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Abstract

We introduce a bounded lattice L = (L;∨,∧, 0, 1), where for each
p ∈ L there exists an antitone involution on the interval [p, 1]. We show
that there exists a binary operation · on L such that L is term equiva-
lent to an algebra A(L) = (L; ·, 0) (the assigned algebra to L) and we
characterizeA(L) by simple axioms similar to that of Abbott’s implica-
tion algebra. We define new operations ⊕ and ¬ on A(L) which satisfy
some of the axioms of MV-algebra. Finally we show what properties
must be satisfied by L or A(L) to obtain all axioms of MV-algebra.
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1. Bounded lattice with antitone involutions
and assigned operation

A mapping f : A → A is called an involution if f(f(x)) = x for each x ∈ A.
If (A;≤) is an ordered set, then f : A → A is called antitone provided x ≤ y
implies f(y) ≤ f(x) for all x, y ∈ A.

Let L = (L;∨,∧, 0, 1) be a bounded lattice, where 0 or 1 denotes the
least or greatest element of L, respectively. L is said to have sectionally
antitone involutions if for every x ∈ L there is an antitone involution on the
interval [x, 1]; i.e. a mapping which assignes to each a ∈ [x, 1] an element
ax ∈ [x, 1] with axx = a and a ≤ b entails bx ≤ ax. The interval [x, 1] is
called a section.

Remarks. (a) Since L is a bounded lattice, L = [0, 1] and hence if L has
sectionally antitone involutions there is also an antitone involution on L
(assigning to each a ∈ L an element a0) satisfying 00 = 1 and 10 = 0.

(b) It is evident that for each x ∈ L, the corresponding antitone in-
volution on [x, 1] is a dual automorphism of ([x, 1];∨,∧) and hence the De
Morgan laws are satisfied, i.e. (a∨ b)x = ax ∧ bx and (a∧ b)x = ax ∨ bx hold
for all a, b ∈ [x, 1].

Analogously as in [3], we can introduce a new binary operation on L as
follows:

(A) x · y = (x ∨ y)y

One can easily see that · is correctly defined since for any x, y ∈ L, we have
x ∨ y ∈ [y, 1], thus the antitone involution of x ∨ y in the section [y, 1], i.e.
(x ∨ y)y, exists.

Lemma 1. Let L = (L;∨,∧, 0, 1) be a bounded lattice with sectionally anti-
tone involutions. Then the operation · defined by (A) satisfies the following
identities:

(1) 1 · x = x, x · 1 = 1, 0 · x = 1;

(2) (x · y) · y = (y · x) · x;

(3) (((x · y) · y) · z) · (x · z) = 1.
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Proof.
Ad (1):

1 · x = (1 ∨ x)x = 1x = x,

x · 1 = (x ∨ 1)1 = 11 = 1,

0 · x = (0 ∨ x)x = xx = 1

Ad (2): (x · y) · y = ((x ∨ y)y ∨ y)y = (x ∨ y)yy = x ∨ y since x ∨ y ∈ [y, 1],
thus also (x ∨ y)y ∈ [y, 1], i.e. (x ∨ y)y ≥ y giving (x ∨ y)y ∨ y = (x ∨ y)y.
Analogously, (y · x) · x = y ∨ x = x ∨ y proving (2).

For (3), we use the just proved (x · y) · y = x ∨ y and rewrite (3) in the
form

(3′) ((x ∨ y) · z) · (x · z) = 1.

Since x ≤ x ∨ y, (x ∨ y) · z = (x ∨ y ∨ z)z and x · z = (x ∨ z)z, it yields

(3′′) ((x ∨ y) · z) ≤ x · z,

due to the antitony of involutions.

However, if a ≤ b in L, then a · b = (a ∨ b)b = bb = 1, i.e. (3′′) gives

((x ∨ y) · z) · (x · z) = 1.

This is (3′), so we have shown the identity (3).

Remark. Of course, 0·0 = 1 and to every bounded lattice L = (L;∨,∧, 0, 1)
with sectionally antitone involutions there can be assigned an algebraA(L) =
(L; ·, 0) of type (2, 0), where the operation · is defined by (A), satisfiying the
identities (1), (2), (3) of Lemma 1. Call A(L) the assigned algebra to L.

We are going to show that this assignment is a one-to-one
correspondence:

Theorem 1. Let A = (A; ·, 0) be an algebra of type (2, 0) and let 1 denote
0 · 0. Assume that identities (1), (2), and (3) hold. Define a binary relation
≤ on A as follows
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(B) x ≤ y if and only if x · y = 1.

Then L(A) = (A;≤) is a bounded lattice with respect to ≤, where 0 is the
least and 1 the greatest element. Moreover, the supremum and infimum with
respect to ≤ are the following:

x ∨ y = (x · y) · y,

x ∧ y = (((x · 0) · (y · 0)) · (y · 0)) · 0.

Finally, for each p ∈ A, the mapping a 7→ ap = a · p (for a ∈ [p, 1]) is an
antitone involution on the section [p, 1].

Proof. Define 1 := 0 · 0 and x ≤ y if and only if x · y = 1. By (1) and
(2), we have x · x = (1 · x) · x = (x · 1) · 1 = 1, thus ≤ is reflexive. By (1),
0 · x = 1, x · 1 = 1 thus 0 ≤ x ≤ 1 for each x ∈ A.

Suppose x ≤ y and y ≤ x. Then x · y = 1 and y · x = 1, thus x = 1 · x =
(y · x) · x = (x · y) · y = 1 · y = y proving antisymmetry of ≤.

Finally, suppose x ≤ y and y ≤ z. Then x · y = 1, y · z = 1 and
(y · x) · x = (x · y) · y = 1 · y = y.

Hence

(C) y · z = ((y · x) · x) · z.

Taking y = 1 in (3) and applying (1), we conclude

(D) z · (x · z) = 1 for each x, z ∈ A.

By the assumption x ≤ y, i.e. x · y = 1, and (2), we have shown (x · y) · y =
(y · x) · x = y. Therefore, applying (3) once more, we obtain

(E) (y · z) · (x · z) = (((x · y) · y) · z) · (x · z) = 1.

But x · y = 1 means x ≤ y, thus, taking into account (E), we get the
implication:

(F) x ≤ y ⇒ y · z ≤ x · z.
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Applying (F) and (1) to the assumption x ≤ y, we obtain x ≤ (y · x) · x,
From this and the assumption y ≤ z, applying (C) and (F), we get

1 = y · z = ((y · x) · x) · z ≤ x · z.

Hence, x · z = 1 means x ≤ z, thus ≤ is also transitive, i.e. it is an partial
order on A.

Define a ∨ b = (a · b) · b for a, b ∈ A. By (2) and (D) we have

a · ((a · b) · b) = a · ((b · a) · a) = 1

and
b · ((a · b) · b) = 1,

thus a ≤ a ∨ b and b ≤ a ∨ b. Suppose a ≤ c and b ≤ c. Then b · c = 1 and
c = 1 · c = (b · c) · c = (c · b) · b. This implies

((a · b) · b) · c = ((a · b) · b) · ((c · b) · b).
By using of (F) we obtain

a ≤ c ⇒ c · b ≤ a · b ⇒ (a · b) · b ≤ (c · b) · b
and hence

((a · b) · b) · ((c · b) · b) = 1,

i.e. ((a · b) · b) · c = 1 proving a∨ b ≤ c. We have shown a∨ b = sup{a, b} for
each a, b ∈ A.

Now, consider p ∈ A and a ∈ [p, 1]. Then app = (a · p) · p = a ∨ p = a
thus the mapping a 7→ ap is an involution on [p, 1]. By (F), a ≤ b ⇒ bp ≤ ap

for a, b ∈ [p, 1], i.e. it is also antitone. Thus 00 = 1, 10 = 0 and, due to
De Morgan laws, a ∧ b = (a0 ∨ b0)0 = (((x · 0) · (y · 0)) · (y · 0)) · 0 is the
infimum of a, b ∈ A. Altogether, (A;∨,∧, 0, 1) is a bounded lattice with
sectionally antitone involutions.

Remark. As it was shown in the proof of Theorem 1, if A = (A; ·, 0) is an
algebra satisfying the identities (1), (2), (3) for 1 = 0 · 0, then it satisfies
also

(1′) x · x = 1.
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due to x · x = (1 · x) · x = (x · 1) · 1 = 1. Moreover,

(1′′) (x · 0) · 0 = x ∨ 0 = x.

2. Assigned algebras

Let us recall from [2] that by an MV-algebra is meant an algebra
A = (A;⊕,¬, 0) of type (2, 1, 0) satisfying the axioms:

(MV1) a⊕ (b⊕ c) = (a⊕ b)⊕ c,

(MV2) a⊕ b = b⊕ a,

(MV3) a⊕ 0 = a,

(MV4) ¬¬a = a,

(MV5) a⊕ ¬0 = ¬0,

(MV6) ¬(¬a⊕ b)⊕ b = ¬(¬b⊕ a)⊕ a.

Usually we denote ¬0 by 1 and we read (MV5) as a⊕ 1 = 1.

MV -algebras were introduced by C.C. Chang as an algebraic counter-
part of ÃLukasiewicz multiple valued logic. In what follows, we will check
which of the axioms are satisfied by the assigned algebra of a bounded lat-
tice with sectionally antitone involutions.

Let A = (A; ·, 0) be an algebra of type (2, 0) and M = (M ;⊕,¬, 0) be
an algebra of type (2, 1, 0). Define the so called assigned algebras M(A) and
A(M) as follows:

given A define

(G) a⊕ b = (a · 0) · b and ¬a = a · 0

then M(A) = (A;⊕,¬, 0).
Further, for given M, define

(H) a · b = ¬a⊕ b

and put A(M) = (M ; ·, 0). We will denote 1 = ¬0 in M and 1 = 0 · 0
in A.
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Lemma 2. Let A = (A; ·, 0) be an algebra satisfying the identities (1), (2)
and (3). Then the assigned algebra M(A) = (A;⊕,¬, 0) satisfies the axioms
(MV3), (MV4), (MV5) and (MV6).

Proof. Take 1 = 0 · 0. Then we have

(MV3): a⊕ 0 = (a · 0) · 0 = a;

(MV4): ¬¬a = (a · 0) · 0 = a;

(MV5): a⊕ ¬0 = a⊕ 1 = (a · 0) · 1 = 1 = ¬0;

(MV6): ¬(¬a⊕b)⊕b = ¬(((a·0)·0)·b)⊕b = ¬(a·b)⊕b = (((a·b)·0)·0)·b =
(a · b) · b.

Analogously, we can show ¬(¬b ⊕ a) ⊕ a = (b · a) · a and, due to (2),
we obtain (MV6).

However, we can show that the assigned algebra M(A) of A satisfying (1),
(2), (3) holds a bit more:

Lemma 3. Let A = (A; ·, 0) be an algebra satisfying (1), (2), (3). Then its
assigned algebra M(A) satisfies the conditions:

(i) 0⊕ a = a;

(ii) ¬a⊕ a = 1 = a⊕ ¬a;

(iii) 1⊕ a = 1;

(iv) a⊕ (¬(a⊕ b)⊕ b) = 1;

(v) ¬a⊕ b = 1 if and only if b⊕ ¬a = 1;

(vi) ¬a⊕ b = 1 if and only if ¬(a⊕ c)⊕ (b⊕ c) = 1 for each c ∈ A.

Proof. It is an elementary computation to verify (i), (ii) and (iii).
We prove (iv): by the proof of Lemma 2, ¬(¬x⊕y)⊕y = (x·y)·y which is

the supremum x∨y with respect to the induced order≤ onA, see Theorem 1.
Hence by (B) of Theorem 1 we conclude ¬x⊕(¬(¬x⊕y)⊕y) = x·(x∨y) = 1.

Taking x = ¬a, y = b, we obtain (iv).
Prove the remaining properties.
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(v): ¬a ⊕ b = 1 iff a · b = 1 iff a ≤ b iff a · 0 = a0 ≥ b0 = b · 0 iff
(b · 0) · (a · 0) = 1 iff b⊕ ¬a = 1.

(vi): Suppose ¬a ⊕ b = 1. Then a · b = 1, i.e. a ≤ b which yields
a · 0 ≥ b · 0 and hence (a · 0) · c ≤ (b · 0) · c. Thus ((a · 0) · c) · ((b · 0) · c) = 1
which gives ¬(a⊕ c)⊕ (b⊕ c) = 1 for each c ∈ A.

The converse is trivial by using of c = 0 and applying (MV3).

We can prove the converse assertion:

Lemma 4. Let M = (M ;⊕,¬, 0) be an algebra of type (2, 1, 0) satisfying
(MV3)-(MV6) and (iii). Then M holds also (i) and (ii).

Proof. Taking b = 0 in (MV6), we conclude a = ¬(1 ⊕ a) ⊕ a. Applying
(iii), we get (i).

Taking b = 1, a = ¬a in (MV6) and applying (i), we obtain 1 = a⊕ ¬a
and for a = ¬a we have also 1 = ¬a⊕ a. Altogether, we get (ii).

Theorem 2. Let M = (M ;⊕,¬, 0) be an algebra satisfying (MV3)-(MV6)
and (iii)-(vi). Then its assigned algebra A(M) = (M ; ·, 0) satisfies the iden-
tities (1), (2) and (3).

Proof. Ad (1): x · 1 = ¬x⊕ 1 = 1 by (MV5);

1 · x = ¬1⊕ x = 0⊕ x = x since M satisfies (i) by Lemma 4;

0 · x = ¬0⊕ x = 1⊕ x = 1 by (iii).

Ad (2): (x · y) · y = ¬(¬x⊕ y)⊕ y = ¬(¬y ⊕ x)⊕ x = (y · x) · x by (MV6).

Ad (3): Define a binary relation ρ on M by the rule aρb if and only if
¬a⊕ b = 1 (which is equivalent to a · b = 1 due to (H)).

By (v), we have

(?) aρb if and only if (¬b)ρ(¬a).

By (?) and (vi), we have

(??) aρb if and only if (¬b⊕ c)ρ(¬a⊕ c) for every c ∈ A.

Finally, (iv) yields immediately

(? ? ?) aρ(a · b) · b
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Taking (? ? ?) and (?), we have xρ(x · y) · y and hence ¬((x · y) · y)ρ¬x,
applying (??) we derive

((x · y) · y) · z = (¬((x · y) · y)⊕ z)ρ(¬x⊕ z) = x · z

thus, by our prescribtion for ρ, we have

(((x · y) · y) · z) · (x · z) = 1 proving (3).

Due to the previous results, we can assign to every algebra A = (A, ·, 0)
satisfying (1), (2), (3) an algebra M(A) = (A;⊕,¬, 0) satisfying (MV3)-
(MV6) and (iii)-(vi) and, conversely, to every M = (M ;⊕,¬, 0) satisfying
(MV3)-(MV6) and (iii)-(vi) an algebra A(M) = (M ; ·, 0) satisfying (1), (2),
(3). It is evident that A(M(A)) = A and M(A(M)) = M. Due to Lemma
1, Theorem 1 and Lemma 3, we can assign also to every bounded lattice with
sectionally antitone involutions L an algebra M(L) = M(A(L)) satisfying
(MV3)-(MV6) and (iii)-(vi) and, conversely, to every M = (M ;⊕,¬, 0)
satisfying (MV3)-(MV6) and (iii)-(vi) can be assigned a bounded lattice
with sectionally antitone involutions L(M) = L(A(M)). In what follows we
can check by means of A(M) or L(M) whether M = (M ;⊕,¬, 0) satisfies
also (MV1) and/or (MV2).

Theorem 3. Let M = (M,⊕,¬, 0) be an algebra of type (2, 1, 0) satisfying
(MV3). Then M satisfies (MV2) if and only if the assigned algebra A(M) =
(M ; ·, 0) satisfies the identity

(4) x · (y · 0) = y · (x · 0).

If M satisfies (MV2)-(MV6) and (iv), (vi), then the induced lattice L(M)
is distributive.

Proof. Let M satisfies (MV3). If A(M) satisfies (4), then, by (MV3),
(x ·0) ·0 = x⊕0 and x⊕y = (x ·0) ·y = (x ·0) ·((y ·0) ·0) = (y ·0) ·((x ·0) ·0) =
(y · 0) · x = y ⊕ x.

Conversely, let A satisfies (MV2) and (MV3). Then for each a, b ∈ A
we have a = (a · 0) · 0, b = (b · 0) · 0. Take a · 0 = x, b · 0 = y. Therefore,
by (MV2), a · (b · 0) = (x · 0) · ((y · 0) · 0) = (x · 0) · y = x ⊕ y = y ⊕ x =
(y · 0) · x = (y · 0) · ((x · 0) · 0) = b · (a · 0) proving (4).
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Suppose now that M satisfies (MV2)-(MV6) and (iv), (vi). Due to (MV2),
it satisfies also (v). Due to (MV2) and (MV5), it satisfies also (iii). By
Theorem 2, the assigned algebra A(M) satisfies (1), (2), (3) and, as shown
previously, also (4). Hence L(M) is a lattice with sectionally antitone invo-
lutions by Theorem 1. Suppose now that L(M) is not distributive. Then it
contains a sublattice isomorphic to M3 or N5.

(a) Let L(M) contain a sublattice
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Since the antitone involutions are dual isomorphisms, it contains also the
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Then (ax)0 · (cx · 0) = (ax)0 · (cx)0 = ((ax)0 ∨ (cx)0)(c
x)0 = ((yx)0)(c

x)0 and
cx · ((ax)0 · 0) = cx · ((ax · 0) · 0) = cx · ax = (cx ∨ ax)ax

= 1ax
= ax. By (4),

((yx)0)(c
x)0 = ax. Analogously, we can prove ((yx)0)(c

x)0 = bx, thus ax = bx,
i.e. a = axx = bxx = b, a contradiction.
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(b) Let L(M) contain a sublattice
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Then it contains also the sublattices
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Then (ax)0 · (bx · 0) = (ax)0 · (bx)0 = ((ax)0 ∨ (bx)0)(b
x)0 = ((yx)0)(b

x)0 and
bx ·((ax)0 ·0) = bx ·((ax ·0) ·0) = bx ·ax = (bx∨ax)ax

= 1ax
= ax. Due to (4),

we have ((yx)0)(b
x)0 = ax. Analogously, it can be shown ((yx)0)(b

x)0 = cx,
thus a = c, a contradiction again.

We are going to check (MV1) by means of the properties of A(M).
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Theorem 4. Let M = (M ;⊕,¬, 0) be an algebra of type (2, 1, 0) satisfying
(MV3). Then M satisfies (MV1) and (MV2) if and only if the assigned
algebra A(M) = (M ; ·, 0) satisfies the exchange identity

(5) x · (y · z) = y · (x · z).

Proof. Let M satisfies (MV3). Of course, the exchange identity yields (4)
and, by Theorem 3, it gives (MV2). We prove (MV1). By (MV3), for each
x, y ∈ M we have (x · 0) · 0 = x, (y · 0) · 0 = y, thus

(x⊕y)⊕z = z⊕(x⊕y) = (z ·0) ·((x ·0) ·y) = (z ·0) ·((x ·0) ·((y ·0) ·0)) =
(x·0)·((z·0)·((y·0)·0)) = (x·0)·((y·0)·((z·0)·0)) = (x·0)·((y·0)·z) = x⊕(y⊕z).

Conversely, let M satisfies (MV1), (MV2), (MV3). Take a = x · 0,
b = y · 0 and compute
a · (b · c) = (x · 0) · ((y · 0) · c) = x ⊕ (y ⊕ c) = (x ⊕ y) ⊕ c = (y ⊕ x) ⊕ c =
y ⊕ (x⊕ c) = (y · 0) · ((x · 0) · c) = b · (a · c) proving (5).

The following result is the final answer to our question (see also [4]):

Corollary. Let M = (M ;⊕,¬, 0) be an algebra satisfying (MV3)-(MV6).
Then M is an MV-algebra if and only if its assigned algebra A(M) satisfies
the exchange identity.
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