DIRECT DECOMPOSITIONS OF DUALLY RESIDUATED LATTICE ORDERED MONOIDS

JIŘÍ RACHŮNEK*

Department of Algebra and Geometry, Faculty of Sciences, Palacký University, Tomkova 40, 779 00 Olomouc, Czech Republic

e-mail: rachunek@inf.upol.cz

AND

Dana Šalounová[†]

Department of Mathematical Methods in Economy, Faculty of Economics, VŠB-Technical University of Ostrava, Sokolská 33, 701 21 Ostrava, Czech Republic

e-mail: dana.salounova@vsb.cz

Abstract

The class of dually residuated lattice ordered monoids ($DR\ell$ -monoids) contains, in an appropriate signature, all ℓ -groups, Brouwerian algebras, MV- and GMV-algebras, BL- and pseudo BL-algebras, etc. In the paper we study direct products and decompositions of $DR\ell$ -monoids in general and we characterize ideals of $DR\ell$ -monoids which are direct factors. The results are then applicable to all above mentioned special classes of $DR\ell$ -monoids.

Keywords: $DR\ell$ -monoid, lattice-ordered monoid, ideal, normal ideal, polar, direct factor.

2000 Mathematics Subject Classification: 06F05; 06D35, 06F15, 03G10, 03G25, 20F60.

^{*}The first author was supported by the Council of Czech Government, J 14/98: 153100011

 $^{^\}dagger {\rm The}$ second author was supported by the Council of Czech Government, J 17/98: 275100015.

1. Introduction

Commutative dually residuated lattice-ordered monoids (in short: $DR\ell$ monoids) were introduced and studied by K.L.N. Swamy in [20], [21], [22] as a common generalization of commutative lattice-ordered groups (ℓ -groups) and Brouwerian algebras. The papers [23], [24], [9]–[15], [4] and the part of the thesis [5] engaged the further research of structure properties of commutative $DR\ell$ -monoids. It was shown that MV-algebras (see [13]) and BLalgebras (see [14]) which are an algebraic counterpart of the Łukasiewicz infinite valued logic and Hájek basic fuzzy logic, respectively, can be understood as special cases of commutative $DR\ell$ -monoids. General $DR\ell$ -monoids (i.e., not necessarily commutative), the special case of which are also all ℓ -groups, were introduced by Kovář in [5]. GMV-algebras were defined as a non-commutative generalization of MV-algebras in [16] and it was shown there that they are special cases of $DR\ell$ -monoids. This fact was then used when studying GMV-algebras in [17] and [18]. Similarly, it was proved in [6] that pseudo BL-algebras (defined in [2] as a non-commutative generalization of BL-algebras) are also a special case of $DR\ell$ -monoids. $DR\ell$ -monoids were further studied in [8], [7] and [19].

In the paper we shall study direct products and direct decompositions of $DR\ell$ -monoids. The general results are then applicable for all mentioned special cases of $DR\ell$ -monoids.

2. Basic notions and notation

Definition. An algebra $M=(M;+,0,\vee,\wedge,\rightharpoonup,-)$ of signature $\langle 2,0,2,2,2,2\rangle$ is called a *dually residuated (non-commutative) lattice-ordered monoid* (a $DR\ell$ -monoid) if

(M1) $(M; +, 0, \vee, \wedge)$ is a lattice-ordered monoid $(\ell$ -monoid), that is, (M; +, 0) is a (non-commutative) monoid, (M, \vee, \wedge) is a lattice, and for any $x, y, u, v \in M$, the following identities are satisfied:

$$u + (x \lor y) + v = (u + x + v) \lor (u + y + v),$$

 $u + (x \land y) + v = (u + x + v) \land (u + y + v);$

(M2) if \leq denotes the order on M induced by the lattice $(M; \vee, \wedge)$, then, for any $x, y \in M$, we have

 $x \rightharpoonup y$ is the least element $s \in M$ such that $s + y \ge x$,

 $x \leftarrow y$ is the least element $t \in M$ such that $y + t \ge x$;

(M3) M fulfils the identities

$$((x \rightharpoonup y) \lor 0) + y \le x \lor y, \ y + ((x \leftarrow y) \lor 0) \le x \lor y,$$
$$x \rightharpoonup x \ge 0, \ x \leftarrow x \ge 0.$$

Commutative $DR\ell$ -monoids (called $DR\ell$ -semigroups) were introduced by K.L.N. Swamy in [20] as a common generalization of commutative ℓ -groups and Brouwerian algebras. The present definition of a non-commutative extension of $DR\ell$ -monoids is due to [5]. Also, for basic properties of non-commutative $DR\ell$ -monoids see [5].

Let us denote by $M^+ = \{x \in M : 0 \le x\}$ the set of all positive elements in M.

Examples.

- a) Let $G = (G; +, 0, -(\cdot), \vee, \wedge)$ be an ℓ -group. Set $x \rightharpoonup y = x y$ and $x \leftarrow y = -y + x$ for any $x, y \in G$. Then $(G; +, 0, \vee, \wedge, \rightharpoonup, \leftarrow)$ is a $DR\ell$ -monoid.
- b) Let G be an ℓ -group and G^+ be its positive cone, i.e.: $G^+ = \{x \in G: 0 \le x\}$. Set $x \rightharpoonup y = (x-y) \lor 0$ and $x \leftharpoondown y = (-y+x) \lor 0$ for any elements $x, y \in G^+$. Then $(G^+; +, 0, \lor, \land, \rightharpoonup, \smile)$ is a $DR\ell$ -monoid.
- c) Let $B=(B;\vee,\wedge)$ be a Brouwerian algebra, i.e. a dually relative pseudo-complemented lattice with the largest element (that means, for any $a, b \in B$, there exists the smallest element $x \in B$ such that $b \vee x \geq a$). Let us denote by a-b this relative pseudocomplement x of the element b with respect to the element a. The lattice $(B;\vee,\wedge)$ has the smallest element 0 and if we set $a+b=a\vee b$ and $a\rightharpoonup b=a-b=a-b$ for every $a,b\in B$, then $(B;+,0,\vee,\wedge,\rightharpoonup,-)$ is a commutative $DR\ell$ -monoid.
- d) Let $A=(A;\oplus,\neg,\sim,0,1)$ be a GMV-algebra (see, e.g., [16]), i.e. a non-commutative generalization of an MV-algebra. For any $x,y\in A$, put $x\odot y=\sim (\neg x\oplus \neg y), \ x\rightharpoonup y=\neg y\odot x$ and $x\leftarrow y=x\odot \sim y$. If we denote $x\vee y=x\oplus (y\odot \sim x)$ and $x\wedge y=x\odot (y\oplus \sim x)$, then $(A;\vee,\wedge)$ is a bounded distributive lattice and the algebra $(A;\oplus,0,\vee,\wedge,\rightharpoonup,\smile)$ is

a (bounded) $DR\ell$ -monoid. If the addition \oplus is commutative, then the negations \neg and \sim coincide, A is an MV-algebra, and the induced $DR\ell$ -monoid is commutative.

Let M be a $DR\ell$ -monoid and $x \in M$. Then the absolute value of an element x is $|x| = x \vee (0 \rightharpoonup x)$.

Definitions.

- a) If M is a $DR\ell$ -monoid and $\emptyset \neq I \subseteq M$, then I is called an *ideal of M* if the following conditions are satisfied:
 - (1) $x, y \in I \implies x + y \in I$;
 - (2) $x \in I, y \in M, |y| \le |x| \implies y \in I.$
- b) An ideal I is said to be *normal* if for each $x, y \in M$ the equivalence: $x \rightharpoonup y \in I \Longleftrightarrow x \leftarrow y \in I$

is satisfied.

Remark. By [8], normal ideals are just kernels of $DR\ell$ -homomorphisms.

It is proved in [8] that the set $\mathcal{C}(M)$ of all ideals of an arbitrary $DR\ell$ -monoid M, ordered by set inclusion, is an algebraic Brouwerian lattice in which infima coincide with set intersections. Further, by Lemma 21 of [8], if I and J are normal ideals of a $DR\ell$ -monoid M, then their join $I \vee J$ in $\mathcal{C}(M)$ is the following set:

$$I \vee J = \{x \in M : |x| \le a + b, \text{ for some } a \in I^+, b \in J^+\}.$$

Definitions.

a) Let M be a $DR\ell$ -monoid and $X \subseteq M$. Then the set

$$X^{\perp} = \{ y \in \mathcal{M} : |x| \land |y| = 0, \text{ for each } x \in X \}$$

is called the polar of X in M.

b) A subset $X \subseteq M$ is a polar in M if there exists $Y \subseteq M$ such that $X = Y^{\perp}$.

By [7], every polar in M belongs to $\mathcal{C}(M)$ and it is a polar of some ideal of M. The polar of any ideal $I \in \mathcal{C}(M)$ is its pseudocomplement in the lattice $\mathcal{C}(M)$ and therefore the set $\mathcal{P}(M)$ of all polars in M is a complete Boolean algebra with respect to set inclusion.

3. Direct products and decompositions

In this section we will study properties of direct products of $DR\ell$ -monoids, in particular with respect to possibilities of introduction of inner direct products.

Lemma 1. Let M be a $DR\ell$ -monoid. Then for any $v, w \in M$ we have $v \rightharpoonup w = 0$ if and only if $v \leftarrow w = 0$.

Proof. If $v \to w = 0$ and $x \in M$, then $x + v \ge w$ if and only if $x \ge 0$. Hence $w = 0 + w \ge v$. Then also $w + 0 \ge v$, thus $0 \ge v \leftarrow w$. At the same time $w \ge v$ implies $v \leftarrow w \ge 0$; therefore, $v \leftarrow w = 0$.

Let B and C be $DR\ell$ -monoids and let $M=B\times C$ be their direct product. Denote $\widetilde{B},\,\widetilde{C}\subseteq M$ such that

$$\widetilde{B} = \{(x_1, 0) : x_1 \in B\},\$$

$$\widetilde{C} = \{(0, x_2) : x_2 \in C\}.$$

The following proposition seems to be well-known as a folklore:

Proposition 2. If B and C are $DR\ell$ -monoids and $M = B \times C$ then \widetilde{B} and \widetilde{C} are normal ideals of $DR\ell$ -monoid M and it holds:

a)
$$\widetilde{B} + \widetilde{C} = M$$
, $\widetilde{B} \cap \widetilde{C} = \{0\}$;

b) x+y=x'+y' implies $x=x',\ y=y'$ for each $x,\ x'\in \widetilde{B}$ and $y,\ y'\in \widetilde{C}.$

Proposition 3. If $M = B \times C$, then

$$\widetilde{B} = \widetilde{C}^{\perp}$$
 and $\widetilde{C} = \widetilde{B}^{\perp}$.

Proof. For any elements $x_1 \in B$ and $y_2 \in C$ it is satisfied

$$|(x_1,0)| \wedge |(0,y_2)| \in \widetilde{B} \cap \widetilde{C} = \{(0,0)\}.$$

Therefore, $\widetilde{B} \subseteq \widetilde{C}^{\perp}$ and $\widetilde{C} \subseteq \widetilde{B}^{\perp}$.

Conversely, let $(z_1, z_2) \in (\widetilde{B}^{\perp})^+$. Then

$$(z_1, z_2) = (z_1, 0) + (0, z_2)$$
 and $(z_1, 0) = (z_1, 0) \land (z_1, z_2) = (0, 0)$.

Thus $(\widetilde{B}^{\perp})^+ \subseteq \widetilde{C}$, therefore also $\widetilde{B}^{\perp} \subseteq \widetilde{C}$, it means $\widetilde{B}^{\perp} = \widetilde{C}$.

Analogously,
$$\widetilde{C}^{\perp} \subseteq \widetilde{B}$$
.

Now we will deal with possibility of introduction of an inner direct decomposition of $DR\ell$ -monoids.

At first, we will prove the following lemma.

Lemma 4. Let M be a $DR\ell$ -monoid and let $I, J \in \mathcal{C}(M)$ be such that I + J = M and $I \cap J = \{0\}$. If $a \in M$ and $a_1 \in I$, $a_2 \in J$ are such that $a = a_1 + a_2$, then $a \geq 0$ if and only if $a_1 \geq 0$ and $a_2 \geq 0$.

Proof. Suppose $0 \le a = a_1 + a_2$. Then $0 \rightharpoonup a_2 \le (a_1 + a_2) \rightharpoonup a_2$. Since, by Lemma 1.1.19 of [5], it holds $(p+q) \rightharpoonup r \le p + (q \rightharpoonup r)$ for any $p, q, r \in M$, in our case we obtain $(a_1 + a_2) \rightharpoonup a_2 \le a_1 + (a_2 \rightharpoonup a_2) = a_1$. So $0 \rightharpoonup a_2 \le a_1$. Therefore, $0 \le (0 \rightharpoonup a_2) \lor 0 \le a_1 \lor 0 \in I$. Hence $(0 \rightharpoonup a_2) \lor 0 \in I \cap J$, that means $(0 \rightharpoonup a_2) \lor 0 = 0$. Thus $0 \rightharpoonup a_2 \le 0$. By Lemma 1.1.16 of [5], $p \ge q$ if and only if $q \rightharpoonup p \le 0$, for any $p, q \in M$. Thus we have $a_2 \ge 0$. Similarly, $a_1 \ge 0$.

The converse implication is obvious.

Definitions.

- a) An element y of a $DR\ell$ -monoid M is called singular if $0 \rightarrow y = 0$ (or equivalently, by Lemma 1, $0 \leftarrow y = 0$).
- b) An element $x \in M$ is called *invertible* if there exists an inverse element for it in the monoid (M; +, 0).

Denote by $\operatorname{Sing}(M)$ the set of all singular elements in M and by $\operatorname{Inv}(M)$ the set of all invertible elements in M.

Remarks. Kovář proved in [5] (see Theorem 1.2.16 and Lemma 1.2.11) that $\operatorname{Sing}(M) \in \mathcal{C}(M)$, $\operatorname{Sing}(M) \subseteq M^+$ and 0 is the least element in $\operatorname{Sing}(M)$. Further, by Theorems 1.2.1 and 1.2.4 of [5], $\operatorname{Inv}(M)$ is also an ideal of M which is, moreover, an ℓ -group. The ideals $\operatorname{Sing}(M)$ and $\operatorname{Inv}(M)$ play an important role in the study of structure properties of $DR\ell$ -monoids

because, by Theorem 1.3.6 of [5], each $DR\ell$ -monoid M is isomorphic to the direct product of the $DR\ell$ -monoids Sing(M) and Inv(M).

At the same time, extreme case can arise, because if M is an ℓ -group, then $\mathrm{Sing}(M) = \{0\}$ and $\mathrm{Inv}(M) = M$. If M is a Brouwerian algebra, then, conversely, $\mathrm{Sing}(M) = M$ and $\mathrm{Inv}(M) = \{0\}$. Consequently, the cardinality of $\mathrm{Sing}(M)$ determines the degree of dissimilarity of properties of a given $DR\ell$ -monoid from properties of an ℓ -group.

Proposition 5. If M is a $DR\ell$ -monoid and $a, b \in M$ are orthogonal (i.e. $|a| \wedge |b| = 0$), then a + b = b + a.

Proof. a) Assume $a, b \in M^+$ and $a \wedge b = 0$. By Lemmas 1.1.5 and 1.1.9 of [5], for any $x, y, z \in M$ it holds $x \rightharpoonup x = 0$ and $x \rightharpoonup (y \wedge z) = (x \rightharpoonup y) \lor (x \rightharpoonup z)$, hence in our case we have

$$(a \rightharpoonup (a \land b)) + b = ((a \rightharpoonup a) \lor (a \rightharpoonup b)) + b = (0 \lor (a \rightharpoonup b)) + b = a \lor b,$$

therefore $a + b = a \lor b = b + a$, in our case.

b) Now, let a, b be arbitrary elements in M such that $|a| \wedge |b| = 0$. As mentioned in the previous remark, by Theorem 1.3.6 of [5], M is the direct product of its ideals $\operatorname{Sing}(M)$ and $\operatorname{Inv}(M)$. Hence there are $a', b' \in \operatorname{Sing}(M)$ and $x_a, x_b \in \operatorname{Inv}(M)$ such that $a = a' + x_a, b = b' + x_b$. By [5], $|a| = a' + |x_a|, |b| = b' + |x_b|$. Therefore, the assumption $|a| \wedge |b| = 0$ implies $a' \wedge b' = 0$ and $|x_a| \wedge |x_b| = 0$.

By the part a), we obtain a' + b' = b' + a'. As Inv(M) is an ℓ -group, it holds that $|x_a| \wedge |x_b| = 0$ entails $x_a + x_b = x_b + x_a$. Moreover, since M is isomorphic to the direct product of Sing(M) and Inv(M), elements in Sing(M) commute with those in Inv(M). Thus

$$a + b = (a' + x_a) + (b' + x_b) = a' + b' + x_a + x_b =$$

$$= b' + a' + x_b + x_a = (b' + x_b) + (a' + x_a) = b + a.$$

Theorem 6. Let M be a $DR\ell$ -monoid and $I, J \in C(M)$. Let the following conditions be satisfied:

- 1. I + J = M, $I \cap J = \{0\}$;
- 2. $\forall x, x' \in I, y, y' \in J; x + y = x' + y' \implies x = x', y = y'.$

If $\overline{M} = I \times J$ is the direct product of the $DR\ell$ -monoids I and J, then M and \overline{M} are isomorphic.

Proof. The conditions 1 and 2 obviously yield that for every element $a \in M$ there exist unique elements $a_1 \in I$ and $a_2 \in J$ such that $a = a_1 + a_2$. Hence the mapping $f: a \longmapsto (a_1, a_2)$ is a bijection of M onto \overline{M} .

Let us suppose $x \in I$ and $y \in J$. Then $|x| \in I$, $|y| \in J$ and $|x| \wedge |y| \in I \cap J = \{0\}$. It follows that x and y are orthogonal. Therefore, x + y = y + x by Proposition 5. For this reason it holds for any elements $a, b \in M$

$$a + b = (a_1 + a_2) + (b_1 + b_2) = (a_1 + b_1) + (a_2 + b_2),$$

therefore

$$f(a+b) = (a_1 + b_1, a_2 + b_2) = f(a) + f(b).$$

Assume again $a = a_1 + a_2$, $b = b_1 + b_2 \in M$, $a_1, b_1 \in I$, $a_2, b_2 \in J$ and let $a \leq b$. By Lemma 1.1.14 of [5], there exists $x \in M^+$ such that a + x = b. Let $x = x_1 + x_2$, where $x_1 \in I$, $x_2 \in J$. By Lemma 4, it holds $x_1 \in I^+$ and $x_2 \in J^+$. From this we have $(a_1 + x_1) + (a_2 + x_2) = b_1 + b_2$, i.e. $a_1 + x_1 = b_1$, $a_2 + x_2 = b_2$, where $0 \leq x_1$, $0 \leq x_2$. As $0 \leq x_1$, it holds $a_1 \leq a_1 + x_1 = b_1$. Similarly, $a_2 \leq b_2$.

Hence, for any $a, b \in M$, $a \le b$ if and only if $f(a) \le f(b)$.

We have proved that f is an isomorphism of lattice-ordered monoids $(M; +, 0, \vee, \wedge)$ and $(\overline{M}; +, 0, \vee, \wedge)$. Since the values of the operations \rightharpoonup and \rightharpoonup are uniquely determined in both the $DR\ell$ -monoids $M = (M; +, 0, \vee, \wedge, \rightharpoonup, \sim)$ and $(\overline{M}; +, 0, \vee, \wedge, \neg, \sim)$ in the same manner by means of the operation + and the order relation \leq , $DR\ell$ -monoids M = I + J and $\overline{M} = I \times J$ are also isomorphic.

Remarks.

- a) Let $\widetilde{I} = \{(x,0); x \in I\}$ and $\widetilde{J} = \{(0,y); y \in J\}$. Since $I \cong \widetilde{I}$ and $J \cong \widetilde{J}$, the ideals I and J are (by Proposition 2 and Theorem 6) normal in M.
- b) By Theorem 6 and Proposition 3, the set of all direct factors of a $DR\ell$ -monoid M is a subset of the set of all polars in M. In particular, Sing(M) and Inv(M) are polars in M. It holds

$$(\operatorname{Sing}(M))^{\perp} = \operatorname{Inv}(M)$$
 and $(\operatorname{Inv}(M))^{\perp} = \operatorname{Sing}(M)$.

If M is a $DR\ell$ -monoid and $I \in \mathcal{C}(M)$, let us denote by D(I) the join of ideals I and I^{\perp} in the lattice $\mathcal{C}(M)$.

Proposition 7. If M is a $DR\ell$ -monoid, $I \in \mathcal{C}(M)$ and I is a direct factor of $DR\ell$ -monoid D(I), then $I + I^{\perp} \in \mathcal{C}(D(I))$ and $I + I^{\perp} = D(I) = I \vee I^{\perp}$ (in the sense of $\mathcal{C}(M)$).

Proof. Since I and I^{\perp} are normal ideals of D(I), by Lemma 21 of [8], it holds that

$$I \vee I^{\perp} = \{x \in D(I); |x| \le a + b, \text{ where } a \in I, b \in I^{\perp}\}.$$

in C(D(I)) (consequently, also in C(M)).

By Proposition 5, $a+b=b+a=a\vee b$. By Theorem 1.1.23 of [5], the underlying lattice $(M;\vee,\wedge)$ is distributive, therefore the lattice $(D(I)^+;\vee,\wedge)$ is also distributive. For this reason, from the inequality $|x|\leq a+b$, where $a\in I^+$ and $b\in \left(I^\perp\right)^+$, it follows the existence of elements $0\leq a_1\leq a$, $0\leq b_1\leq b$ in D(I) such that $|x|=a_1\vee b_1=a_1+b_1$. At the same time $a_1\in I$, $b_1\in I^\perp$ and hence $I\vee I^\perp=I+I^\perp$.

Corollary 8. If M is a $DR\ell$ -monoid and $I \in \mathcal{C}(M)$, then $DR\ell$ -monoids $I+I^{\perp}$ and $I \times I^{\perp}$ are isomorphic if and only if x+y=x'+y' implies x=x' and y=y', for any $x, x' \in I$ and $y, y' \in I^{\perp}$.

By Proposition 15 of [8], for any ideal I of a $DR\ell$ -monoid M (and hence also for each polar in M) it holds that its polar I^{\perp} is the pseudocomplement of I in C(M). We can specify this result for the direct factors of M.

Proposition 9. If an ideal I of a $DR\ell$ -monoid M is a direct factor in M, then the polar I^{\perp} is the complement of I in the lattice C(M).

Now we can prove the following proposition:

Proposition 10. If M is an arbitrary $DR\ell$ -monoid, then ideals I of M, for which there exists an ideal $J \in \mathcal{C}(M)$ such that I and J satisfy condition 1 from Theorem 6, form a Boolean lattice. This lattice is a sublattice of $\mathcal{C}(M)$.

Proof. Let I and J satisfy the given assumptions. Then from distributivity of the lattice $\mathcal{C}(M)$ we obtain

$$\begin{split} (I \vee J) \cap \left(I^{\perp} \cap J^{\perp}\right) &= \left(I \cap I^{\perp} \cap J^{\perp}\right) \vee \left(J \cap I^{\perp} \cap J^{\perp}\right) = \{0\}, \\ (I \vee J) \vee \left(I^{\perp} \cap J^{\perp}\right) &= \left(I \vee J \vee I^{\perp}\right) \cap \left(I \vee J \vee J^{\perp}\right) = M, \end{split}$$

hence $I \vee J$ and $I^{\perp} \cap J^{\perp}$ satisfy condition 1.

The remaining part of the assertion follows from Proposition 9.

Let us consider the following condition of uniqueness of decomposition for $DR\ell$ -monoids M:

(UD) If
$$I, J \in \mathcal{C}(M), I \cap J = \{0\}, x, x' \in I, y, y' \in J$$

and $x + y = x' + y'$, then $x = x'$ and $y = y'$.

Theorem 11. If $DR\ell$ -monoid M satisfies condition (UD), then the direct factors in M form a Boolean sublattice of the lattice C(M).

Proof. If condition (UD) holds in M, then $I \in \mathcal{C}(M)$ is a direct factor if and only if I and $J = I^{\perp}$ satisfy condition 1. Therefore, the theorem follows from Proposition 10.

Remark. If G is an ℓ -group, then $DR\ell$ -monoids G and G^+ satisfy condition (UD). Hence their direct factors form a Boolean lattice.

References

- [1] R.L.O. Cignoli, I.M.L. D'Ottaviano and D. Mundici, Foundations of Many-valued Reasoning, Kluwer Acad. Publ., Dordrecht 2000.
- [2] A. Di Nola, G. Georgescu and A. Iorgulescu, *Pseudo BL-algebras: Part I*, Multiple-Valued Logic **8** (2002), 673–714.
- [3] P. Hájek, *Metamathematics of Fuzzy Logic*, Kluwer Acad. Publ., Dordrecht 1998.
- [4] M.E. Hansen, Minimal prime ideals in autometrized algebras, Czechoslovak Math. J. 44 (119) (1994), 81–90.
- [5] T. Kovář, A general theory of dually residuated lattice-ordered monoids, Ph.D. Thesis, Palacký Univ., Olomouc 1996.

- [6] J. Kühr, Pseudo BL-algebras and DRl-monoids, Math. Bohemica 128 (2003), 199–208.
- [7] J. Kühr, Prime ideals and polars in DRl-monoids and pseudo BL-algebras, Math. Slovaca **53** (2003), 233–246.
- [8] J. Kühr, *Ideals of noncommutative DRl-monoids*, Czechoslovak Math. J. (to appear).
- [9] J. Rachůnek, *Prime ideals in autometrized algebras*, Czechoslovak Math. J. **37** (112) (1987), 65–69.
- [10] J. Rachůnek, *Polars in autometrized algebras*, Czechoslovak Math. J. **39** (114) (1989), 681–685.
- [11] J. Rachunek, Regular ideals in autometrized algebras, Math. Slovaca 40 (1990), 117–122.
- [12] J. Rachůnek, *DRl-semigroups and MV-algebras*, Czechoslovak Math. J. **48** (**123**) (1998), 365–372.
- [13] J. Rachůnek, MV-algebras are categorically equivalent to a class of DRl-semigroups, Math. Bohemica 123 (1998), 437–441.
- [14] J. Rachůnek, A duality between algebras of basic logic and bounded representable DR\ell-monoids, Math. Bohemica 126 (2001), 561–569.
- [15] J. Rachůnek, Polars and annihilators in representable $DR\ell$ -monoids and MV-algebras, Math. Slovaca **51** (2001), 1–12.
- [16] J. Rachůnek, A non-commutative generalization of MV-algebras, Czechoslovak Math. J. 52 (127) (2002), 255–273.
- [17] J. Rachůnek, Prime ideals and polars in generalized MV-algebras, Multiple-Valued Logic 8 (2002), 127–137.
- [18] J. Rachůnek, Prime spectra of non-commutative generalizations of MV-algebras, Algebra Univers. 48 (2002), 151–169.
- [19] D. Šalounová, Lex-ideals of $DR\ell$ -monoids and GMV-algebras, Math. Slovaca **53** (2003), 321–330.
- [20] K.L.N. Swamy, Dually residuated lattice-ordered semigroups I, Math. Ann. 159 (1965), 105–114.
- [21] K.L.N. Swamy, Dually residuated lattice-ordered semigroups II, Math. Ann. **160** (1965), 64–71.
- [22] K.L.N. Swamy, Dually residuated lattice-ordered semigroups III, Math. Ann. **167** (1966), 71–74.

- [23] K.L.N. Swamy and N.P. Rao, *Ideals in autometrized algebras*, J. Austral. Math. Soc. Ser. A **24** (1977), 362–374.
- [24] K.L.N. Swamy, and B.V. Subba Rao, Isometries in dually residuated latticeordered semigroups, Math. Sem. Notes Kobe Univ. 8 (1980), 369–379.

Received 16 September 2003 Revised 18 February 2004