas and
describe a construction which may lead to a minimal distributive lattice
with a given skeleton.

Let us start with recalling some basic notions and theorems and
establishing the notation.

A tolerance relation Θ on a lattice L is a reflexive and symmetric binary
relation compatible with lattice operations, i.e. x1Θx2 and y1Θy2 imply
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(x1∧y1)Θ(x2∧y2) and (x1∨y1)Θ(x2∨y2) for every elements x1, x2, y1, y2 from
L. Thus, the transitive closure of a tolerance relation is a lattice congruence.

It was proved by Chajda and Zelinka in [3] that if Θ is a tolerance
relation on a lattice L and aΘb for some a, b ∈ L then xΘy for every x, y ∈
[a∧b, a∨b]. It means that every tolerance relation Θ on a lattice is uniquely
determined by the set of quotients contained in Θ.

A block of a tolerance relation Θ on a lattice L is a maximal subset
A ⊆ L2 such that xΘy for every x, y ∈ A. Let us denote by L/Θ the set of
all blocks of Θ. We can introduce on L/Θ a partial order by

A ≤ B ⇐⇒ 0A ≤ 0B

(which is equivalent to the fact that 1A ≤ 1B), where A = [0A, 1A], B =
[0B, 1B] are blocks of Θ.

It was proved by Czedli in [4] that L/Θ with the partial order described
above is a lattice, called the factor lattice of L by Θ.

A tolerance relation Θ on L is said to be glued iff A ≺ B implies A∩B 6= ∅
for every blocks A,B ∈ L/Θ.

The smallest glued tolerance relation on L will be denoted by Σ(L). It
can be proved that Σ(L) is generated by the set of all prime quotients of the
lattice L.

The tolerance relation Σ = Σ(L) is called the skeleton tolerance of L
and the factor lattice of L by Σ(L), which will be denoted by S(L), is said
to be the skeleton of the lattice L.

In our further considerations the following simple observation will be
useful:

Lemma 1 . Let Σ be the skeleton tolerance of a finite lattice K. If Ki =
[0i, 1i] is a block of Σ, then 0i = pi(x1, ..., xn) and 1i = pi(y1, ..., yn) for
some lattice polynomial pi and a system x1, ..., xn, y1, ..., yn of elements of
K such that xj ¹ yj for every j = 1, ..., n

Proof. Since the relation Σ is generated by the set of all prime quotients of
K2 and 0iΣ1i for every block Ki, there is a lattice polynomial pi such that
0i = pi(x1, ..., xn) and 1i = pi(y1, ..., yn) for some x1, ..., xn, y1, ..., yn such
that xj ¹ yj or yj ¹ xj for j = 1, ..., n.

However, if yj ≺ xj , then

1i = pi(y1, ..., yn) ≤ pi(y1, ..., yj−1, xj , yj+1, ..., yn).
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Since 1i is the maximal element x of K such that 0iΣx, we have

1i = pi(y1, ..., yj−1, xj , yj+1, ..., yn)

and hence we can replace in the system x1, ..., xn, y1, ..., yn the element yj

by xj . Thus, we can conclude that 0i = p(x1, ..., xn) and 1i = p(y1, ..., yn),
where xj ¹ yj for j = 1, ..., n.

A lattice K is said to be H-irreducible iff its skeleton is the trivial lat-
tice. It can be proved that a finite modular lattice is H-irreducible iff it
is atomistic. Similarly, a finite distributive lattice is H-irreducible iff it is
boolean.

As it was shown in the beginning, a glued tolerance relation on a finite
lattice provides a decomposition of the lattice into blocks, which are intervals
of the lattice and which themselves form a lattice called the factor lattice.
It is convenient to describe the construction in abstract terms as a K-atlas
with overlapping neighborhood.

Let (Lx)x∈K be a family of finite lattices and let the index set K be
also a finite lattice. We call the family (Lx)x∈K a K-atlas with overlapping
neighborhood if the following conditions hold for every x, y ∈ K:

1. If Lx ⊆ Ly, then x = y.

2. If x ≺ y, then Lx ∩ Ly 6= ∅.
3. If x ≤ y and Lx ∩ Ly 6= ∅, then the orders of Lx and Ly coincide on

the intersection Lx ∩ Ly and the interval Lx ∩ Ly is at the same time
a filter of Lx and an ideal of Ly.

4. Lx ∩ Ly = Lx∧y ∩ Lx∨y.

The structure L = 〈⋃x∈K Lx,≤〉, where ≤ is the transitive closure of the
union of partial orders of the lattices Lx for x ∈ K, is called the sum of
K-atlas with overlapping neighborhood (or simply a K-gluing of the family
(Lx)x∈K). It was proved by Day and Herrmann that:

Theorem 2 (see [5]). The sum of a K-atlas with overlapping neighborhood
is a lattice L for which the lattices Lx , where x ∈ K, are the blocks of some
glued tolerance relation Θ and the mapping x 7→ Lx is an isomorphism of K
onto the factor lattice L/Θ.

Conversely, if Θ is a glued tolerance relation on a lattice L, then the
blocks of the relation Θ together with the factor lattice K = L/Θ form a
K-atlas with overlapping neighborhood which K-gluing is the lattice L.
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If (Lx)x∈K is a K-atlas with overlapping neighborhood, then the lattices Lx,
being the blocks of a tolerance relation on L =

⋃
x∈K Lx, are intervals of L.

We shall write Lx = [0x, 1x]. It is quite natural to consider two mappings
σ, π : K → L such that σ(x) = 0x and π(x) = 1x.

Lemma 3 (see [10]). The mappings σ and π are (strictly) monotone, σ is
join-preserving and π is meet-preserving.

Thus, the boundaries of the blocks fulfill the following conditions for every
x, y ∈ K:

(1) 0x∨y = 0x ∨ 0y;

(2) 0x∧y ≤ 0x ∧ 0y;

(3) 1x ∨ 1y ≤ 1x∨y;

(4) 1x∧y = 1x ∧ 1y.

What is more, we can prove that:

Theorem 4 . Let (Lx)x∈K be a K-atlas with overlapping neighborhood,
where K and Lx, for every x ∈ K, are finite lattices. Let Σ be the skeleton
tolerance on K. Then, for every elements x, y ∈ K such that x ≤ y and x, y
belong to the same block of Σ we have Lx ∩ Ly 6= ∅.

Proof. Let x ≤ y and x, y ∈ Ki = [0i, 1i], where Ki is a block of Σ.
Let p be a lattice polynomial and let us denote by l(p) the length of p,

i.e. the number of lattice operation appearing in it.
We shall prove by the induction on the length of the polynomial p that

for every x1, ...xn, y1, ..., yn ∈ K such that xj ¹ yj for j = 1, ..., n we have

(5) 0p(y1,...,yn) ≤ 1p(x1,....,xn).

If l(p) = 0, then 0y1 ≤ 1x1 , by the definition of K-atlas. Let us suppose
that (5) holds for all polynomials shorter that n and let l(p) = n > 1. Then
p = q ∨ r or p = q ∧ r, where the polynomials q and r fulfill the inductive
assumption.

In the first case

0p(y1,...,yn) = 0q(y1,...,yn) ∨ 0r(y1,...,yn) ≤ 1q(x1,...,xn) ∨ 1r(x1,...,xn) ≤ 1p(x1,...,xn)
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and in the second case

0p(y1,...,yn) ≤ 0q(y1,...,yn) ∧ 0r(y1,...,yn) ≤ 1q(x1,...,xn) ∧ 1r(x1,...,xn) = 1p(x1,...,xn),

which proves (5). By Lemma 1, there is a polynomial pi and the system
x1, ..., xn, y1, ..., yn ∈ K such that 0i = pi(x1, ..., xn), 1i = pi(y1, ..., yn) and
xj ¹ yj for j = 1, ..., n. Thus, by (5), 01i ≤ 10i and hence

L0i ∩ L1i 6= ∅.

Now, by the assumption,
0i ≤ x ≤ y ≤ 1i.

Therefore,
00i ≤ 0x ≤ 0y ≤ 01i ≤ 10i ≤ 1x ≤ 1y ≤ 11i ,

so Lx ∩ Ly 6= ∅.
Applying Lemma 3 to the reducts of the mappings σ and π to the blocks
of the skeleton tolerance Σ(K) and combining it with Theorem 4, one can
notice that:

Corollary 5 . If (Lx)x∈K is a K-atlas with overlapping neighborhood, where
K and Lx for every x ∈ K are finite lattices and Ki = [0i, 1i] for i ∈ S(K)
are the blocks of the skeleton tolerance Σ(K), then x 7→ 0x and x 7→ 1x are,
respectively, the join-embedding of Ki into L0i and meet-embedding of Ki

into L1i.

Herrmann proved in [10] that if (Mx)x∈K is a K-atlas with overlapping
neighborhood and every Mx is a finite modular lattice for every x ∈ K,
then the K-gluing M of the atlas is a modular lattice, as well. Similarly,
if every lattice Mx for x ∈ K is a distributive one, then the K-gluing M
is also distributive. Moreover, there is a dependence between the skeleton
tolerance of a modular lattice and its maximal atomistic intervals.

Theorem 6 (see [11]). Let M be a finite modular lattice, S(M) = M/Σ,
where Σ is the skeleton tolerance on M. Then the blocks (Mx)x∈S(M) of Σ
are the maximal atomistic intervals of M.

Thus, let us observe that every finite modular lattice can be decom-
posed into its maximal atomistic intervals, and then glued from them again
according to the skeleton of the lattice, which can be regarded as the pattern
of this gluing.
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In particular, for every modular lattice M, the filter ∇(M) generated by
all coatoms of M and the ideal ∆(M) generated by all atoms of M
are the maximal atomistic intervals of M, so they have to appear in the
S(M)-gluing as the ”top” and ”bottom” intervals.

In the case of distributive lattices, atomistic intervals coincide with
boolean ones.

Let K be a finite lattice and {Lx}x∈K be a family of finite lattices. To
construct a family {L′x}x∈K of lattices forming a K-atlas with overlapping
neighborhood such that Lx is isomorphic to L′x for every x ∈ K we need a
family of lattice isomorphisms which identify the parts of lattices Lx that
counterpart to overlapping parts of lattices L′x in the K-atlas. In fact, it
is enough to construct the family of isomorphisms φyx identifying, for each
x ≤ y in K a filter of the lattice Lx with an ideal of the lattice Ly unless
L′x ∩ L′y is empty.

Strictly speaking, it was proved in [5] that if there is given a finite lattice
K and a family {Lx}x∈K of disjoint finite lattices together with a family
of lattice isomorphisms φyx for every x ≤ y in K satisfying the following
conditions:

every φyx maps a (possibly empty) filter Fy,x(6)

of the lattice Lx onto a (possibly empty) ideal Ix,y of the lattice Ly;

(7) φxx = idLx , for every x ∈ K;

(8) if x ≤ y ≤ z in K, then φyz ◦ φxy = φxz;

(9) Fx,x∧y ∩ Fy,x∧y ⊆ Fx∨y,x∧y, for all x, y ∈ K;

(10) Ix,x∨y ∩ Iy,x∨y ⊆ Ix∧y,x∨y, for all x, y ∈ K;

(11) for every x ≤ y in K there exists a sequence

x = z0 ≤ ... ≤ zn = y such that Fzi+1,zi 6= ∅ for each i = 0, ..., n− 1,

then there is a K-atlas {L′x}x∈K such that L′x is isomorphic to Lx for every
x ∈ K.

Moreover, a relation ∼ given by

a ∼ b ⇐⇒ φ(x∨y)x(a) = φ(x∨y)y(b)
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for a ∈ Lx and b ∈ Ly is an equivalence relation on
⋃

x∈K Lx and
(
⋃

x∈K Lx)/∼ is a lattice isomorphic to the K-gluing L of the K-atlas with
overlapping neighborhood {L′x}x∈K .

The above construction can be regarded as an alternative and more
general definition of the K-atlas with overlapping neighborhood and the
K-sum of the K-atlas.

In particular, since every finite boolean lattice is, up to isomorphism,
uniquely given by its dimension (which can be understood, for example, as
the number of the atoms of the boolean lattice), we can describe a family of
boolean lattices {Bx}x∈K indexed by elements of a lattice K by the family
W = {nx}x∈K of natural numbers such that dimBx = nx for every x ∈ K.

Let K be a finite lattice. The question is for which families {nx}x∈K

there exist distributive lattices with the skeleton K and the maximal boolean
intervals of given dimensions.

Herrmann proved in [10]:

Theorem 7 . Every finite lattice is a skeleton of a finite distributive lattice.

It means that for every finite lattice K there is at least one family of
numbers described above. In fact, there are infinitely many such families as
there are infinitely many non-isomorphic distributive lattices with the given
skeleton K.

Let us consider the set W(K) of all families W = {nx}x∈K such that
there exists a finite distributive lattice D with the skeleton K in which
dimBx = nx for every x ∈ K. In W(K) we can introduce a partial order by

W ≤ W ′ iff nx ≤ n′x for every x ∈ K.

The distributive lattice D corresponding to a minimal element of the family
W(K) will be called a minimal distributive lattice with the skeleton K.
The question arises how to construct a minimal distributive lattice with the
skeleton K.

Herrmann constructed in his proof (see [10]) one of the spectrum of
distributive lattices with the given skeleton K.

Let K be a finite lattice. we shall denote by P(K)d the lattice dual
to the lattice P(K) of all subsets of K partially ordered by the inclusion.
If x ∈ K then [x) denotes the filter of K and (x] – the ideal of K
generated by x.

Herrmann considered a family of intervals Lx of the product lattice
P(K)× P(K)d defined by

Lx = [(∅, [x)), ((x], ∅)]
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for every x ∈ K. He proved that the family {Lx}x∈K forms a K-atlas with
overlapping neighborhood. Since all Lx are boolean lattices, the K-gluing
of the family {Lx}x∈K is a distributive lattice with the skeleton K.

Example. Let K be the two-element boolean lattice in Figure 1 (a). Then

L0 = [(∅, K), ({0}, ∅)],

L1 = [(∅, {1}), (K, ∅)],

hence dimL0 = dim L1 = |K|+ 1 = 3. Moreover

L0 ∩ L1 = [(∅, {1}), ({0}, ∅)],

so dim(L0 ∩ L1) = 2.
It yields the distributive lattice D shown in Figure 1 (b).
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It is easy to notice that the lattice D is not the minimal distributive lattice
with the skeleton K. For the minimal one, we have dimB0 = dim B1 = 1.

In general, in the Herrmann construction for every finite lattice K we
always obtain

dimL0 = dimL1 = |K|+ 1,

which means that the resulting distributive lattice D is comparatively big.
Moreover,

L0 ∩ L1 = [(∅, {1}), ({0}, ∅)],
hence dim(L0 ∩L1) = 2, which means that the bottom and the top boolean
cubes of the lattice D overlap.

The similar situation occurs if we consider the construction provided by
Wille.

Wille and Bartenschlager (in [12] and [2], resp.) dealt with distributive
lattices FD(n) freely generated by an n-element antichain. They consid-
ered the iterated skeletons of FD(n) and then tried to reconstruct, step by
step, the lattice itself. In their construction they applied, apart from the
Herrmann gluings, the tools of the theory of concept lattices. Skipping the
properties of free distributive lattices we can, in general, translate the idea
into the language of abstract algebra as follows.

For every finite lattice K, we consider the set P = K × {0, 1} with a
partial order defined by

(a, b) > (c, d) ⇐⇒ (a 6≥ c and b > d).

Wille proved (see [12]) that the lattice I(P ) of order ideals of the poset P
(where the lattice order is the inclusion) is a finite distributive lattice with
the skeleton K.

Example. Let, again, K be the two-element boolean lattice. The poset P
described above corresponding to K is depicted in Figure 2 (b). The lattice
D = I(P ) consists of two three-dimensional boolean cubes (Figure 2 (c))
which are glued along a two-dimensional boolean lattice being a filter
of the bottom cube and an ideal of the top one. For clarity, we denoted in
Figure 2 (c)

a = {(1, 0)};
b = {(0, 0), (1, 0)};
c = {(1, 1), (1, 0)};

d = {(0, 0), (1, 0), (1, 1)}.
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In general, for every finite latticeK, if |K| = n, then the lattice I(P ) contains
n + 1 atoms, namely all singletons {(a, 0)} for a ∈ K and, additionally, the
singleton {(1, 1)}. Since the bottom cube of the lattice I(P ) is ∆(I(P )),

dimB0 = dim ∆(I(P )) = n + 1.

Similarly, all the ideals P \ {(a, 1)}, where a ∈ K, together with the ideal
P \ {(0, 0)} are coatoms of I(P ), so

dimB1 = dim∇(I(P )) = n + 1.

Moreover, if x is the meet of all coatoms of I(P ), then

x =
⋃

a6=0

{(a, 0)}

and x is obviously situated in I(P ) below the join

y =
⋃

a∈K

{(a, 0)} ∪ {(1, 1)}
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of all atoms of the lattice then the top and the bottom cubes of I(P ) overlap
and

dim(B0 ∩B1) = dim[x, x ∪ {(0, 0), (1, 1)}] = 2.

It means that the dimensions of boolean cubes of the resulting distributive
lattice I(P ) are similar as in the case of the Herrmann construction.

We can refine the Wille construction by dropping the pairs (0, 0)
and (1, 1) out of the set P , i.e., repeating the construction for the set
P ′ = P \ {(0, 0), (1, 1)} but we still get a comparatively big lattice I(P ′).
In that case

dimB0 = |K| − 1 = dimB1

and (B0 ∩B1) 6= ∅ (in fact, B0 ∩B1 contains exactly one element).
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Example. If we consider as the lattice K the two-dimensional boolean
lattice (see Figure 3 (a)), then the corresponding set P ′ is shown in Figure 3
(b). The lattice I(P ′) depicted in Figure 3 (c) has three-dimensional boolean
cubes as the top and bottom ones and hence it is not the minimal distributive
lattice with the skeleton K (the minimal one has two-dimensional boolean
cubes B0 and B1).

Now, we shall present a construction which is a generalization of, both,
Herrmann and Wille constructions and which in the case of a H-irreducible
lattice K yields the minimal distributive lattice with the skeleton K.

The idea of the construction is the following one. Take two boolean
lattices B0 and B1 big enough to join-embed a given lattice K into the first
of them and meet-embed K in the second one and we can ”glue” the lattices
B0 and B1 in a such way that the image of the unit of K is in B0 in the same
distance to the unit of B0 as the zero of B1 to the image of the zero of K in
B1. Thus we can construct a K-atlas {Bx}x∈K , where every Bx, except from
B0 and B1, are just boolean lattices generated by maximal chains between
the images of x in B0 and B1.

If K is a H-irreducible lattice, then every finite distributive lattice with
the skeleton K can be obtained in that way.

Theorem 8 . Let K be a finite lattice. For every boolean lattices B and C
together with two strictly monotone mappings σ : K → B and π : K → C
fulfilling the conditions:

1. σ is a join-homomorphism and π is a meet-homomorphism;

2. l(σ(1), 1B) = l(0C , π(0)),

there exists a distributive lattice D with the skeleton K and maximal boolean
intervals Bx such that dimBx = l(σ(x), 1B) + l(π(0), π(x)).

Proof. Let us suppose that lattices K, B, C together with mappings σ and
π fulfill the assumptions of the theorem. We can assume that B and C are
disjoint.

Our goal is to construct a K-atlas with overlapping neighborhood
{Bx}x∈K where Bx are boolean lattices such that dimBx = l(σ(x), 1B) +
l(π(0), π(x)).

Let B′0 and B′1 be isomorphic copies of the intervals A0 = [σ(0), 1B] ⊆ B
and A1 = [0C , π(1)] ⊆ C, respectively, such that B′

0 ∩ B′
1 is a filter of B′0
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and an ideal of B′1 and, moreover,

(12) dim(B′
0 ∩B′

1) = l(σ(1), 1B).

Then A0 is a filter of B and A1 is an ideal of C. Therefore, A0 and A1 are
boolean lattices and hence B′0 and B′1 are also boolean lattices which, by the
assumptions, form an S-atlas, where S is a two-element boolean lattice. Let
us denote B′0 ⊕ B′1 the S-gluing of these lattices.

Similarly, since [σ(1), 1B] is a filter of B, [0C , π(0)] is an ideal of C, both
are boolean lattices and hence, by the assumption and (12) they are both
isomorphic to the boolean lattice B′

0 ∩B′
1.

Let φ′0 : [σ(1), 1B] → B′
0 ∩ B′

1 and φ′1 : [0C , π(0)] → B′
0 ∩ B′

1 be the
mappings establishing the isomorphisms between the lattices. Let φ0 : A0 →
B′

0 and φ1 : A1 → B′
1 be extensions of φ′0 and φ′1 into isomorphisms on

lattices B′0 and B′1, respectively.
Then σ′ = φ0 ◦ σ and π′ = φ1 ◦ π are strictly monotone mappings such

that

• σ′ : K → B′
0 ⊆ B′

0 ⊕B′
1 is a join-homomorphism;

• π′ : K → B′
1 ⊆ B′

0 ⊕B′
1 is a meet-homomorphism;

• σ′(0) = φ0(σ(0)) = 00′ ;

• σ′(1) = φ0(σ(1)) = 01′ ;

• π′(0) = φ1(π(0)) = 10′ ;

• π′(1) = φ1(π(1)) = 11′ ;

where B′
0 = [00′ , 10′ ], B′

1 = [01′ , 11′ ].
Let x ∈ K. We can consider an interval [σ′(x), π′(x)] in the distributive

lattice B′
0 ⊕ B′

1. Then, there is a lattice homomorphism gx embedding the
interval [σ′(x), π′(x)] into a boolean lattice Ax = [0x, 1x] such that

dimAx = l(σ′(x), π′(x)].

Therefore, the image by gx of every maximal chain of the interval [σ′(x), π′(x)]
is a maximal chain in Ax and hence it generates the boolean lattice Ax.
Moreover, gx(σ′(x)) = 0x and gx(π′(x)) = 1x. In particular, we can take
g0 = φ−1

0 and g1 = φ−1
1 . We can also assume that Ax and Ay are disjoint

for x 6= y.
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Let x, y ∈ K, x ≤ y. Then

(13) σ′(x) ≤ σ′(y) ≤ σ′(1) = 01′ ≤ 10′ = π′(0) ≤ π′(x) ≤ π′(y)

and hence

0x = gx(σ′(x)) ≤ gx(σ′(y)) ≤ gx(π′(x)) = 1x,

which means that

gx([σ′(y)), π′(x)]) ⊆ [gx(σ′(y)), 1x].

Since [gx(σ′(y)), 1x] is a filter of Ax,

dim[gx(σ′(y)), 1x] = l[σ′(y), π′(x)]

and we can conclude that the sublattice [gx(σ′(y), 1x] of Ax is generated by
the image of the interval [σ′(y), π′(x)] by the function gx.

Similarly,

0y = gy(σ′(y)) ≤ gy(π′(x)) ≤ gy(π′(y)) = 1y,

thus gy([σ′(y), π′(x)]) generates the boolean sublattice [0y, gy(π′(x))] of Ay

which is its ideal.
Therefore, a mapping

φyx : [gx(σ′(y)), 1x] −→ [0y, gy(π′(x))]

given by φyx(gx(a)) = gy(a) for a ∈ [σ′(y), π′(x)] can be extended to a lattice
isomorphism. In particular, φxx = idAx for every x ∈ K.

Now, we have constructed the family (Ax)x∈K of boolean lattices to-
gether with the family of lattice isomorphisms φyx for x ≤ y. If they fulfill
the conditions (6)–(11), then we can ”glue” them together into a distributive
lattice with the skeleton K identifying some elements of lattices Ax due to
the congruence relation ∼.

Let us observe that the conditions (6),(7) and (11) hold just by the
definition of φyx.

Even more, as we have Fy,x = [gx(σ′(y)), 1x] and Ix,y = [0y, gy(π′(x))]
for arbitrary x, y ∈ K, we obtain
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Fx,x∧y ∩ Fy,x∧y = [gx∧y(σ′(x)), 1x∧y] ∩ [gx∧y(σ′(y)), 1x∧y]

= [gx∧y(σ′(x)) ∨ gx∧y(σ′(y)), 1x∧y] = [gx∧y(σ′(x ∨ y)), 1x∧y] = Fx∨y,x∧y.

Similarly, we can show

Ix,x∨y ∩ Iy,x∨y ⊆ Ix∧y,x∨y,

which proves the conditions (9) and (10).
Now, let us suppose that x ≤ y ≤ z.

If a ∈ [σ′(z), π′(x)], then

φzx(gx(a)) = gz(a).

Furthermore,
[σ′(z), π′(x)] ⊆ [σ′(y), π′(y)]

and
φyx(gx(a)) = gy(a) ∈ [gy(σ′(z)), gy(π′(x))] ⊆ [gy(σ′(z)), 1y],

which proves the existence of (φzy ◦ φyx)(gx(a)) for every a ∈ [σ′(z), π′(x)].
Moreover,

φzy(φyx(gx(a))) = φzy(gy(a)) = gz(a) = φzx(gx(a)).

Thus, we proved that
(φzy ◦ φyx)(b) = φzx(b)

for every generator b of the lattice Fzx = [gx(σ′(z)), 1x], which means that

(φzy ◦ φyx)(b) = φzx(b)

for every b ∈ Fzx, i.e. the condition (8) is satisfied.
Thus, all the conditions (6)–(11) are fulfilled for the family (Ax)x∈K

together with the family of lattice isomorphisms φyx for x ≤ y in K and
hence there is a distributive lattice D with the skeleton K and the maximal
boolean intervals Bx isomorphic to the boolean lattices Ax for x ∈ K.

Then
dimBx = dim Ax = l[σ′(x), π′(x)] =

= l[σ′(x), 10′ ] + l[10′ , π
′(x)] = l[σ(x), 1B] + l[π(0), π(x)].

This completes the proof.
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Let us observe that, in the above construction, the mappings σ and π de-
termine uniquely (up to isomorphism) the K-atlas with overlapping neigh-
borhood {Bx}x∈K and Bx are boolean lattices for all x ∈ K. Therefore,
distributive lattice D in Theorem 8 is determined uniquely (up to isomor-
phism) by the lattices B, C and the mappings σ and π fulfilling assumptions
of the theorem.

If we assume additionally that σ(0) = 0B and π(1) = 1C , then dim∆(D)
= dimB = dimB0 and dim∇(D) = dimC = dim B1, which means that the
given lattices B and C can be regarded, respectively, as the bottom and top
cubes of the obtained distributive lattice D.

Moreover, if K is H-irreducible, then all elements of K belong to the
same block of the skeleton tolerance on K, and then, for every finite distribu-
tive lattice D with the skeleton K, by Corollary 5, the mappings σ(x) = 0x

and π(x) = 1x are, respectively, the join-embedding of K into B0 and meet-
embedding of K into B1. It means that D is given uniquely by its ”top”
and ”bottom” boolean cubes B1 = ∇(D) and B0 = ∆(D) together with the
embeddings σ and π.

Corollary 9 . If K is an H-irreducible finite lattice, then every finite dis-
tributive lattice D with the skeleton K is uniquely (up to isomorphism) de-
termined by the pair of boolean lattices B and C together with the mappings
σ and π fulfilling the conditions of Theorem 8.

Let us observe that σ is a join-embedding of a lattice K into a boolean
lattice B, hence B cannot be too small. In fact, dimB ≥ card(M(K)), where
M(K) denotes the set of all meet-irreducible elements of K.

Analogously, since π is a meet-embedding of K into a boolean lattice C,
dimC ≥ card(J(K)), where J(K) is the set of all join-irreducible elements
of the lattice K.

However, it is always possible, for a given finite lattice K to construct
two boolean lattices B and C such that dimB = card(M(K)), dimC =
card(J(K)) and B and C have exactly one element in common, namely the
unit of B, which is at the same time the zero of C. In that case, we can
always find the mappings σ and π satisfying the assumptions of Theorem 8.

Example. Let K be a pentagon (Figure 4 (a)). Then the minimal dimension
of both lattices B and C is three. Figure 4 (b) illustrates the lattice B ⊕ C
with the embeddings σ and π fulfilling the assumptions of Theorem 8. The
distributive lattice D shown in Figure 4 (c) is the effect of the described
construction.
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It is easy to observe that D is a minimal distributive lattice with the skele-
ton K. Moreover, it is the unique (up to isomorphism) minimal distributive
lattice with that skeleton. What is more, since the pentagon is H-irreducible
then the described construction provides all finite distributive lattices cor-
responding to elements of W(K).

Let us notice that the construction of a finite distributive lattice D
with a given skeleton K used in the proof of Theorem 8 forces the bottom
and the top cubes of D to overlap. In fact, every finite distributive lattice
D with that property can be built in that way. It is the reason why the
construction can be regarded as the generalization of both, Herrmann’s and
Wille’s, constructions.

In particular, in Herrmann’s construction two (|K| + 1)-dimensional
boolean lattices L0, L1 ⊆ P(K)×P(K)d stand for the lattices B and C and
the mappings σ(x) = (∅, [x)) and π(x) = ((x], ∅) satisfy the assumptions of
Theorem 8.

Similarly, in Wille’s construction we have again two (|K|+1)-dimensional
boolean lattices B, C ⊂ P({0, 1}2) and the mappings

σ(x) = [(x, 0)), for x 6= 0;

π(x) = [(x, 1)), for x 6= 1;

σ(0) = ∅; π(1) = {0, 1}2,

which satisfy all assumptions of Theorem 8.

However, let us observe that the construction described in Theorem 8
does not always lead to a minimal distributive lattice with a given skeleton.

Example. Let us consider a lattice K shown in Figure 5 (a). The smallest
boolean lattices B0 and B1 in which we can, respectively, join- and meet-
embed the lattice K are two dimensional lattices. Figure 5 (b) illustrates
B0 ⊕B1 together with the embeddings σ and π. In Figure 5 (c), we can see
the smallest distributive lattice D with the skeleton K which can be obtained
by our construction. However, D is not a minimal distributive lattice with
this skeleton. The minimal one is shown in Figure 5 (d).
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As we mentioned before, our construction gives all possible distributive lat-
tices (and, in particular, the minimal ones) with a skeleton K if K is a
H-irreducible lattice.

To construct all finite distributive lattices with a H-reducible skeleton
some more sophisticated tools are needed.
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