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Abstract

Let A3 denote the variety of alternative commutative (Jordan) al-
gebras defined by the identity x3 = 0, and let S2 be the subvariety of
the variety A3 of solvable algebras of solviability index 2. We present
an infinite independent system of identities in the variety A3 ∩S2S2.
Therefore we infer that A3 ∩ S2S2 contains a continuum of infinite
based subvarieties and that there exist algebras with an unsolvable
words problem in A3 ∩S2S2.

It is worth mentioning that these results were announced in 1999
in works of the international conference “Loops’99” (Prague).
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In [8] A.M. Slin’ko has formulated the question (Problem 1.129): if any va-
riety of solvable alternative (Jordan) algebras would be finitely based. U.U.
Umirbaev has got an affirmative answer to this question for alternative al-
gebras over a field of characteristic 6= 2, 3 (see [14]), and Yu.A. Medvedev
[7] has given a negative answer for characteristic 2. The main topic of this
work is the construction of an example of an alternative commutative (Jor-
dan) algebra also in the case of characteristic three∗, which, together with

∗Another example was constructed (independently) by A.V. Badeev, see Added in
proof on the end of this paper.
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the former results, completes the settlement of Slin’ko’s problem for solvable
alternative algebras.

Let (u, v, w) = uv · w − u · vw mean the associator in a considered
algebra, let (u1, . . . , u2i−1, u2i, u2i+1) = ((u1, . . . , u2i−1), u2i, u2i+1) and let
F be an infinite field of characteristic 3. Let A3 be the variety of alternative
commutative (or Jordan) F -algebras, determined by the identities

(1) x3 = 0,

(2)
((x1, x2, x3, x4, x5), (x6, x7, x8, x9, x10),

(x11, x12, x13, x14, x15), (x16, x17, x18), x19) = 0.

We denote by S2 the variety of alternative commutative (Jordan) F -algebras
being solvable of index 2. We also write

µk = ((x1, x2, x3, x4, x5), (y1, y2, y3), . . . , (y12k−2, y12k−1, y12k),

((x1, x2, x3, x4, x5), (y12k+1, y12k+2, y12k+3), . . .

. . . (y24k−2, y24k−1, y24k)), (x1, x2, x3, x4, x5)).

In this work it is proved that the system of identities {µk = 0 | k = 1, 2, . . .}
is independent in the variety A3 ∩ S2S2, i.e. no identity of this system
follows from other identities of the system. From (1), it follows that the
variety A3 ∩S2S2 is locally nilpotent [15]. Consequently, it is easy to show
that any nilpotent variety of algebras, not necessary alternative or Jordan,
has a finite basis of identities. We also note that in [6] it is shown that a lot
of classic algebras being solvable of index 2, alternative and Jordan among
them, have a finite basis of identities.

It follows from the main result of the work that the variety A3 ∩S2S2

contains a continuum of infinite based subvarieties and there are algebras
with an unsolvable words problem in A3 ∩S2S2.

Now, we recall some notions and results from the theory of commuta-
tive Moufang loops (CML’s), which can be found, e.g. in [1] (with some
modifications). Any commutative Moufang loop (Q; ·) (CML Q, for short)
is characterized by the identity x2 · yz = xy · xz. The inner mapping
group I(Q) of a CML Q is the group generated by all the inner mappings
L(x, y) = L(xy)−1L(x)L(y), where L(x)y = xy, of the CML Q. A subloop
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H of a CML Q is normal in Q, if it is invariant under the group I(Q). The
associator (of multiplicity 1) [x1, x2, x3] of elements x1, x2, x3 ∈ Q is deter-
mined by the equality x1x2 · x3 = (x1 · x2x3)[x1, x2, x3]. The associators
of multiplicity i are determined by induction: [x1, . . . , x2i−1, x2i, x2i+1] =
[[x1, . . . , x2i−1], x2i, x2i+1]. We denote by Qi the CML Q generated by all the
associators of multiplicity i. A CML Q is centrally nilpotent of class n if its
lower central series has the form Q = Q0 ⊃ Q1 ⊃ . . . ⊃ Qn−1 ⊃ Qn = {1}.
Let f(Q) be the Frattini subloop of Q. If Q is a centrally nilpotent loop,
then Q1 ⊆ f(Q). Hence a set {ai | ai ∈ Q, i ∈ I} generates Q if and only if
the set {aiQ1 | i ∈ I} generates the abelian group Q/Q1.

We recall (see [1], Chapter VIII, and [12]):

Lemma 1 (Bruck-Slaby’s Theorem). Any finitely generated CML is cen-
trally nilpotent.

Every CML satisfies the following identities:

(3) [x, y, z] = [y, z, x] = [y, x, z]−1;

(4) [[x, y, z], u, v] = [[x, u, v], y, z][x, [y, u, v], z][x, y, [z, u, v]];

(5) [xy, u, v] = [x, u, v][[x, u, v], x, y] · [y, u, v][[y, u, v], y, x];

and the relation

(6) [Qi, Qj , Qk] ⊆ Qi+j+k+1.

Let Q be an arbitrary CML and let FQ be its loop algebra. We remind
[2] that FQ is a free F -module with the basis {g | g ∈ Q} and the product
of elements of this basis is determined as their product in CML Q. We
denote by ωH the ideal of algebra FQ, generated by all the elements 1-h
(h ∈ H), for a normal subloop H of the CML Q. If H = Q, then ωQ
is called the augmentation ideal of algebra FQ. Let J denote the ideal of
algebra FQ, generated by all the expressions (u, v, w)+(v, u, w), u, v, w ∈ Q.
The Moufang identities hold in CML (see [1]), however these identities do
not always hold in FQ, i.e. the algebra FQ is not always alternative. (An
algebra is called alternative if the identities (x, x, y) = 0 and (y, x, x) = 0
hold in it). It is shown in [13] that if Q is a relatively free CML, then the
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quotient algebra FQ/J is alternative and the CML Q can be embedded
in the multiplication groupoid of algebra FQ/J . Now let Q be a finite
generated CML. By Lemma 1, Q is centrally nilpotent. Then F (Q/Q1) is
a non-trivial associative algebra. Moreover an alternative algebra FQ/J
is non-trivial. CML Q contains a minimal set of generators. Then, as in
[12], we introduce for elements in Q the notion of normal reduced word.
Repeating the proof of Theorem 1 from [13] almost word for word, we prove
that any finite generated CML Q can be embedded in the multiplication
groupoid of FQ/J . We identify CML Q with this isomorphic image. In [13]
the algebra FQ/J is called a “loop algebra” of the CML Q and ωQ/J (always
J ⊆ ωQ) an “augmentation ideal” (now we use these phrases in quotation
marks) and are denoted by the same symbols FQ and ωQ, respectively.

Lemma 2 ([13]). Let Q be a relatively free (or finite generated) CML and let
φ be the homomorphism of “loop algebra” FQ. Then, by the homomorphism
φ, the image of CML Q is CML.

Lemma 3 ([13]). Let H be a normal subloop of relatively free (or finite
generated) CML Q and let FQ, ωQ be its “loop algebra” and “augmentation
ideal”, respectively. Then

(i) ωQ = {∑q∈Q λqq|
∑

q∈Q λq = 0};
(ii) FQ/ωH ∼= F (Q/H) and ωQ/ωH ∼= ω(Q/H);

(iii) the “augmentation ideal” is generated as F -module by the elements
of the form 1-q (q ∈ Q).

Lemma 4. The relatively free (or finite generated) CML Q satisfies the
identity

(7) x3 = 1

if and only if the “augmentation ideal” ωQ of the ”loop algebra” FQ satisfies
the identity (1).

Proof. Let the CML Q satisfy the identity (7). By (iii) of Lemma 3, any
element h in ωQ has the form h = λ1q1 + . . . + λnqn, where λi ∈ F, qi =
1−gi, gi ∈ Q. Since F is a field of characteristic 3, the equality q3 = 0 follows
from the equality g3 = 1. Suppose that h3

n−1 = 0, where hn−1 = λ1q1 + . . .+
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λn−1qn−1. Then, by the alternativity of ωQ, we have h3 = (hn−1 +λnqn)3 =
(h2

n−1 + 2λnhn−1qn + λ2
nq2

n)(hn−1 + λnqn) = h3
n−1 + λnh2

n−1qn + 2λnhn−1qn ·
hn−1 + 2λ2

nhn−1qn · qn + λ2
nq2

n · hn−1 + λ3
nq3

n = 3λnh2
n−1q + 3λ2

nhn−1q
2
n =

0. Therefore, the identity (1) holds in algebra ωQ. Conversely, let the
”augmentation ideal” ωQ satisfy the identity (1). Since the field F is of
characteristic 3, we have g3 = (1−(1−g))3 = 1−3(1−g)+3(1−g)2−(1−g)3 =
1 for g ∈ Q, as 1− g ∈ ωQ. Consequently, the CML Q satisfies the identity
(7). This completes the proof of Lemma 4.

Let now A be an alternative commutative F -algebra with identity 1 and B
a subalgebra of A, satisfying (1). Then 1−B = {1− b | b ∈ B} is CML and
(1− b)−1 = 1 + b + b2.

Lemma 5. Let A be an alternative commutative algebra with identity 1 and
B its subalgebra, satisfying (1). Then we have
[1− u, 1− v, 1− w] = 1− ((1 + u + u2) · (1 + v + v2)(1 + w + w2))(u, v, w)
for all u, v, w ∈ B.

Proof. We put 1 − u = a, 1 − v = b and 1 − w = c. Then we have
[1−u, 1−v, 1−w] = (a ·bc)−1(ab ·c) = (a ·bc)−1(ab ·c)−(a ·bc)−1(a ·bc)+1 =
1+(a·bc)−1(a, b, c) = 1+(((1−w)−1 ·(1−v)−1)(1−u)−1)(1−u, 1−v, 1−w) =
1− ((1−w)−1(1− v)−1 · (1−u)−1)(u, v, w) = 1− ((1 + w + w2)(1 + v + v2) ·
(1 + u + u2))(u, v, w). This completes the proof of Lemma 5.

We write
∑

x = 1 + x + x2, {x, y, z} = (
∑

x · ∑
y

∑
z)(x, y, z), and

{x1, . . . , x2i−1, x2i, x2i+1} = {{x1, . . . , x2i−1}, x2i, x2i+1}. If a CML Q satis-
fies the identity (7), then from Lemmas 4 and 5 it follows that for u, v, w ∈
ωQ [1 − u, 1 − v, 1 − w] = 1 − {u, v, w}, and consequently by induction,
we get

(8) [1− u1, 1− u2, . . . , 1− u2i+1] = 1− {u1, u2, . . . , u2i+1}.

In an arbitrary algebra A, we define by induction:
A1 = A, An =

∑
i+j=n Ai ·Aj , A(1) = A2, A(n) = (A(n−1))2.

We remind that algebra A is called nilpotent (respectively solvable) if there
is an n, such that An = 0 (respectively A(n) = 0). The least n is called the
nilpotent (respectively solvable) index. Let f(x1, x2, . . . , xi) be a polynomial
of free algebras. We say that f(x1, x2, . . . , xi) = 0 is a partial identity of
the algebra A with the generating set B if f(b1, b2, . . . , bi) = 0 for any
b1, b2, . . . , bi in B.
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Lemma 6. Let A be an alternative commutative F -algebra and I be an ideal
of A. Then I(n), n = 1, 2, . . . , is also an ideal of A.

Proof. As F is a field of characteristic 3, we have
(u, v, w) + (v, u, w) = 0,

uv · w − u · vw + vu · w − v · uw = 0,

2uv · w − u · vw − v · uw = 0,

−uv · w − u · vw − v · uw = 0,

and uv · w = −u · vw − v · uw

for all u, v, w ∈ A.
We will prove the statement by induction on n. Let x ∈ A, u, v ∈ I(n)

and assume that I(n) is an ideal of A. Then x · uv = −xu · v − u · xv. But
xu, xv ∈ I(n). Therefore xI(n+1) ⊆ I(n+1). Consequently, I(n+1) is an ideal
of A. The statement is proved by analogy for n = 1. This completes the
proof of Lemma 6.

Let L be a free CML that satisfies the identity (7), with a set of free genera-
tors Y = {y1, y2, . . .}, where the cardinal number |Y | ≥ 5. Let ωL be
the “augmentation ideal” of the “loop algebra” FL. Let us consider the
homomorphism α : FL → FL/(ωL)(2). Then H = {h ∈ L | 1−h ∈ (ωL)(2)}
is the kernel of the homomorphism α of the CML L, induced on L by the
homomorphism α. By Lemma 2, the quotient loop L/H = L is a CML.

Lemma 7. Let L be a free CML and α : L → L be the homomorphism
of CML defined above. Then the inequality [y1, y2, y3, y4, y5] 6= 1, where
yi ∈ Y = {αyi | yi ∈ Y }, holds in the CML L.

Proof. First we construct an alternative commutative solvable F -algebra
of index 2, in which identity (1) holds and the following partial identity does
not hold:

(9) {x1, x2, x3, x4, x5} = 0.

Let M be a free F -module with a set of generators X and let N be the
“exterior” algebra of module M , satisfying the identity 3uvw = 0. We
add a new symbol b /∈ N to the generators X and assume that B is an
F -algebra generated by the set X ∪ {b} which besides the relations of the
“exterior” algebra N also satisfies the relations bu · v = b · uv, bu = −ub, for
all u, v ∈ X. Let E denote the F -submodule of module B with the basis
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consisting of the monomials of odd degree from B, except the monomials
of the form b2k+1. Let u, v be monomials from E. There is an odd number
of generators from X ∪ {b} in the composition of u, v, bacause uv = −vu.
Moreover, as there are necessary generators from X in the composition of
u, we have uu = 0. Consequently, it follows easily that for the polynomials
s, t from E the equalities st = −ts and ss = 0 hold. Let

u =




u1

u2

u3


 , where ui ∈ E,

denote the elements of the direct product R = E × E × E. We define the
product (·) on the set R:

(10) u · v =




bu2v3 + bv2u3

bu3v1 + bv3u1

bu1v2 + bv1u2


 .

We also define the sum (+) as the componentwise addition. Then, obviously,
(R, +, ·) becomes a commutative F -algebra and it satisfies the identity (1).
Let us show that the algebra R is alternative. Let u, v, w ∈ R. Using (10),
we obtain (u, v, w) = uv · w − u · vw =

=




bu2v3 + bv2u3

bu3v1 + bv3u1

bu1v2 + bv1u2







w1

w2

w3


−




u1

u2

u3







bv2w3 + bv2w3

bv3w1 + bv3w1

bv1w2 + bv1w2


 =

=




b(bu3v1 + bv3u1)w3 + bw2(bu1v2 + bv1u2)− bu2(bv1w2+
b(bu1v2 + bv1u2)w1 + bw3(bu2v3 + bv2u3)− bu3(bv2w3+
b(bu2v3 + bv2u3)w2 + bw1(bu3v1 + bv3u1)− bu1(bv3w1+

+ bw1v2)− b(bv3w1 + bw3v1)u3

+ bw2v3)− b(bv1w2 + bw1v2)u1

+ bw3v1)− b(bv2w3 + bw2v3)u2


 =




b2u3w3v1 + b2v3u3w1+
b2u1w1v2 + b2v1u1w2+
b2u2w2v3 + b2v2u2w3+

+ b2w3v3u1 + b2u2w2v1 + b2v2u2w1 + b2w2v2u1

+ b2w1v1u2 + b2u3w3v2 + b2v3u3w2 + b2w3v3u2

+ b2w2v2u3 + b2u1w1v3 + b2v1u1w3 + b2w1v1u3


 .
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If u = v, then the first component of the associator gets the form

b2u3w3u1 + b2u3u3w1 + b2w3u3u1 + b2u2w2u1 + b2u2u2w1+

+ b2w2u2u1 = b2u3w3u1 + b2w3u3u1 + b2u2w2u1 + b2w2u2u1 =

= b2u3w3u1 − b2u3w3u1 + b2u2w2u1 − b2u2w2u1 = 0.

It is shown by analogy that all the other components are equal to zero.
Therefore (u, u, w) = 0, i.e. the algebra R is alternative.

Let A denote the F -subalgebra of the algebra R, generated by the ele-
ments of the form u = (u1, u2, 0), i.e. by the elements that have the third
component equal to zero. Using (10) it is easy to see that the algebra A is
solvable of index 2. Then {u, v, w} = ((1 + u + u2) · (1 + v + v2)(1 + w +
w2))(u, v, w) = (1 + u + v + w) · (u, v, w). Let us write it in detail. We put
b2u2w2v1+b2v2u2w1+b2w2v2u1 = c and b2u1w1v2+b2v1u1w2+b2w1v1u2 = d.
We have

{u, v, w} = (1+u+v+w)(u, v, w) =




c
d
0


+




u1 + v1 + w1

u2 + v2 + w2

0







c
d
0


 =

=




c
d

c(u2 + v2 + w2) + (u1 + v1 + w1)d


 =




c
d
a


 ,

where a = b3w2v2u1u2 + b3u2w2v1v2 + b3v2u2w1w2 + b3u1w1v1u2 +
b3v1u1w1v2 +b3w1v1u1w2. Consequently, we can choose generating elements
u, v, w, y, z in A such that {{u, v, w}, y, z} 6= 0. Therefore, (9) is not a
partial identity of the algebra A.

As we have shown before in Lemma 5, the set C = 1 − A is a CML.
Since F is a field of characteristic 3, we have (1−a)3 = 1−3a+3a2−a3 = 1
for a ∈ A, i.e. the CML C satisfies the identity (7). It is obvious that
A = ωC. We suppose that the CML C has the same number of generat-
ing elements as the free CML L and let C = L/H. The loop homomorphism
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L → C induces the algebra homomorphisms ωL → ωC, ωL/(ωL)(2) →
ωC/(ωC)(2) = A/A(2). Since the algebra A is solvable of index 2, then
A(2) = (0) and we have the algebra homomorphism ωL/(ωL)(2) → A. As
the partial identity (9) does not hold also in the algebra A, the same holds
in algebra ωL/(ωL)(2). But FL/(ωL)(2) ∼= F (L/H). Then it follows from
(8) that the inequality [y1, y2, y3, y4, y5] 6= 1 holds in the CML L = L/H.
This completes the proof of Lemma 7.

Let Qn denote the CML, constructed in the proof of Theorem of [11]. It
is the semi-direct product of Bn and Gn, where Gn is the free centrally
nilpotent CML of class 2 with free generators g1, g2, . . . , g24n, Bn is the
centrally nilpotent CML of class 2, generated by the set {αd | α ∈ I(Gn)},
where d /∈ Gn, I(Gn) is the inner mapping group of CML Gn. It follows
from the definition of the CML Bn and Gn that they satisfy the identity

(11) [[x1, x2, x3], x4, x5] = 1.

Since the CML Qn is finite, it is centrally nilpotent by Lemma 1. In the
CML Qn the identities (7) and

(12)
λ = λ(x1, x2, . . . , x19) = [[x1, x2, x3, x4, x5], [x6, x7, x8, x9, x10],

[x11, x12, x13, x14, x15], [x16, x17, x18], x19] = 1

hold, and for k 6= n, k 6= 2n also the following identities are satisfied:

(13)





τk = τk(y1, y2, y3, y4, y5; x1, x2, . . . , x24k) =

= [[y1, y2, y3, y4, y5], [x1, x2, x3], . . . , [x12k−2, x12k−1, x12k],

[[y1, y2, y3, y4, y5], [x12k+1, x12k+2, x12k+3], . . .

. . . , [x24k−2, x24k−1, x24k]], [y1, y2, y3, y4, y5]] = 1,
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(14)





νk = νk(y2, y3, y5; x1, x2, . . . , x24k;u1, u2, . . . , u12) =

= [[u1, y2, y3, u2, y5], [x1, x2, x3], . . . , [x12k−2, x12k−1, x12k],

[[u3, y2, y3, u4, y5], [x12k+1, x12k+2, x12k+3], . . .

. . . , [x24k−2, x24k−1, x24k]], [u5, y2, y3, u6, y5]]×

× [[u7, y2, y3, u8, y5], [x1, x2, x3], . . . , [x12k−2, x12k−1, x12k],

[[u9, y2, y3, u10, y5], [x12k+1, x12k+2, x12k+3], . . .

. . . , [x24k−2, x24k−1, x24k]], [u11, y2, y3, u12, y5]] = 1,

where either

1) u1 = ys, u3 = yt, u7 = yt, u11 = ys, u2 = u4 = u6 = u8 = u10 =
u12 = y4, and u5 = u9 = y1

or 2) u2 = ys, u4 = yt, u8 = yt, u12 = ys, u1 = u3 = u5 = u7 = u9 = u11 =
y1, and u6 = u10 = y4

or 3) u1 = ys, u5 = yt, u7 = yt, u9 = ys, u2 = u4 = u6 = u8 = u10 = u12 =
y4, and u3 = u11 = y1

or 4) u2 = ys, u6 = yt, u8 = yt, u10 = ys, u1 = u3 = u5 = u7 = u9 = u11 =
y1, and u4 = u12 = y4

or 5) u3 = ys, u5 = yt, u11 = yt, u9 = ys, u2 = u4 = u6 = u8 = u10 =
u12 = y4, and u1 = u7 = y1;

or 6) u4 = ys, u6 = yt, u12 = yt, u10 = ys, u1 = u3 = u5 = u7 = u9 =
u11 = y1, and u2 = u8 = y4

and the following inequality holds:
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(15)





[[y1, y2, y3, y4, y5], [x1, x2, x3], . . . , [x12n−2, x12n−1, x12n],

[[y1, y2, y3, y4, y5], [x12n+1, x12n+2, x12n+3], . . .

. . . , [x24n−2, x24n−1, x24n]], [y1, y2, y3, y4, y5]] 6= 1.

The identities (1), (12), (13) and the inequality (15) are proved in [11]. The
identity (14) is proved as the proof of the identity wk = 1 of the Theorem
of [11], using Lemma 9 of [11].

By construction, the CML Qn is a semi-direct product of the CML’s Bn

and Gn. Then, by (ii) of Lemma 3, FQn/ωBn
∼= FGn, ωQn/ωBn

∼= ωGn,
where FBn and FGn are subalgebras of “loop algebra” FQn, and ωGn

is the “augmentation ideal” of “loop algebra” FGn. We will consider the
homomorphism η : FQn → FQn/(ωBn)(2). By Lemma 2, η induces the
homomorphism η of the CML Qn.

We will show that η is the isomorphism of the CML Qn. Indeed, let
α and β be the homomorphisms of CML Qn and ηQn, respectively, which,
by Lemma 2, are induced by the homomorphisms of algebras
FQn → FQn/ωBn and FQn/(ωBn)(2) → (FQn/(ωBn)(2))/(ωBn/(ωBn)(2)).
By (i) of Lemma 3, Gn ∩ ωBn = ∅. Then it follows from the relations
FGn

∼= FQn/ωBn
∼= (FQn/(ωBn)(2))/(ωBn/(ωBn)(2)) that Gn

∼= αGn and
αGn

∼= β(ηGn). Therefore, |Gn| = |β(ηGn)|. We suppose that the homo-
morphism η of CML Gn is not an isomorphism. By construction, the CML
Gn is finite. Then |ηGn| < |Gn| and |β(ηGn)| < |Gn|. We have obtained a
contradiction. Hence η is an isomorphism of CML Gn.

By construction, the CML Bn is generated by the set {ϕb | ϕ ∈ I(Gn)},
where b /∈ Gn, and I(Gn) is the inner mapping group of CML Gn. It is
determined by the identities (7) and (11) and by the relations of the form
[ϕ1b, ϕ2b, ϕ3b] = 1 or [ϕ1b, ϕ2b, ϕ3b] = t(ϕ1, ϕ2, ϕ3) 6= 1, where ϕ1, ϕ2, ϕ3 ∈
I(Gn). By Lemma 4 and (8), the system of identities (7), (11) is equiv-
alent to the system consisting of the identity (1) and the partial identity
(9) of the algebra ωBn. The meaning of the elements t(ϕ1, ϕ2, ϕ3) de-
pends only on the inner mappings ϕ1, ϕ2, ϕ3 of the CML Gn. Then, as
Gn

∼= ηGn, the generators ϕb and the elements t(ϕ1, ϕ2, ϕ3) are not mapped
on the unit of the CML ηGn under the homomorphism η. We suppose that
Bn = L/H, where L is a free CML, as in Lemma 7. By (ii) of Lemma 3,
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FBn
∼= FL/ωH. We will consider the homomorphism FL → FL/(ωL)(2),

taking into account Lemma 6. By Lemma 2, a normal subloop K of the CML
L corresponds to this homomorphism. We have FL + (ωH + (ωL)(2)) =
FL + ωH + (ωH + (ωL)(2)) = FL + ωH + (ωBn)(2) = FBn + (ωBn)(2).
It means that the ideal ωH + (ωL)(2) is the kernel of the homomorphism
FL → FBn/(ωBn)(2). The normal subloop HK will be the kernel of the
homomorphism L → ηBn, which by Lemma 2, is induced by the homo-
morphism FL → FBn/(ωBn)(2). We suppose that the determining relation
[ϕ1b, ϕ2b, ϕ3b] 6= 1 of CML Bn corresponds to the associator [y1, y2, y3] of
the CML L under the homomorphism L → Bn. Then [y1, y2, y3] /∈ H and,
by Lemma 7, [y1, y2, y3] /∈ K. Therefore, [y1, y2, y3] /∈ HK. It means that
the determining relation [ϕ1, ϕ2b, ϕ3b] of the CML Bn is not mapped on
the unit of the CML ηBn under the homomorphism Bn → ηBn. Therefore
the CMLs Bn and ηBn, which have the same determining relations, are iso-
morphic. Consequently, ηQn/ηBn

∼= ηGn and η is the isomorphism of the
CML Qn. Moreover, η(FQn)/η(ωBn) ∼= η(FGn). As the homomorphism
η keeps the sum of the coefficients of the polynomials, by (i) of Lemma 3,
η(ωQn)/η(ωBn) ∼= η(ωGn).

Taking into account Lemma 6, we can consider the homomorphism
ξ : η(FQn) → η(FGn)/(η(FGn))(2). Let ξ be the homomorphism of the
CML ηQn which, by Lemma 2, is induced by the homomorphism ξ. By the
construction of the CML Gn and then the CML ηGn is also a free centrally
nilpotent of class 2. It follows from Lemma 7 that the CML ξηGn also has
such a property. Therefore, ξηGn

∼= ηGn.

Further, it follows from the relation η(FQn)/η(ωBn) ∼= η(FGn) that
zero of the algebra η(FQn)/η(ωBn), namely η(ωBn), is mapped on
zero of the second algebra by the composition of homomorphisms:
η(FQn) → η(FQn)/η(ωBn) → η(FGn)/(η(FGn))(2). It means that the
homomorphism ξ does not impose any restrictions on the ideal η(ωBn). By
Lemma 2, the homomorphism η(FQn) → η(FQn)/η(ωBn) induces the ho-
momorphism of the CML ηQn, whose kernel is the normal subloop
{g ∈ ηQn | 1 − g ∈ η(ωBn)} = ηBn. Therefore, we infer that ξ is
an isomorphism of CML ηBn. Consequently, we have the isomorphisms
ξ(ηQn) ∼= ηQn

∼= Qn. Further we will identify the CML ξηQn with the
CML Qn. We put ξη(ωQn) = ωQn, ξη(ωBn) = ωBn, and ξη(ωGn) = ωGn.
As for the homomorphism η it is proved that ωQn/ωBn

∼= ωGn. It is obvi-
ous that ωBn ∈ S2 and ωGn ∈ S2. Then the algebra ωQn belongs to the
product of the varieties S2S2.
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Further, gi, ri, si will denote the elements of CML Qn. Let ai = 1− gi, bi =
1− ri, ci = 1− si. We also write

(16)





θ = θ(x1, x2, . . . , x19) = {{x1, x2, x3, x4, x5}, {x6, x7, x8, x9, x10},

{x11, x12, x13, x14, x15}, {x16, x17, x18}, x19};

ξk = ξk(x1, x2, x3, x4, x5; y1, y2, . . . , y24k) =

{{x1, x2, x3, x4, x5}, {y1, y2, y3}, . . . , {y12k−2, y12k−1, y12k},

{{x1, x2, x3, x4, x5}, {y12k+1, y12k+2, y12k+3}, . . .

. . . , {y24k−2, y24k−1, y24k}}, {x1, x2, x3, x4, x5}};

ηk = ηk(x2, x3, x5; y1, y2, . . . , y24k; z1, z2, . . . , z12) =

{{z1, x2, x3, z2, x5}, {y1, y2, y3}, . . . , {y12k−2, y12k−1, y12k},

{{z3, x2, x3, z4, x5}, {y12k+1, y12k+2, y12k+3}, . . .

. . . , {y24k−2, y24k−1, y24k}}, {z5, x2, x3, z6, x5}}−

−{{z7, x2, x3, z8, x5}, {y1, y2, y3}, . . . , {y12k−2, y12k−1, y12k},

{z9, x2, x3, z10, x5}, {{z11, x2, x3, z12, x5},

{y12k+1, y12k+2, y12k+3}, . . . , {y24k−2, y24k−1, y24k}},

where either

1) z1 = xs, z3 = xt, z7 = xt, z11 = xs, z2 = z4 = z6 = z8 = z10 = z12 =
x4, and z5 = z9 = x1

or 2) z2 = xs, z4 = xt, z8 = xt, z12 = xs, z1 = z3 = z5 = z7 = z9 = z11 =
x1, and z6 = z10 = x4

or 3) z1 = xs, z5 = xt, z7 = xt, z9 = xs, z2 = z4 = z6 = z8 = z10 = z12 =
x4, and z3 = z11 = x1
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or 4) z2 = xs, z6 = xt, z8 = xt, z10 = xs, z1 = z3 = z5 = z7 = z9 = z11 =
x1, and z4 = z12 = x4

or 5) z3 = xs, z5 = xt, z11 = xt, z9 = xs, z2 = z4 = z6 = z8 = z10 = z12 =
x4, and z1 = z7 = x1

or 6) z4 = xs, z6 = xt, z12 = x7, z10 = xs, z1 = z3 = z5 = z7 = z9 = z11 =
x1, and z2 = z8 = x4.

Let k 6= n, 2n and let I denote the ideal of the algebra ωQn, generated by
the expressions of the forms:

θ(α1a1, . . . , α19a19),
ξk(α1a1, α2a2, α3a3, α4a4, α5a5; β1b1, β2b2, . . . , β24kb24k),
ηk = ηk(α2a2, α3a3, α5a5; β1b1, β2b2, . . . , β24kb24k; γ1c1, γ2c2, . . . , γ12c12),

where
either 1) c1 = as, c3 = at, c7 = at, c11 = as, c2 = c4 = c6 = c8 = c10 =

c12 = a4, and c5 = c9 = a1

or 2) c2 = as, c4 = at, c8 = at, c12 = as, c1 = c3 = c5 = c7 = c9 = c11 =
a1, and c6 = c10 = a4

or 3) c1 = as, c5 = at, c7 = at, c9 = as, c2 = c4 = c6 = c8 = c10 = c12 =
a4, and c3 = c11 = a1

or 4) c2 = as, c6 = at, c8 = at, c10 = as, c1 = c3 = c5 = c7 = c9 = c11 =
a1, and c4 = c12 = a4

or 5) c3 = as, c5 = at, c11 = at, c9 = as, c2 = c4 = c6 = c8 = c10 =
c12 = a4, and c1 = c7 = a1

or 6) c4 = as, c6 = at, c12 = at, c10 = as, c1 = c3 = c5 = c7 = c9 =
c11 = a1, and c2 = c8 = a4.

Let ui, vi, wi denote the images of the elements ai, bi, ci, respectively, under
the homomorphism ωQn → ωQn/I. Then the following equalities hold in
the algebra ωQn/I:

(17)





θ(α1u1, α2u2, . . . , α19u19) = 0,

ξk(α1u1, α2u2, α3u3, α4u4, α5u5; β1v1, β2v2, . . . , β24kv24k) = 0,

ηk = ηk(α2u2, α3u3, α5u5; β1v1, β2v2, . . . , b24kv24k;

γ1w1, γ2w2, . . . , γ12w12) = 0,



Infinite independent systems of identities of ... 19

where
either 1) w1 = us, w3 = ut, w7 = ut, w11 = us, w2 = w4 = w6 = w8 =

w10 = w12 = u4, and w5 = w9 = u1

or 2) w2 = us, w4 = ut, w8 = ut, w12 = us, w1 = w3 = w5 = w7 = w9 =
w11 = u1, and w6 = w10 = u4

or 3) w1 = us, w5 = ut, w7 = ut, w9 = us, w2 = w4 = w6 = w8 = w10 =
w12 = u4, and w3 = w11 = u1

or 4) w2 = us, w6 = ut, w8 = ut, w10 = us, w1 = w3 = w5 = w7 = w9 =
w11 = u1, and w4 = w12 = u4

or 5) w3 = us, w5 = ut, w11 = ut, w9 = us, w2 = w4 = w6 = w8 =
w10 = w12 = u4, and w1 = w7 = u1

or 6) w4 = us, w6 = ut, w12 = ut, w10 = us, w1 = w3 = w5 = w7 =
w9 = w11 = u1, and w2 = w8 = u4.

By Lemma 2, the image Qn of the CML Qn under the homomorphism
FQn → FQn/I is CML.

Lemma 8. The identity τn = 1 does not hold in the CML Qn.

Proof. It follows from Lemma 4 that the identity (1) holds in the algebra
ωQn. Then, as shown before Lemma 5, the set T = 1− ωQn forms a CML.
It is obvious that Qn ⊆ T . Using (iii) of Lemma 3 it is easy to show that
ωT = ωQn. We denote by H the subloop of the CML T , generated by all
the expressions of the form

λ = λ(1− u1, 1− u2, . . . , 1− u19),

τk = τk(1− u1, 1− u2, . . . , 1− u5; 1− v1, 1− v2, . . . , 1− v24k),

νk = νk(1− u2, 1− u3, 1− u5; 1− v1, 1− v2, . . . , 1− v24k;

1− w1, 1− w2, . . . , 1− w12),

where ui, vi, wi ∈ ωQn, with k 6= n, k 6= 2n. It follows from (12)-(15)
that the identity τn = 1 is not a corollary to the system of the identi-
ties λ = 1, τk = 1, νk = 1 (for k 6= n and k 6= 2n). Then it follows
from (15) and the isomorphism of the CMLs Qn and Qn that for certain
g1, g2, . . . , g5, r1, r2, . . . , r24k ∈ Qn
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(18) τk(g1, g2, . . . , g5; r1, r2, . . . , r24k) /∈ H.

As λ, τk, νk are defined by the associators of the CML T , it is easy to show
that the subloop H is invariant with respect to the inner mapping group of
the CML H. Therefore, it is normal in T . We denote by kerϕ the kernel of
the homomorphism FQn → F (T/H), where ϕ(

∑
t∈T αtt) =

∑
t∈T αt(tH).

Let the image of the element νk ∈ T under the homomorphism T →
T/H has the form αkβk whenever ui = αi(1 − gi), vi = βi(1 − ri), wi =
γi(1 − si) (αi, βi, γi ∈ F ) in τk and νk. Then αkβk = 1, αk = β−1

k . Here
αk, βk are associators of the CML T/H. With the help of (3) we present
β−1

k in the form νk in which the parenthesis distribution [, ] in νk coincides
with the parenthesis distribution {, } in the second member of the expres-
sion ηk (see the notations in (16)). The parenthesis distribution in αk and
in the first member of ηk coincide. Now we use the equality (8) for αk and
γk. We assume that αk = 1 − αk, γk = 1 − γk. As the identity αk = γk

holds in the CML T/H, it follows from the relation FQn/kerϕ ∼= F (T/H)
that the identity αk = γk holds in the algebra FQn/kerϕ. Consequently,
αk − γk ∈ kerϕ. But αk − γk = ηk. Therefore ηk ∈ kerϕ. By analogy, we
obtain θ, ξk ∈ kerϕ from the relations λ, τk ∈ H. Then it follows from the
definition of the ideal I that I ⊆ kerϕ. Finally, it follows from (18) that
the identity τk = 1 does not hold in the CML, being the image of the CML
Qn under the homomorphism FQn → FQn/ kerϕ. Then it follows from
the homomorphism FQn/I → FQn/kerϕ that the identity τk = 1 does not
hold in the CML Qn as well, being the image of the CML Qn under the
homomorphism FQn → FQn/I. This completes the proof of Lemma 8.

Let f = f(x1, x2, . . . , xt) be one of the polynomials θ, ξk, ηk appeared in
(16). By the definition of {, , }, we pass to the operations (+), (·) in f and
we introduce in the natural way the notions of degree on every variable xi,
degree and homogeneity of polynomials for the obtained polynomials. Let us
write f in the form f = f0+f1+. . .+fr1 , where fi is the sum of all the mono-
mials of the polynomial f that have the degree i on x1. Let u1, u2, . . . , ut

be the elements of the algebra ωCn/I, determined above. For simplicity we
write f(u) instead of f(u1, u2, . . . , ut). If α ∈ F , then f(αu1, u2, . . . , ut) =
f0(u) + αf1(u) + α2f2(u) + . . . + αr1fr1(u). Let α1, α2, . . . , αr1 be arbi-
trary elements from F . Then, by (17), we get a system consisting of the
r1 equations
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f0(u) + αif1(u) + . . . + αr1
i fr1(u) = 0

with variables f0(u), f1(u), . . . , fr1(u). By [4] (see p. 376), d1fj(u) = 0,
where d1 is the determinant of this system. We assumed that the field F
is infinite. Then we can choose α1, α2, . . . , αr1 such that d1 6= 0. Then we
obtain fj(u) = 0. Doing the same procedure with the polynomials fji and
variable x2 . . . , xt successively, we finally get the following statement:

Lemma 9. Let f = f1(x1, x2, . . . , xt) + . . . + fi(x1, x2, . . . , xt) + . . . + fr(x1,
x2, . . . , xt) be the decomposition of the polynomial f into homogeneous com-
ponents fi(x1, x2, . . . , xt) and let u1, u2, . . . , ut be the elements of the algebra
ωQn/I determined above. Then fi(u1, u2, . . . , ut) = 0.

In particular, examining the homogeneous components of the least degree
in each of the cases θ, ξk, ηk and taking into account the identity (x, y, z) =
−(x, z, y) of the alternative algebra, we infer that the equalities:

((u1, u2, u3, u4, u5), (u6, u7, u8, u9, u10),

(u11, u12, u13, u14, u15), (u16, u17, u18), u19) = 0;

((u1, u2, u3, u4, u5), (v1, v2, v3), . . . , (v12k−2, v12k−1, v12k),

((u1, u2, u3, u4, u5), (v12k+1, v12k+2, v12k+3), . . . ,

. . . , (v24k−2, v24k−1, v24k)), (u1, u2, u3, u4, u5)) = 0;

((w1, u2, u3, w2, u5), (v1, v2, v3), . . . , (v12k−2, v12k−1, v12k),

((w3, u2, u3, w4, u5), (v12k+1, v12k+2, v12k+3), . . .

. . . , (v24k−2, v24k−1, v24k)), (w5, u2, u3, w6, u5))+

+ ((w7, u2, u3, w8, u5), (v1, v2, v3), . . . , (v12k−2, v12k−1, v12k),

((w9, u2, u3, w10, u5), (v12k+1, v12k+2, v12k+3), . . .

. . . , (v24k−2, v24k−1, v24k)), (w11, u2, u3, w12, u5)) = 0,
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hold in the algebra ωQn/I (for k 6= n, k 6= 2n), where w1, w2, . . . , w12 take
values u1, u4 exactly as in the previous case.

The algebra ωQn is the homomorphic image of the “augmentation ideal”
ωQn. Then it follows from (iii) of Lemma 3 that ωQn is generated as
F -module by the elements of the form ai = 1−gi, where gi ∈ Qn. We denote
by ui the image of the element ai under the homomorphism ωQn → ωQn/I.
Then any element v from ωQn/I has the decomposition v = α1u1+. . .+αtut.
Now, by induction on length t from the last equalities it is easy to prove the
statement.

Lemma 10. The identities (2) and µk = 0 hold in the algebra ωQn/I for
k 6= n, k 6= 2n.

Let G be CML and a1, a2, . . . , a2i+1, b1, b2, . . . , b2j+1, c1, c2, . . . , c2m+1 be el-
ements in G. We will inductively define the associator of multiplicity k
with the βk parenthesis distribution. The associators of multiplicity 0 are
the elements of the CML G, and the associators of multiplicity 1 with the
β1 parenthesis distribution are the associators from G of the form [a1, a2, a3].
If βi(a1, a2, . . . , a2i+1), βj(b1, b2, . . . , b2j+1), βm(c1, c2, . . . , c2m+1) are, respec-
tively, associators of multiplicity i, j, m with the βi, βj , βm parenthesis distri-
bution, then [βi(a1, a2, . . . , a2i+1), βj(b1, b2, . . . , b2j+1), βm(c1, c2, . . . , c2m+1)]
is an associator of multiplicity i + j + m + 1 with the βi+j+m+1 parenthesis
distribution.

Lemma 11. Let a CML G with the lower central series G = G0 ⊇ G1 ⊇ . . .
be generated by the elements a1, a2, . . . and let βk(b1, b2, . . . , b2k+1) be the
associator of the CML G of multiplicity k with a certain βk parenthesis
distribution. Then:

1) βk(b1, b2, . . . , b2k+1) ∈ Gk;
2) the quotient loop Gk/Gk+1 is generated by those cosets that contain

associators of the form

(19) [ai1 , ai2 , . . . , ai2k+1
],

where aij ∈ {a1, a2, . . .}.

Proof. The first assertion follows easily from (6) by induction on k. The
second assertion will be also proved by induction on k. Under k = 0 the
elements of form (19) are generators of CML and, as a consequence, the
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cosets that contain these elements generate the quotient loop G0/G1. Let
us assume that the quotient loop Gk/Gk+1 is generated by the cosets that
contain elements of form (19). As Gk+1 = [Gk, G, G] is generated by the
elements [h, g, f ], where h ∈ Gk and g, f ∈ G, it is obvious that the quotient
loop Gk+1/Gk+2 is generated by the cosets that contain these elements.
Moreover, by induction hypotheses, h =

∏n
i=1 hεi

i · h′, where εi = ±1, h′ ∈
Gk+1, h ∈ Gk and every hi is an associator of form (19). It follows from (5),
(6) and (3) that
[h, g, f ] = [

∏n
i=1 hεi

i · h′, g, f ] = [
∏n

i=1 hεi
i , g, f ][h′, g, f ] (mod Gk+2) =∏n

i=1[h
εi
i , g, f ][h′, g, f ] (mod Gk+2) =

∏n
i=1[h

εi
i , g, f ] (mod Gk+2) =∏n

i=1[hi, g, f ]εi (mod Gk+2).
Further, suppose that g =

∏r
j=1 a

εj

j , f =
∏s

m=1 aε̃m
m . Therefore it follows

again from (5), (6), and (3) that
[h, g, f ] = [

∏n
i=1 hi, g, f ]εi (mod Gk+2) =

∏n
i=1[hi,

∏r
j=1 aj , f ]εi (mod Gk+2)

=
∏n

i=1(
∏r

j=1[hi, aj , f ]εj )εi (mod Gk+2) =
∏n

i=1(
∏r

j=1[hi, aj ,
∏s

m=1 aε̃m
m ]εj )εi

(mod Gk+2) =
∏n

i=1(
∏r

j=1 (
∏s

m=1[hi, aj , a
ε̃m
m ]εj )εi (mod Gk+2) =∏n

i=1(
∏r

j=1(
∏s

m=1[hi, aj , am]ε̃m)εj )εi (mod Gk+2).
Thus [hi, aj , am] have the form indicated in (19). This completes the

proof of Lemma 11.

We remind that a 3-Lie algebra (L; (, , )) is a linear space L over the asso-
ciative and commutative ring with identity with a certain 3-linear operation
(, , ) on Q which satisfies the identities (see [3]):

(x, x, y) = 0, (x, y, x) = 0, (y, x, x) = 0,

(20) ((x, y, z), u, v) = ((x, u, v), y, z) + (x, (y, u, v), z) + (x, y, (z(u, v)).

In an arbitrary alternative commutative algebra A the identity ((x, y, z), u, v)
= ((x, u, v), y, z) + ((y, u, v), z, x) + ((z, u, v), x, y) holds, where (x, y, z) =
xy · z − x · yz (see [9]). Then, by the bi-associativity of alternative algebra
(cf. [15]), the set A with respect to the ternary operation (x, y, z) becomes
a 3-Lie algebra. Let us denote it by Λ(A).

Let now G be an arbitrary centrally nilpotent CML that satisfies the
identity (7) and let G = G0 ⊃ G1 ⊃ . . . Gs = {1} be its lower central
series. As in the case of groups and Lie algebras [5], we tie the 3-Lie algebra
L(G) with CML G. By (6) we have Gi+1 ⊃ G3i+1 = [Gi, Gi, Gi]; then
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Ci = Gi/Gi+1 is an abelian group. Let L(C) be a direct sum of groups
C1, C2, . . . , Cs−1. We define the addition ⊕ on L(G) by the formula

(21) g ⊕ h = g1h1 + g2h2 + . . . + gs−1hs−1,

where g = g1 + g2 + . . . + gs−1, h = h1 + h2 + . . . + hs−1. It is obvious
that “zero” of the group L(G) is the element 1 + 1 + . . . and the element
g−1
1 + g−1

2 + . . . is “opposite” to g.
We introduce on group L(G) the ternary operation (, , ). Let a ∈ Gi, b ∈

Gj , c ∈ Gk, u ∈ Gi+1, v ∈ Gj+1, w ∈ Gk+1. Then it follows from (5) and (6)
that

[au, bv, cw]Gi+j+k+2 = [a, b, c]Gi+j+k+2.

Now it is clear that if gi = aGi+1, gj = bGj+1, gk = cGk+1, then (gi, gj , gk) =
[a,b,c]Gi+j+k+2 is a certain element of group Ci+j+k+1 =Gi+j+k+1/Gi+j+k+2.
We extend operation (, , ) on the whole group L(G) by the formula

(22) (g, h, r) =
s−1∑

i,j,k+1

(gi, hj , rk),

where g, h, r are elements in L(G), and
∑

means addition ⊕ in the group
L(G). Let us show that the operation (, , ) is distributive with respect to ⊕.
Let f, g, h, r ∈ L(G). Let us show that the expressions

(23) (f, g, h⊕ r), (f, g, h)⊕ (f, g, r)

are equal in L(G). The first of the expressions (23) is, by definition, equal
to

s−1∑

i,j,k=1

(fi, gj , hkrk).

Let fi = aGi+1, gj = bGj+1, hk = cGk+1, rk = dGk+1. Then by (5) and (6)

(fi, gj , hkrk) = (aGi+1, bGj+1, (cd)Gk+1) = (a, b, cd)Gi+j+k+2 =

(a, b, c)(a, b, d)Gi+j+k+2 = (a, b, c)Gi+j+k+2 · (a, b, d)Gi+j+k+2 =

(aGi+1, bGj+1, cGk+1) · (aGi+1, bGj+1, dGk+1) = (fi, gj , hk) · (fi, gj , rk).



Infinite independent systems of identities of ... 25

Consequently, we obtain

s−1∑

i,j,k=1

(fi, gj , hkrk) =
s−1∑

i,j,k=1

(fi, gj , hk) · (fi, gj , rk) = (f, g, h) · (f, h, r).

In such a way we have seen that both expressions (23) coincide. Other
relations of distributivity can be proved by analogy. Finally, it follows from
the di-associativity of CML (cf. [1]) and the identity (4) that L(G) is a 3-Lie
algebra. Consequently, we have proved

Proposition 1. Let G be an arbitrary centrally nilpotent CML with the
lower central series G = G0 ⊃ G1 ⊃ . . . ⊃ Gs = {1}. Then the direct sum
L(G) of the modules Gi/Gi+1, i = 0, 1, . . . , s−1, on the operations (21) and
(22) will be a 3-Lie algebra.

Let us now suppose that a CML G, that satisfies the identity (7) is generated
by the set X = {x1, x2, . . . , xt}. We put yi = 1 − xi. It follows from the
definition of the “augmentation ideal” ωG of the “loop algebra” FQ that
yi ∈ ωG. We denote by A the subalgebra of algebra ωG, generated by the
elements y1, y2, . . . , yt. By Lemma 4, the algebra A satisfies the identity (1),
so is nilpotent [14]. Then for every monomial v ∈ A there exists a number
m such that v ∈ Am\Am+1. The number m will be called the weight of the
monomial v. The polynomial that only consists of monomials of the weight
m will be called homogeneous of the weight m. Let U be a word of CML
G from the generating set X. We consider in U the generators yi of the
algebra A, using the relation xi = 1 − yi. Let us assume that U has the
decomposition

(24) U = 1− (um + um+1 + . . . , ur, )

in A, where ui is a homogeneous polynomial from A of the weight i and um is
a polynomial of the smallest weight. We determine the mapping δ : G → A
by the formula: δ(U) = 0 if U = 1, and δ(U) = um for all the other cases.

Lemma 12. Let U, V, W be words (6= 1) of CML G from the generating
set X and let δ(U) = um, δ(V ) = vk, δ(W ) = wn. Then for every integer l

(25) δ(U l) = lum.
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If m < k, then

(26) δ(UV ) = uk.

If m = k and uk + vk 6= 0, then

(27) δ(UV ) = uk + vk.

If m = k and uk + vk = 0, then UV = 1 or δ(UV ) belongs to At, where
t > m. If (um, vk, wn) 6= 0, then

(28) δ([U, V, W ]) = (um, vk, wn).

If (um, vk, wn) = 0, then [U, V,W ] = 1 or δ([U, V, W ]) belongs to At, where
t > m + k + n.

Proof. We put um+mm+1+. . . , ur = u. Then U = 1−u. To prove (25) we
use the decomposition (1−u)l =

∑l
t=0(−1)t

(
l
t

)
ut, where

(
l
t

)
= l(l−1)...(l−t+1)

t! .
As u ∈ A, all non-constant members of the smallest weight of the element
(1− u)l are of the form −lu. Then (25) is proved.

The assertions (26), (27) follow from the multiplication rules, and the
remaining assertions follow from Lemma 5.

We put Dk = {g ∈ G | 1−g ∈ (ωG)k}. It is easy to see that Dk is the kernel
of homomorphism, induced on the CML G by the natural homomorphism
FG → FG/(ωG)k. By Lemma 2, G/Dk is a CML, so Dk is a normal subloop
of the CML G (see [1]). It follows from Lemma 12.

Lemma 13. If Gm is the m-th member of the lower central series of a CML
G, then Gm ⊆ D2m+1.

Proof. We will use the induction on m. We have Go = G = D1. Let us
suppose that Gm ⊆ D2m+1 and let a ∈ Gm, u, v ∈ G. Then [a, u, v] = 1, or
δ([a, u, v]) has a weight not less than 2m + 3, as δ(a) has a weight not less
than 2m + 1. In any case [a, u, v] ∈ D2m+3, and therefore Gm+1 ⊆ D2m+3.
This completes the proof of Lemma 13.
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The CML G is generated by the finite set X. Then by Lemma 1 it is centrally
nilpotent. Assume that its lower central series has the form G = G0 ⊃ G1 ⊃
. . . ⊃ Gs = {1}.

Proposition 2. Let G and A be the algebras considered above. Then the
mapping xiG1 → yi induces the monomorphism of 3-Lie algebra L(G) into
3-Lie algebra A ⊆ Λ(ωG). Obviously, the monomorphism is determined in
the following way:

Let βk(xi1 , xi2 , . . . , x2k+1), where xij ∈ X, be an associator of multiplic-
ity k of the CML G with the βk parenthesis distribution and let βk(xi1 , xi2 ,
. . . , xi2k+1

) ∈ Gµ(k)/Gµ(k)+1. Then the mapping

βk(xi1 , xi2 , . . . , xi2k+1
)Gµ(k)+1 → βk(yi1 , yi2 , . . . , yi2k+1)

is a monomorphism of quotient loop Gµ(k)/Gµ(k)+1 in the additive group
Λµ(k)(A), where Λµ(k)(A) is a submodule of module Λ(A), consisting of ho-
mogeneous polynomials of the weight µ(k), and the parenthesis distribution
βk means multiplicity in Λ(A).

Proof. By the definition (22) of the multiplication operation in the algebra
L(G) and (6), and also by the relation between the operation of taking the
associator into the group Gk/Gk+1 and the multiplication in the algebra
Λ(ωG), indicated in (28), the expression βk(xi1 , xi2 , . . . , xi2k+1

) obviously
turns into an element βk(yi1 , yy2 , . . . , yi2k+1

) of the algebra Λ(A).
Further, by Lemma 13, the arbitrary element U from Gk/Gk+1, under

the mapping xi → yi, turns into an element of the algebra A of the form

1 + u2k+1 + u2k+2 + . . . + ut,

where uj has the weight j or equals zero, and j > 2k + 1. This lemma also
shows that the equality

δ(UGk+1) = δ(U) = u2k+1

determines the mapping δ2k+1 of group Ck = Gk/Gk+1 in the set of homo-
geneous elements of the weight 2k + 1 of the algebra A.
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Moreover, by the definition (21) of the addition operation of the algebra
L(G) and (24)-(27), δ2k+1 is a linear mapping Ck in A2k+1. By Lemma
11 the associators of the form [x1, x2, . . . , x2k+1] generate the subloop Gk,
therefore the mapping

δ(V ) = δ1(v1) + δ3(v3) + . . . , +δ2k+1(v2k+1) + . . .

is a linear mapping of Z3-module L(G) into Z3-module A, where Z3 means
the field of three elements. Consequently, the mapping xiG1 → yi induces
the homomorphism of 3-Lie algebra L(G) in A.

By [10] the subloop G1, generated by all the associators of the CML G,
belongs to the Frattini subloop. Therefore the mapping xiG1 → yi is one-to-
one. If a, b, c are elements in G, then it follows from Lemma 5 that [a, b, c] =
1 − (a−1 · b−1c−1)(a, b, c). Therefore, if [a, b, c] 6= 1 then (a, b, c) 6= 0. Con-
sequently, it is easy to show by induction that if βk(xi1 , xi2 , . . . , xi2k+1

) 6= 1,
then βk(yi1 , yi2 , . . . , xi2k+1

) 6= 0. Then it follows from (28) that the mapping
xiG1 → yi induces the monomorphism of 3-Lie algebra L(G) into the 3-Lie
algebra A. This completes the proof of Proposition 2.

It follows from Lemma 8 and Proposition 2 that

Lemma 14. In the algebra ωQn/I the identity µn = 0 does not hold.

It is obvious that the identities xy = yx and x2 · yx = x2y · x hold in the
algebra ωQn/I, i.e. the algebra ωQn/I is Jordan. Then from Lemmas 10
and 14 we immediately obtain

Theorem 1. The infinite system of identities {µk = 0}(k = 1, 2, . . .) is
independent in the variety A3 ∩S2S2 of alternative commutative (Jordan)
algebras over the infinite field of characteristic 3.

If a certain identity is deduced from the system of identities {µk = 0}, k =
1, 2, . . ., then in its deduction only a finite number of identities of this system
can be used. Therefore, if the system of identities {µk = 0} were equivalent
to a certain finite system of identities, then it would be equivalent to one of
its finite subsystem. Consequently, from Theorem 1 we obtain

Corollary 1. Any infinite subset of the system of identities {µk = 0}, k =
1, 2, . . ., is not equivalent to any finite system of identities.
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Corollary 2. In the variety A3 ∩ S2S2 of alternative commutative (Jor-
dan) algebras over the infinite field of characteristic 3 there exists an algebra,
given by the enumerable set of relations, in which the word problem is un-
solvable.

Proof. Let S be some recursively enumerable and non-recursive set of
numbers. Let us examine the algebra A of the variety A3 ∩S2S2, defined
by the identical relations {µn = 0} for n ∈ S. It is obvious that each relation
of the algebra A is an identical relation. By Theorem 1 the arbitrary identity
from {µn = 0} under a given n is true in A if and only if n ∈ S. Therefore,
in A the problem of word equality is unsolvable.

Corollary 3. The variety A3 ∩S2S2 of alternative commutative (Jordan)
algebras over the infinite field of characteristic 3 contains a continuum of
different infinite based subvarieties.

This statement follows directly from Theorem 1 and Corollary 1.

Added in proof (by the editors): A.V. Badeev’s thesis: “On Spechtness
of varieties of commutative alternative algebras over a field of characteristic
3 and commutative Moufang loops” (Moscow 1999) is closely related to
topics of the paper. See also the paper:
A.V. Badeev, On the Specht property of varieties of commutative alternative
algebras over a field of characteristic 3 and of commutative Moufang loops,
Sibirsk. Mat. Zh. 41 (2000), 1252–1268.
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