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Abstract

In this paper we investigate sufficient conditions for the validity
of certain implications concerning direct products of lattice-ordered
groups.
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1. Introduction

Let A,B and C be algebras of the same type; A × B denotes the direct
product of A and B.

The content of Section 5.7 (pp. 319–336) of the monograph [18] by
McKenzie, McNulty and Taylor consists in investigating the conditions
under which the following implications are valid:

(1) A× C ' B × C ⇒ A ' B;

(2) An ' Bn ⇒ A ' B (where n is a positive integer);

(3) A ' A×B × C ⇒ A ' A×B.
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In the case of (1) and (2), finite algebras (or finite relational structures)
have been taken into account; in some of the results dealing with (3), the
algebras under consideration can be infinite. Cf. also [17] by McKenzie, [1]
by Appleson and Lovász, and [15], [16] by Lovász.

It is remarked in [18] (p. 333) that the relation (3) resembles the theorem
of Cantor-Bernstein of the set theory and that the situations, where an
analogous result holds for categories, are extremely rare.

In fact, condition (1) implies condition (2) in any class of algebras, and
condition (1) also implies condition (3) in any class of algebras that contain
a one-element algebra.

In the present paper we consider the implications (1), (2) and (3) for
lattice-ordered groups. We recall that a lattice-ordered group is an algebraic
system (G; +,∧,∨) such that (G; +) is a group, (G;∧,∨) is a lattice and for
each a, b, x, y ∈ G the relation

a 5 b ⇒ x + a + y 5 x + b + y

is valid.
Specker lattice-ordered groups were investigated by Conrad and Darnel

[5]; for the definition, cf. Section 2 below.
We remark that if G is a lattice-ordered group, then either G is a

one-element set or G is infinite.
We denote by G the class of all lattice-ordered groups. Let G′ be a

nonempty class of lattice-ordered groups which is closed with respect to
isomorphisms and let i ∈ {1, 2, 3}. We say that the implication (i) holds in
G′ if this implication is satisfied whenever the corresponding lattice-ordered
groups standing in (i) belong to G′.

Let G1 be the class of all lattice-ordered groups G such that either G =
{0} or G can be expressed as a direct product of directly indecomposable
factors.

Further, let G2 be the class of all G ∈ G1 such that, if

G '
∏

i∈I

Gi,

where all Gi are directly indecomposable, then for each i ∈ I the set

i = {i(1) ∈ I : Gi(1) ' Gi}

is finite.
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We show that the implication (1) fails to be valid in G1 and that this im-
plication is valid in G2. If C ∈ G1 and (1) is valid for each A, B ∈ G1, then
C ∈ G2.

There exist Specker lattice-ordered groups A and B such that A2 ' B2

and A 6' B; hence (2) is not valid in G. We prove that (2) holds for G1.
Further, the implication (3) does not hold in G. From the results of

[13] it follows that this implication is valid in the class of all orthogonally
σ-complete lattice-ordered groups.

The implication (1) for unary algebras was studied by Novotný in [19]
and by Ploščica and Zelina in [20]. The implications (1) and (2) for
monounary algebras have been dealt with by Jakub́ıková-Studenovská
in [14].

The more detailed references related to (3) are given in Section 3 below.

2. Preliminaries

For lattice-ordered groups we apply the notation as in [2] by Conrad.
Let G ∈ G. We say that G is directly indecomposable if G 6= {0} and if,

whenever G ' A×B, then either A or B is a one-element set.
It is well-known that if

G '
∏

i∈I

Gi and G '
∏

j∈J

Hj

where all Gi and all Hj are directly indecomposable, then there exists a
bijection ϕ of I onto J such that Gi ' Hϕ(i) for each i ∈ I.

We express this fact by saying that if a lattice-ordered group has a
direct decomposition with directly indecomposable factors, then this direct
decomposition is unique up to isomorphisms.

Let n be a positive integer and A1, A2, . . . , An be elements of G1. Then
there exists a set S = S(A1, . . . , An) of lattice-ordered groups such that

(i) if B ∈ S, then B is directly indecomposable and there exists n(1) ∈
{1, 2, . . . , n} such that B is isomorphic to a direct factor of An(1);

(ii) if n(1) ∈ {1, 2, . . . , n} and X is a directly indecomposable direct factor
of An(1), then there exists B ∈ S with B ' X;

(iii) if B1 and B2 are distinct elements of S, then they are not isomorphic.
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Let A ∈ G and let α be a nonzero cardinal. Let

G =
∏

i∈I

Gi,

where card(I) = α and Gi = A for each i ∈ I. Then we write G = Aα. For
α = 0 we consider Aα to be the one-element lattice-ordered group {0}.

Let G ∈ G. A nonempty subset Y of G is called orthogonal if Y ⊆ G+

and if y1 ∧ y2 = 0 whenever y1 and y2 are distinct elements of Y . We say
that G is orthogonally σ-complete if each denumerable orthogonal subset of
G has the supremum in G.

Specker lattice-ordered groups have been dealt with by Conrad and
Darnel in [3], [4], [5], and by the author in [12]. We recall the corresponding
definition.

Let G ∈ G. We denote by S1(G) the set of all elements 0 < x ∈ G such
that the interval [0, x] of G is a Boolean algebra. The set S0(G) = S1(G)∪{0}
with the induced partial order is a generalized Boolean algebra. G is called
a Specker lattice-ordered group if it is generated as a group by the set S1(G).
All Specker lattice-ordered groups are abelian.

3. The implications (1), (2) and (3)

We apply the notation as in Section 1.
Let Z be the additive group of all integers with the natural linear order.

Let α be an infinite cardinal. Put

A = Z, B = Z × Z, C = Zα.

Then we have A × C ' C ' B × C and A 6' B. Hence (1) is not valid in
the class G. Since Z is directly indecomposable, we conclude that (1) fails
to be valid in G1 as well.

Now assume that A,B and C belong to the class G2. Denote S =
S(A, B,C). If S = ∅, then we have A = B = C = {0} and then (1)
obviously holds. Assume that S 6= ∅. We express S in the form

S = {Gj}j∈J

such that for distinct elements j(1), j(2) of J we have Gj(1) 6= Gj(2).



Isomorphisms of direct products of lattice-ordered groups 47

Then we can write

A '
∏

j∈J

G
α(a,j)
j , B '

∏

j∈J

G
α(b,j)
j , C '

∏

j∈J

G
α(c,j)
j ,

where, for each j ∈ J , α(a, j), α(b, j) and α(c, j) are non-negative integers.
Hence we have

A× C '
∏

j∈J

G
α(a,j)+α(c,j)
j ,

B × C '
∏

j∈J

G
α(b,j)+α(c,j)
j .

Assume that A × C ' B × C. Since the direct product of A × C with
directly indecomposable factors is unique up to isomorphisms (cf. Section
2), we conclude that for each j ∈ J the relation

α(a, j) + α(c, j) = α(b, j) + α(c, j)

is valid; thus α(a, j) = α(b, j). Therefore A ' B.
Hence we have

Theorem 3.1. The implication (1) holds for the class G2.

By a modification of the method applied in the example above (con-
cerning Z), we obtain

Proposition 3.2. Let C ∈ G1. Assume that for each A,B ∈ G1 the impli-
cation (1) is valid. Then C ∈ G2.

Proof. The case C = {0} is trivial; assume that C 6= {0}. Let S(C) =
{Gj}j∈J . We have

C '
∏

j∈J

G
α(c,j)
j ,

where α(c, j) is a nonzero cardinal for each j ∈ J . By way of contradiction,
suppose that C does not belong to G2. Then there is j(1) ∈ J such that
the cardinal α(c, j(1)) is infinite. Put A = Gj(1), B = Gj(1) × Gj(1).
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We have A, B ∈ G1 and

A× C ' C ' B × C, A 6' C,

which is a contradiction.

For dealing with the implication (2), we will apply the following results:

Theorem 3.3 (cf. [7] by Hanf). There exist Boolean algebras B1 and B2

such that B1 6' B2 and B2
1 ' B2

2 .

Proposition 3.4 (cf. [4] by Conrad and Darnel, Proposition 2.6). Let B be
a generalized Boolean algebra. There exists a Specker lattice-ordered group
G such that B = S0(G).

Lemma 3.5 (cf. [12], Lemma 3.1). Let G1 and G2 be Specker lattice-ordered
groups such that S0(G1) ' S0(G2). Then G1 ' G2.

Lemma 3.6. Let G1 and G2 be Specker lattice-ordered groups and H =
G1 ×G2. Then H is a Specker lattice-ordered group and S0(H) = S0(G1)×
S0(G2).

Proof. It is obvious that whenever z = (s1, s2) is an element of S0(G1) ×
S0(G2), then the interval [0, z] of H is a Boolean algebra, hence z ∈ S0(H).
Conversely, let g = (g1, g2) ∈ S0(H). Thus [0, g] is a Boolean algebra,
yielding that [0, gi] (i = 1, 2) are Boolean algebras as well; therefore g ∈
S0(G1)× S0(G2).

From the fact that the group Gi is generated by the set S0(Gi) (i = 1, 2),
we conclude that the group H is generated by the set

{(s1, 0) : s1 ∈ S0(G1)} ∪ {(0, s2) : s2 ∈ S0(G2)}

which is a subset of S0(H). Hence H is a Specker lattice-ordered group.

Now, let B1 and B2 be as in Theorem 3.3. According to Proposition
3.4, there exist Specker lattice-ordered groups Gi with S0(Gi) = Bi; put
Hi = G2

i (i = 1, 2). Then, by Lemma 3.6, we have

S0(H1) = B2
1 , S0(H2) = B2

2 .

Thus S0(H1) ' S0(H2). Hence Lemma 3.5 yields H1 ' H2, i.e., G2
1 ' G2

2.
On the other hand, since B1 6' B2, we get G1 6' G2.
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We conclude that the implication (2) fails to be valid for the class G.

Theorem 3.7. The implication (2) is valid for the class G1.

Proof. Let A,B ∈ G1. It suffices to consider the case A 6= {0} 6= B. Hence
there exists a representation

A '
∏

i∈I

A
α(i)
i ,

where {Ai}i∈I = S(A). Analogously, we have

B '
∏

j∈J

B
α(j)
j

with {Bj}j∈J = S(B); for each i ∈ I and j ∈ J , α(i) and α(j) are nonzero
cardinals. Let n be a positive integer; we obtain

An '
∏

i∈I

A
nα(i)
i , Bn '

∏

j∈J

B
nα(j)
j .

Assume that An ' Bn. Since the direct product decompositions of An and
of Bn into directly indecomposable factors are unique up to isomorphisms,
we conclude that there exists a bijection ψ of I onto J such that for each
i ∈ I we have

Ai ' Bψ(i), nα(i) = nβ(ψ(i)).

From this we obtain αi = βψ(i), whence A ' B.

Now let us consider the implication (3).
Let K be a class of algebras of the same type which is closed with respect

to isomorphism and with respect to direct products. We apply the standard
terminology: if X,Y, Z ∈ K and X×Y ' Z, then X and Y are called direct
factors of Z.

Consider the following condition for K:

(4) If P and Q are elements of K such that
(i) P is isomorphic to a direct factor of Q,

(ii) Q is isomorphic to a direct factor of P ,

then P is isomorphic to Q.
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Lemma 3.8. The conditions (3) and (4) for the class K are equivalent.

Proof. Let (3) be valid for the class K. Assume that P and Q belong to
K and that the conditions (i), (ii) from (4) are satisfied. Hence there exist
X, Y ∈ K such that

P ' Q×X, Q ' P × Y.

Thus
Q ' Q×X × Y.

Then, in view of (3), we have Q ' Q × X, hence Q ' P . Therefore, (4)
holds for K.

Conversely, assume that (4) is satisfied for K. Let A,B,C ∈ K and
A ' A× B × C. Thus A× B is a direct factor of A. Clearly, A is a direct
factor of A × B. In view of (4), we have A ' A × B. Hence (3) is
valid in K.

Sikorski in [21] and Tarski in [23] (cf. also [22] by Sikorski) proved that
(4) is valid for σ-complete Boolean algebras, generalizing the well-known
Cantor-Bernstein theorem of the set theory.

Generalizations of Sikorski-Tarski Theorem for some types of lattice-
ordered groups and of lattices have been proved by author (see [9], [11]
and [13]).

There are related results for σ-complete MV -algebras (see [6] by
De Simone, Mundici and Navara) and for orthogonally σ-complete pseudo
MV -algebras (see [12] by the author).

We quote the following result from [13]:

Theorem 3.9. Let K be the class of all orthogonally σ-complete lattice-
ordered groups. Then K satisfies the condition (4).

In view of Lemma 3.8, we have

Corollary 3.10. Let K be as in Theorem 3.9. Then the implication (3) is
satisfied in K.

In [13] it has been shown by means of an example that the assumption
of orthogonal σ-completeness cannot be omitted in Theorem 3.9. Hence G
does not satisfy the implication (3).

It is easy to verify that for lattice-ordered groups, (3) is a consequence
of (1). (Cf. also the corresponding remark in Section 1.) Hence in view of
3.1, the implication (3) holds for the class G2.
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Let K be as in Theorem 3.9. Then K is not a subclass of G2. In fact, if α
is an infinite cardinal, then the lattice-ordered group Zα belongs to K, but
Zα /∈ G2.

A condition similar to (4) has been applied in [8] for dealing with
complete lattice-ordered groups (instead of direct factors as in (4), convex
`-subgroups have been considered).
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