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Abstract

The power index of a square Boolean matrix A is the least integer
d such that Ad is a linear combination of previous nonnegative powers
of A. We determine the maximum power indices for the class of n ×
n primitive symmetric Boolean matrices of trace zero, the class of
n × n irreducible nonprimitive symmetric Boolean matrices, and the
class of n×n reducible symmetric Boolean matrices of trace zero, and
characterize the extreme matrices respectively.
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1. Introduction and preliminaries

Let Bn be the set of all n × n Boolean matrices; that is, all (0, 1)-matrices
with the usual arithmetic except that 1 + 1 = 1. For A,B ∈ Bn, we say A
dominates B, written A ≥ B, if aij ≥ bij , for all i, j. If A dominates B, but
A 6= B, we write A > B. The matrix A is said to be permutationally similar
to B, written A ∼= B, if A = PBP T for some permutation matrix P .

To each matrix A ∈ Bn an adjacency digraph G(A) = (V, E) is associ-
ated, where V is a set of vertices 1, 2, . . . , n and the arc (i, j) from vertex i
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to vertex j belongs to E if and only if aij = 1. Then A ∼= B if and only if
G(A) is isomorphic to G(B) for A,B ∈ Bn. If A ∈ Bn is irreducible, then
G(A) is strongly connected, in this case we use D(A) to denote the diame-
ter of G(A). The adjacency digraph of a symmetric matrix is a symmetric
digraph, that is, for all u, v ∈ V , (u, v) is an arc if and only if (v, u) is.
Note that a symmetric digraph G naturally corresponds to an (undirected)
graph G̃ by replacing each pair of arcs (u, v) and (v, u) by an edge uv,
for u 6= v.

For any A ∈ Bn, the sequence of powers A0 = I, A,A2, . . . forms a
finite subsemigroup <A> of Bn. Thus there is a least nonnegative integer
k = k(A) such that Ak = Ak+t for some t ≥ 1, and a least positive integer
p = p(A) such that Ak = Ak+p. The parameters k = k(A) and p = p(A) are
called the index of convergerce (or cycle depth) and period of A, respectively.
A matrix A ∈ Bn is called primitive if Ak(A) = Jn, the all 1’s matrix in Bn.
The index of convergence of a primitive matrix A ∈ Bn is also called the
exponent of A. It is known that A is primitive if and only if A is irreducible
and p(A) = 1, and that J1 is the only primitive matrix with exponent 0.
In [3], Liu, McKay, Wormald, and Zhang studied the exponent of primitive
symmetric matrices of trace zero.

It is well known that if A ∈ Bn is irreducible, then p(A) is the great-
est common divisor of all the cycle lengths in G(A), and if A is reducible
and permutationally similar to a block triangular matrix with irreducible
diagonal blocks, then p(A) is the least common multiple of the periods of
these irreducible diagonal blocks. Periods of general matrices are considered
in [1], where also an efficient algorithm for computing the matrix period is
described.

For A ∈ Bn, the power index of A, d(A), is defined to be the first integer
such that Ad is a linear combination of previous nonnegative powers. Then
clearly, d(A) ≤ k(A)+p(A) for any A ∈ Bn. Gregory, Pullman and Kirkland
(in [2]) proved that d(A) equals the the dimension of the algebra generated
by A, they determined the maximum power indices for the class of n × n
symmetric matrices, the class of n × n irreducible nonprimitive symmetric
matrices, and the class of n × n reducible symmetric matrices, and they
characterized the extreme matrices (matrices whose power indices achieve
the corresponding maximum value) in these classes.

In this paper, we first determine the maximum power indices for the
class of n×n primitive symmetric matrices of trace zero, and we characterize
the extreme matrices in this class. Then we consider analogous problems
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for irreducible nonprimitive symmetric matrices and reducible symmetric
matrices of trace 0 with techniques different from those in [2]. For the case
of irreducible nonprimitive symmetric matrices, which has been considered
in [2], we provide a much simpler proof.

Let SBn be the set of symmetric matrices in Bn. Let

C =




0 1 1
1 0 1
1 1 0


 ,

let Fn ∈ Bn be the matrix with (i, i + 1)-th and (i + 1, i)-th entries 1 for all
i = 1, 2, . . . , n− 1 and all other entries 0, M3 = C and for n ≥ 4,

Mn =
[

C E
ET Fn−3

]
,

where E is the 3 × (n − 3) matrix with only the (3, 1)-th entry 1 and all
other entries 0. We provide two propositions that we will use later.

Proposition 1 . If A ∈ Bn is irreducible, then d(A) ≥ D(A)+1; If A ∈ Bn

is primitive, then d(A) ≤ max{D(A) + 1, k(A)}.

Proof. Suppose A ∈ Bn is irreducible and the distance from u to v in
G(A) is D(A). If n = 1, then clearly d(A) = 1 or 2 and D(A) = 0 and
hence d(A) ≥ D(A) + 1. Suppose n ≥ 2. Then clearly u 6= v. Since the
(u, v)-th entry of AD(A) is 1 and the (u, v)-th entry of Ai is 0 for each i with
0 ≤ i < D(A), we have d(A) ≥ D(A) + 1.

Suppose A is primitive. Then p(A) = 1 and hence d(A) ≤ k(A)+p(A) =
k(A) + 1. Hence d(A) = D(A) + 1 if k(A) = D(A). If k(A) ≥ D(A) + 1,
then Ak(A) = Jn = I + A + · · ·+ AD(A) and hence d(A) ≤ k(A). Note that
k(A) ≥ D(A). We have d(A) ≤ max{D(A) + 1, k(A)}.

Proposition 2 . Suppose A ∈ SBn is a primitive matrix. If there is a
positive odd integer h such that for some i, the (i, i)-th entry of Ah is 0,
then d(A) ≥ h + 1.

Proof. If h = 1, then clearly A 6= I and hence d(A) ≥ h + 1. Suppose
h ≥ 3. Since A ∈ SBn is primitive and the (i, i)-th entry of Ah is 0, we
have I < A2 and Ah < Jn. Then I < A2 < . . . < Ah−1 < Jn and hence
A < A3 < . . . < Ah < Jn. Note that the (i, i)-th entry of Aj is 0 if the index
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j, j ≤ h, is odd, and 1 if j is even. Thus if we could express Ah as a linear
combination of lower powers, the coefficients of the even powers would then
all have to be 0. But A < A3 < . . . < Ah. Thus, Ah can not be expressed
as a linear combination of lower powers and hence d(A) ≥ h + 1.

2. Symmetric primitive matrices

In this section we consider the power indices of primitive matrices A ∈ SBn

of trace zero.

Lemma 1 (see [3] and [4]). Suppose A ∈ SBn is a primitive matrix of trace
zero, n ≥ 3. Then

(1) k(A) ≤ 2n− 4, and equality holds if and only if A ∼= Mn;

(2) k(A) 6= 2n− 5.

Theorem 1 . Suppose A ∈ SBn is a primitive matrix of trace zero.

(1) If n = 3, then A = C and d(A) = 2;

(2) If n ≥ 4, then d(A) ≤ 2n−4, and equality holds if and only if A ∼= Mn.

Proof. The case n = 3 is trivial. Suppose n ≥ 4. Note that D(A) ≤ n− 2,

since G̃(A) has no loops. By Proposition 1 and Lemma 1,

d(A) ≤ max{D(A) + 1, k(A)} ≤ max{n− 1, 2n− 4} = 2n− 4.

Suppose d(A) = 2n − 4. Then it follows immediately from the above in-
equality that k(A) = 2n− 4 and hence A ∼= Mn by Lemma 1.

On the other hand, for n ≥ 4, the (n, n)-th entry of M2n−5
n is 0. By

Proposition 2, we have d(Mn) ≥ 2n− 4 and hence d(Mn) = 2n− 4.

Note that A ∈ SBn is primitive if and only if G̃(A) is connected and
contains at least one odd cycle, where an odd cycle is a cycle of odd length.
When A ∈ SBn is primitive, the length of a shortest odd cycle in G̃(A) is
called the odd girth of G̃(A). For a positive odd integer r ≤ n, let A ∈ SBn

be a primitive matrix such that G̃(A) has odd girth r. Then D(A) ≤ n− r+1
2 .

Let C1 = [1] and Cr = (cij) ∈ SBr with cii+1 = ci+1i = c1r = cr1 = 1 for
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i = 1, . . . , r − 1 and all other entries 0 if r > 1. Let Er be the r × (n − r)
matrix with only the (r, 1)-th entry 1 and all other entries 0. Let

Mn,r =
[

Cr Er

ET
r Fn−r

]
.

(Observe that Mn,3 = Mn, M1,1 = [1], C3 = C, and E3 = E.) Then (see
[8]):

(1) k(A) ≤ 2n− r − 1, and equality holds if and only if A ∼= Mn,r;

(2) k(A) 6= 2n− r − 2.

Similarly, we have the following.

Theorem 2 . Suppose A ∈ SBn is a primitive matrix and the odd girth of
G̃(A) is r.

(1) If n = r = 1, then A = [1] and d(A) = 1;

(2) If n = r > 1, then A ∼= Cr and d(A) = r − 1;

(3) If n = 2 and r = 1, then A ∼= M2,1 or A = J2, and d(A) = 2;

(4) If n ≥ max{3, r +1}, then d(A) ≤ 2n− r−1, and equality holds if and
only if A ∼= Mn,r.

This result includes both Theorem 1 and a similar result on primitive sym-
metric matrices (with no restriction on trace) in [2].

3. Irreducible nonprimitive symmetric matrices

Suppose A ∈ SBn is irreducible nonprimitive with n ≥ 2. Then p(A) = 2
and G̃(A) is a connected bipartite graph. The following lemma was proved
in [7]. To be more self-contained, a proof is reproduced here.

Lemma 2 (see [7]). If A ∈ SBn is an irreducible nonprimitive matrix with
n ≥ 2, then k(A) = D(A)− 1 ≤ n− 2.
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Proof. Write D = D(A). If D = 1, then A = F2, k(A) = 0.
Suppose D ≥ 2.
First suppose the (i, j)-th entry of AD+1 is 1. Then since the distance

l between vertex i and vertex j in G̃(A) is at most D and l ≡ D + 1 ≡
D−1(mod 2), we know that l ≤ D−1, D−1 = l+2s for some nonnegative
integer s, and hence the (i, j)-th entry of AD−1 is 1. So AD−1 ≥ AD+1.
Note that AD+1 ≥ AD−1 is obvious. It follows that AD−1 = AD+1 and
hence k(A) ≤ D − 1.

On the other hand, suppose the distance between u and v in G̃(A) is
D. Then the (u, v)-th entry of AD−2 is 0 while the (u, v)-th entry of AD is
1, and hence AD−2 6= AD. So, k(A) ≥ D − 1.

Theorem 3 . If A ∈ SBn is an irreducible nonprimitive matrix with n ≥ 2,
then d(A) = D(A) + 1 ≤ n.

Proof. By Lemma 2, k(A) = D(A) − 1. By Lemma 3 of [2], d(A) =
k(A) + p(A) = D(A) + 1, since A is irreducible, p(A) = 2 and A2 ≥ I.

Note that Theorem 3 also follows from Lemma 2 and Proposition 1.

Theorem 4 (Theorem 4 of [2]). If A ∈ SBn is an irreducible nonprimitive
matrix with n ≥ 2, then d(A) ≤ n, and equality holds if and only if A ∼= Fn.

Proof. By Theorem 3, d(A) = D(A) + 1 ≤ n, and equality holds if and
only if D(A) = n− 1, i.e., A ∼= Fn.

Theorem 5 . The power index set of irreducible nonprimitive matrices in
SBn, IS(n) = {d(A) | A ∈ SBn, A is irreducible nonprimitive}, is the set
{3, . . . , n} for n ≥ 3, and IS(2) = {2}.

Proof. It is obvious that IS(2) = {2}. Suppose n ≥ 3. For any irreducible
nonprimitive A ∈ SBn, D(A) ≥ 2. By Theorem 3, IS(n) ⊆ {3, . . . , n}.
Conversely, for any k ∈ {3, . . . , n}, it is obvious that there is a matrix A ∈
SBn such that G̃(A) is a tree with diameter k − 1. Then k = d(A) ∈ IS(n).
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4. Symmetric reducible matrices

In this section we consider the power indices of reducible matrices of trace
zero in SBn.

Theorem 6 . Suppose A ∈ SBn is a reducible matrix of trace zero.

(1) If n = 2, then A is the zero matrix and d(A) = 2;

(2) If n = 3, then d(A) ≤ 3, and equality holds if and only if A ∼= F2⊕ [0];

(3) If n = 4, then d(A) ≤ 3, and equality holds if and only if A ∼= M3⊕ [0],
A ∼= F3 ⊕ [0] or A ∼= F2 ⊕ [0]⊕ [0];

(4) If n = 5, then d(A) ≤ 2n − 6 = 4, and equality holds if and only if
A ∼= M4 ⊕ [0], A ∼= M3 ⊕ F2 or A ∼= F4 ⊕ [0];

(5) If n ≥ 6, then d(A) ≤ 2n − 6, and equality holds if and only if A ∼=
Mn−1 ⊕ [0] or A ∼= Mn−2 ⊕ F2.

Proof. The cases n = 2, 3 and 4 can be checked easily. Suppose n ≥ 5.
Since A is reducible, A ∼= A1⊕. . .⊕Am for irreducible matrix Ai ∈ SBni with
m ≥ 2. Clearly, k(A) = max{k(Ai) : 1 ≤ i ≤ m}. Suppose k(A) = k(Ai0).

Case 1. ni0 = n− 1. Then, by Lemmas 1 and 2, k(Ai0) ≤ max{2(n− 1)
−4, n− 3} = 2n− 6, and equality holds if and only if Ai0

∼= Mn−1.

Subcase 1.1. k(Ai0) = 2n − 6. Then A ∼= Mn−1 ⊕ [0]. It is easy to see
that d(Mn−1 ⊕ [0]) = 2n− 6.

Subcase 1.2. k(Ai0) < 2n − 6. If Ai0 is primitive, then p(A) = 1 and,
by Lemma 1, k(A) ≤ 2n − 8, and hence d(A) = k(Ai0) ≤ k(A) + p(A) <
2n− 6. Now suppose Ai0 is nonprimitive. Then p(A) = 2 and by, Lemma 2,
k(A) ≤ ni0 − 2 = n − 3, equality holds if and only if Ai0

∼= Fn−1. Hence
d(A) ≤ k(A) + p(A) ≤ n− 1 ≤ 2n− 6, and if equality holds, then n = 5 and
A ∼= F4 ⊕ [0]. It is easy to see that d(F4 ⊕ [0]) = 4 = 2n− 6.

Case 2. ni0 ≤ n− 2. By Lemmas 1 and 2, k(Ai0) ≤ max{2(n− 2)− 4,
n − 4} = 2n − 8, and equality holds if and only if Ai0

∼= Mn−2. Thus
d(A) ≤ k(A)+p(A) ≤ 2n− 6, and if equality holds, then A ∼= Mn−2⊕X for
X ∈ SB2 with p(X) = 2, and hence A ∼= Mn−2 ⊕ F2. It is easy to see that
d(Mn−2 ⊕ F2) = 2n− 6.
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5. Closing remark

Combining Theorems 1, 4 and 6, we have the following.

Theorem 7 . Suppose A is a matrix in SBn of trace zero.

(1) If n = 1, then d(A) = 2, and A = [0];

(2) If n = 2, then d(A) = 2, and either A = [0]⊕ [0] or A = F2;

(3) If n = 3, then d(A) ≤ 3, and equality holds if and only if A ∼= F3 or
A ∼= F2 ⊕ [0];

(4) If n = 4, then d(A) ≤ 4, and equality holds if and only if A ∼= M4 or
A ∼= F4;

(5) If n ≥ 5, then d(A) ≤ 2n−4, and equality holds if and only if A ∼= Mn.
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