# ADJOINTNESS BETWEEN THEORIES AND STRICT THEORIES

HANS-JÜRGEN VOGEL

Institute of Mathematics, University of Potsdam PF 60 15 53, D-14415 Potsdam, Germany e-mail: vogel@rz.uni-potsdam.de or: hans-juergen.vogel@freenet.de

Dedicated to Prof. Dr. habil. Klaus Denecke on the occasion of his 60th birthday

#### Abstract

The categorical concept of a theory for algebras of a given type was foundet by Lawvere in 1963 (see [8]). Hoehnke extended this concept to partial heterogenous algebras in 1976 (see [5]). A partial theory is a *dhts*-category such that the object class forms a free algebra of type (2,0,0) freely generated by a nonempty set J in the variety determined by the identities  $ox \approx o$  and  $xo \approx o$ , where o and i are the elements selected by the 0-ary operation symbols.

If the object class of a dhts-category forms even a monoid with unit element I and zero element O, then one has a strict partial theory.

In this paper is shown that every J-sorted partial theory corresponds in a natural manner to a J-sorted strict partial theory via a strongly d-monoidal functor. Moreover, there is a pair of adjoint functors between the category of all J-sorted theories and the category of all corresponding J-sorted strict theories.

This investigation needs an axiomatic characterization of the fundamental properties of the category <u>*Par*</u> of all partial function between arbitrary sets and this characterization leads to the concept of *dhts*and *dhth* $\nabla s$ -categories, respectively (see [5], [11], [13]).

**Keywords:** symmetric monoidal category, *dhts*-category, partial theory, adjoint functor.

**2000 Mathematics Subject Classification:** 18D10, 18D20, 18D99, 18A25, 08A55, 08C05, 08A02.

### 1. INTRODUCTION

Heterogeneous algebras (many-sorted algebras) are, as well-known, algebraic systems consisting of a family of carrier sets and a family of functions such that their definition domain are cartesian products of certain carrier sets and their values are elements of a distinguished carrier set. The concept of such algebraic systems was independently introduced and investigated by P.J. Higgins ([4]) and G. Birkhoff & J.D. Lipson ([1]).

The development of a functorial semantic of algebraic theories for heterogeneous partial algebras requires a good knowledge about diagonal-halfterminal-halfdiagonal-inversional-symmetric monoidal categories ( $dhth\nabla s$ -categories).

The morphism class of a category K will be denoted by K too, the object class of K by |K|, and the set of all morphisms in K out of an object A into an object B by K[A, B].

The concept of a symmetric monoidal category in the sense of ([3]) is of fundamental importance.

**Definition 1.1** ([3]). A sequence

$$K^{\bullet} = (K, \otimes, I, a, r, l, s)$$

is called symmetric monoidal category, if K is a category,  $\otimes : K \times K \to K$  is a bifunctor, I is a distinguished object of K,  $a = (a_{A,B,C} \in K[A \otimes (B \otimes C), (A \otimes B) \otimes C] \mid A, B, C \in |K|), r = (r_A \in K[A \otimes I, A] \mid A \in |K|), l = (l_A \in K[I \otimes A, A] \mid A \in |K|), s = (s_{A,B} \in K[A \otimes B, B \otimes A] \mid A, B \in |K|)$ are families of isomorphisms in K (associativity, right-identity, left-identity, symmetry) such that

- (F1)  $\forall \rho, \rho' \in K \ (\operatorname{dom} (\rho \otimes \rho') = \operatorname{dom} \rho \otimes \operatorname{dom} \rho'),$
- (F2)  $\forall \rho, \rho' \in K \ (\operatorname{cod} (\rho \otimes \rho') = \operatorname{cod} \rho \otimes \operatorname{cod} \rho'),$
- (F3)  $\forall A, B \in |K| \ (1_{A \otimes B} = 1_A \otimes 1_B),$
- (F4)  $\forall A, B, C, A', B', C' \in |K| \ \forall \rho \in K[A, B], \sigma \in K[B, C],$  $\rho' \in K[A', B'], \sigma' \in K[B', C'] \ ((\rho \otimes \rho')(\sigma \otimes \sigma') = \rho \sigma \otimes \rho' \sigma'),$
- $(M1) \quad \forall A, B, C, D \in |K|$

 $(a_{A,B,C\otimes D}a_{A\otimes B,C,D} = (1_A \otimes a_{B,C,D})a_{A,B\otimes C,D}(a_{A,B,C} \otimes 1_D)),$ 

(M2)  $\forall A, B \in |K| \ (a_{A,I,B}(r_A \otimes 1_B) = 1_A \otimes l_B),$ 

(M3) 
$$\forall A, B, C \in |K| (a_{A,B,C} s_{A \otimes B,C} a_{C,A,B} = (1_A \otimes s_{B,C}) a_{A,C,B} (s_{A,C} \otimes 1_B)),$$

- (M4)  $\forall A, B \in |K| \ (s_{A,B}s_{B,A} = 1_{A \otimes B}),$
- (M5)  $\forall A \in |K| \ (s_{A,I}l_A = r_A),$

(M6) 
$$\forall A, B, C, A', B', C' \in |K| \ \forall \rho \in K[A, A'], \sigma \in K[B, B'], \tau \in K[C, C']$$

$$(a_{A,B,C}((
ho\otimes\sigma)\otimes au)=(
ho\otimes(\sigma\otimes au))a_{A',B',C'}),$$

 $(\mathrm{M7}) \quad \forall A, A' \in |K| \; \forall \rho \in K[A, A'] \; (r_A \rho = (\rho \otimes 1_I) r_{A'}),$ 

(M8) 
$$\forall A, B \in |K| \ \forall \rho \in K[A, A'], \sigma \in K[B, B'] \ (s_{A,B}(\sigma \otimes \rho) = = (\rho \otimes \sigma)s_{A',B'}).$$

A symmetric monoidal category is called *symmetric strictly monoidal*, if all associativity, right-identity, and all left-identity isomorphisms, are unit morphisms, i.e. identity morphisms in K (in the other terminology), only.

The defining conditions determine a lot of properties as follows.

**Corollary 1.2.** Let  $K^{\bullet}$  be a symmetric monoidal category. Then

$$\begin{array}{ll} (\mathrm{M9}) & \forall A, B \in |K| \ (a_{I,A,B}(l_A \otimes 1_B) = l_{A \otimes B}), \\ (\mathrm{M10}) & \forall A, B \in |K| \ (a_{A,B,I}r_{A \otimes B} = 1_A \otimes r_B), \\ (\mathrm{M11}) & r_I = l_I, \\ (\mathrm{M12}) & s_{I,I} = 1_{I \otimes I}, \\ (\mathrm{M13}) & \forall A \in |K| \ (s_{I,A}r_A = l_A), \\ (\mathrm{M14}) & \forall A, A' \in |K| \ \forall \rho \in K[A, A'] \ (l_A \rho = (1_I \otimes \rho)l_{A'}), \\ (\mathrm{ASR}) & \forall A, B \in |K| \ (a_{A,B,I}^{-1}(1_A \otimes s_{B,I})a_{A,I,B} = r_{A \otimes B}(r_A^{-1} \otimes 1_B)), \\ (\mathrm{ASL}) & \forall A, B \in |K| \ (a_{I,A,B}(s_{I,A} \otimes 1_B)a_{A,I,B}^{-1} = l_{A \otimes B}(1_A \otimes l_B^{-1})). \\ Defining \\ (\mathrm{B1}) & b_{A,B,C,D} := a_{A \otimes B,C,D}(a_{A,B,C}^{-1}(1_A \otimes s_{B,C})a_{A,C,B} \otimes 1_D)a_{A \otimes C,B,D}^{-1} \\ \end{array}$$

for arbitrary 
$$A, B, C, D \in |K|$$
,

one obtains furthermore

$$\begin{array}{ll} (\mathrm{B2}) & \forall A, B, C, D \in |K| \; (b_{A,B,C,D} = \\ & = a_{A,B,C\otimes D}^{-1} (1_A \otimes a_{B,C,D}(s_{B,C} \otimes 1_D) a_{C,B,D}^{-1}) a_{A,C,B\otimes D}), \\ (\mathrm{M15}) & \forall A, B, C, D, A', B', C', D' \in |K| \; \forall \rho \in K[A, A'], \sigma \in K[B, B'], \\ & \lambda \in K[C, C'], \mu \in K[D, D'] \\ & (b_{A,B,C,D}((\rho \otimes \sigma) \otimes (\lambda \otimes \mu) = ((\rho \otimes \lambda) \otimes (\sigma \otimes \mu) b_{A',B',C',D'}), \\ (\mathrm{M16}) & \forall A, B, C, D \in |K| \; (b_{A,B,C,D} b_{A,C,B,D} = 1_{A\otimes B} \otimes 1_{C\otimes D}), \\ (\mathrm{M17}) & \forall A, B, C, D \in |K| \; (b_{A,B,C,D}(s_{A,C} \otimes s_{B,D}) = s_{A\otimes B,C\otimes D} b_{C,D,A,B}, \\ (\mathrm{M18}) & \forall A, A', B, B', C, C' \in |K| \\ & (b_{(A,(B\otimes C)),A',(B'\otimes C')}(1_{A\otimes A'} \otimes b_{B,C,B',C'})a_{A\otimes A',B\otimes B',C\otimes C'} \\ & = (a_{A,B,C} \otimes a_{A',B',C'})b_{(A\otimes B),C,(A'\otimes B'),C'}(b_{A,B,A',B'} \otimes 1_{C\otimes C'})), \\ or \; equivalently, \\ & \forall A, A', B, B', C, C' \in |K| \\ & (a_{A\otimes A',B\otimes B',C\otimes C'}(b_{A,A',B,B'} \otimes 1_{C\otimes C'})b_{(A\otimes B),(A'\otimes B'),C,C'} \end{array}$$

$$=(1_{A\otimes A'}\otimes b_{B,B',C,C'})b_{A,A',(B\otimes C),(B'\otimes C')}(a_{A,B,C}\otimes a_{A',B',C'})),$$

- (M19)  $\forall A, B \in |K| \ (b_{A,I,I,B} = 1_{A \otimes I} \otimes 1_{I \otimes B}),$
- (M20)  $\forall A, B \in |K| \ (b_{A,I,B,I} = (r_A \otimes r_B)((1_{A \otimes B} \otimes r_I)r_{A \otimes B})^{-1}),$
- (M21)  $\forall A, B \in |K| \ (b_{I,A,I,B} = (l_A \otimes l_B)((l_I \otimes 1_{A \otimes B}) l_{A \otimes B})^{-1}),$
- (M22)  $\forall A, B \in |K| \ (b_{I,A,B,I} = s_{I \otimes A, B \otimes I}(s_{B,I} \otimes s_{I,A})),$
- (M23)  $\forall A, B \in |K| \ (b_{A,B,I,I} = (1_{A \otimes B} \otimes r_I) r_{A \otimes B} (r_A^{-1} \otimes r_B^{-1})),$
- (M24)  $\forall A, B \in |K| \ (b_{I,I,A,B} = (l_I \otimes 1_{A \otimes B}) l_{A \otimes B} (l_A^{-1} \otimes l_B^{-1})).$

**Remark 1.3.** By definition, the object class of a symmetric monoidal category  $K^{\bullet}$  forms an illegitimate algebra  $(|K|, \otimes, I)$  of type (2, 0), because the carrier is not a set.

Especially, of interest are objects consisting of finitely many factors I in arbitrary brackets, namely objects of the subalgebra  $\langle I \rangle$  generated by the one element set  $\{I\}$  as follows:

$$\begin{split} \langle I \rangle^{(0)} &:= \{I\}, \qquad \langle I \rangle^{(n+1)} := \langle I \rangle^{(n)} \cup \{X \otimes Y \mid X, Y \in \langle I \rangle^{(n)}\}, \\ \langle I \rangle &:= \bigcup_{n \,\in \, \mathbb{N}} \, \langle I \rangle^{(n)}. \end{split}$$

This is in fact an algebra of type (2,0). The set  $\langle I \rangle$  determines in a natural manner a symmetric monoidal subcategory  $\langle I \rangle^{\bullet}$  of  $K^{\bullet}$ .

Moreover, every nonempty set  $J \subseteq |K|$ ,  $I \notin J$ , determines a subalgebra H of type (2, 0) as follows:

$$H^{(0)} := J \cup \{I\}, \qquad H^{(n+1)} := H^{(n)} \cup \{X \otimes Y \mid X, Y \in H^{(n)}\},$$
$$H := \bigcup_{n \in \mathbb{N}} H^{(n)}.$$

The symmetric monoidal subcategory of  $K^{\bullet}$  generated by H, respectively by J, will be denoted by  $H^{\bullet}$ . Obviously,  $H^{\bullet}$  is a small category, since the carrier is a set.

If  $K^{\bullet}$  is a symmetric strictly monoidal category, then  $(|K|, \otimes, I)$  is an illegitimate monoid,  $\langle I \rangle$  is a one element set and every set J generates a monoid S with unit I.

**Definition 1.4** ([10]). Let  $K^{\bullet}$  be a symmetric monoidal category. The monoidal subcategory  $\mathbf{C}_{K}^{\bullet}$  of  $K^{\bullet}$  generated by the morphism class

$$\{ 1_X | X \in |K| \} \cup \{ a_{X,Y,Z} | X, Y, Z \in |K| \} \cup \{ r_X | X \in |K| \} \cup \{ l_X | X \in |K| \}$$
$$\cup \{ a_{X,Y,Z}^{-1} | X, Y, Z \in |K| \} \cup \{ r_X^{-1} | X \in |K| \} \cup \{ l_X^{-1} | X \in |K| \}$$

is called *central subcategory* of  $K^{\bullet}$ , its morphisms are called *central morphisms* of  $K^{\bullet}$ .

**Remark 1.5.** The class  $C_K$  of all central morphisms of a symmetric monoidal category  $K^{\bullet}$  is given by the construction

$$\begin{aligned} \mathbf{C}_{K}^{(0)} &:= \{ \mathbf{1}_{X} \mid X \in |K| \} \cup \{ a_{X,Y,Z} \mid X, Y, Z \in |K| \} \cup \{ r_{X} \mid X \in |K| \} \cup \{ l_{X} \mid X \in |K| \} \\ &\cup \{ a_{X,Y,Z}^{-1} \mid X, Y, Z \in |K| \} \cup \{ r_{X}^{-1} \mid X \in |K| \} \cup \{ l_{X}^{-1} \mid X \in |K| \}, \\ \mathbf{C}_{K}^{(n+1)} &:= \mathbf{C}_{K}^{(n)} \cup \{ c_{1}c_{2} \mid c_{1} \in K[X,Y] \land c_{2} \in K[Y,P] \land c_{1}, c_{2} \in \mathbf{C}_{K}^{(n)} \\ &\land X, Y, P \in |K| \} \cup \{ c_{1} \otimes c_{2} \mid c_{1}, c_{2} \in \mathbf{C}_{K}^{(n)} \}, \end{aligned}$$

 $\mathbf{C}_K = \bigcup_{n \in \mathbb{N}} \mathbf{C}_K^{(n)}$ 

and forms a monoidal subcategory  $\mathbf{C}_{K}^{\bullet}$  of  $K^{\bullet}$ .

 $\mathbf{C}_K$  consists of unit morphisms only, if  $K^{\bullet}$  is symmetric strictly monoidal. The class of all unit morphisms of K is denoted by  $Un_K$ .

**Coherence principle** ([9], [6], [7]). Let  $K^{\bullet}$  be a symmetric monoidal category. Then every planar closed diagram of central morphisms is commutative.

**Corollary 1.6.** Let  $K^{\bullet}$  be a symmetric monoidal category. Then, by the coherence principle, there is at most one central morphism  $c_{X,Y} \in K$  between objects X and Y for every  $X, Y \in |K|$ . The central morphisms are isomorphisms only.

Let X and Y be arbitrary objects of  $\langle I \rangle^{\bullet}$ . Then there is exactly one central morphism in the set  $\langle I \rangle [X, Y]$ .

The isomorphisms

$$i^{(n)}: I^n \to I \text{ and } i^{*(n)}: \underset{k=1}{\overset{n}{\otimes}^*} I \to I,$$
where  $I^n := \underset{k=1}{\overset{n}{\otimes}} I \text{ and } \underset{k=1}{\overset{n}{\otimes}^*} I := I, \underset{k=1}{\overset{n+1}{\otimes}^*} I := I \otimes \begin{pmatrix} n \\ \overset{n}{\otimes}^* I \end{pmatrix}$ 

between the different powers of I and the object I are expressable in the following form:

$$i^{(1)} = 1_I, i^{(n+1)} = (i^{(n)} \otimes 1_I)r_I, n \ge 1, \text{ especially } i^{(2)} = r_I,$$
  
 $i^{*(1)} = 1_I, i^{*(n+1)} = (1_I \otimes i^{*(n)})l_I, n \ge 1, \text{ especially } i^{*(2)} = l_I.$ 

**Proof.** It remains to show the existence of an central morphism between arbitrary X and Y of  $\langle I \rangle$ .

a) One proves by induction over the complexity of  $X: \forall X \in \langle I \rangle \exists c \in \langle I \rangle [X, I] \ (c \in \mathbf{C}_K) :$ 

$$\forall X \in \langle I \rangle^{(0)} \ (X = I \land 1_I \in \mathbf{C}_K);$$
  
$$\forall n \in \mathbb{N} \ [\forall X \in \langle I \rangle^{(n)} \ \exists c \in \langle I \rangle [X, I] \ (c \in \mathbf{C}_K) \Rightarrow$$
  
$$\Rightarrow \forall X \in \langle I \rangle^{(n+1)} \ \exists c \in \langle I \rangle [X, I] \ (c \in \mathbf{C}_K)],$$

168

since

$$\forall X \in (\langle I \rangle^{(n+1)} \setminus \langle I \rangle^{(n)}) \; \exists X_1, X_2 \in \langle I \rangle^{(n)} \; \exists c_i \in \langle I \rangle [X_i, I] \cap \mathbf{C}_K \; (i = 1, 2)$$
$$(X = X_1 \otimes X_2 \; \land \; c_1 \otimes c_2 \in \mathbf{C}_K \Rightarrow (c_1 \otimes c_2) r_I \in \langle I \rangle [X, I] \cap \mathbf{C}_K).$$

b) One proves by induction over the complexity of Y:

$$\forall X \in \langle I \rangle \; \forall Y \in \langle I \rangle \; \exists c \in \langle I \rangle [X, Y] \; (c \in \mathbf{C}_K).$$

The truth of the assertion for an arbitrary  $X \in \langle I \rangle$  and for  $Y \in \langle I \rangle^{(0)}$  was shown in a).

 $\forall X \in \langle I \rangle \ \forall n \in \mathbb{N} \ [\forall Y \in \langle I \rangle^{(n)} \ \exists c \in \langle I \rangle [X, Y] \ (c \in \mathbf{C}_K) \Rightarrow$ 

$$\Rightarrow \forall Y \in \langle I \rangle^{(n+1)} \; \exists c \in \langle I \rangle [X, Y] \; (c \in \mathbf{C}_K)],$$

since

$$\forall Y \in (\langle I \rangle^{(n+1)} \setminus \langle I \rangle^{(n)}) \; \exists Y_1, Y_2 \in \langle I \rangle^{(n)} \; \exists c_1 \in \langle I \rangle [X, Y_1] \cap \mathbf{C}_K$$
$$\exists c_2 \in \langle I \rangle [I, Y_2] \cap \mathbf{C}_K$$

$$(Y = Y_1 \otimes Y_2 \land c_1 \otimes c_2 \in \mathbf{C}_K \Rightarrow r_X^{-1}(c_1 \otimes c_2) \in \langle I \rangle [X, Y] \cap \mathbf{C}_K).$$

**Definitions 1.7.** Let  $K^{\bullet}$  be a symmetric monoidal category in the sense of [3].

A sequence  $(K^{\bullet}; d)$  is called *diagonal-symmetric monoidal category* (shortly *ds-category*) (in [2] considered in the strict case as a special Kronecker-category, in [13] as "diagonal-symmetrische Kategorie"), if  $d = (d_A \in K[A, A \otimes A] \mid A \in |K|)$  is a family of morphisms of K such that

(D1)  $\forall A, A' \in |K| \ \forall \varphi \in K[A, A'] \ (\varphi d_{[A'} = d_A(\varphi \otimes \varphi)),$ 

(D2) 
$$\forall A \in |K| \ (d_A(d_A \otimes 1_A) = d_A(1_A \otimes d_A)a_{A,A,A}),$$

(D3)  $\forall A \in |K| \ (d_A s_{A,A} = d_A),$ 

(D4)  $\forall A, B \in |K| \ ((d_A \otimes d_B)b_{A,A,B,B} = d_{A \otimes B})$ are fulfilled.  $(K^{\bullet}, d, t)$  is called *diagonal-terminal-symmetric monoidal category* (*dts-category*) ([2]), if  $(K^{\bullet}, d)$  is a *ds*-category with a family  $t = (t_A \mid A \in |K|)$  of terminal morphisms  $t_A \in K[A, I]$  such that the conditions

(T1) 
$$\forall A, A' \in |K| \; \forall \varphi \in K[A, A'] \; (\varphi t_{A'} = t_A)$$
  
and  
(DTR)  $\forall A \in |K| \; (d_A(1_A \otimes t_A)r_A = 1_A)$ 

are right.

 $(K^{\bullet}; d, t, o)$  will be called *diagonal-halfterminal-symmetric monoidal cate*gory or Hoehnke category (shortly *dhts*-category) ([5], [11], [13]), if *d* and *t* are morphism families as above and  $o: I \to O$  is a distinguished morphism in *K* related to a distinguished object  $O \in |K|$ , such that

(D1) 
$$\forall A, A' \in |K| \ \forall \varphi \in K[A, A'] \ (d_A(\varphi \otimes \varphi) = \varphi d_{A'}),$$

(DTR) 
$$\forall A \in |K| \ (d_A(1_A \otimes t_A)r_A = 1_A),$$

(DTL)  $\forall A \in |K| \ (d_A(t_A \otimes 1_A)l_A = 1_A),$ 

 $(\text{DTRL}) \,\forall A_1, A_2 \in |K| (d_{A_1 \otimes A_2} ((1_{A_1} \otimes t_{A_2}) r_{A_1} \otimes (t_{A_1} \otimes 1_{A_2}) l_{A_2}) = 1_{A_1 \otimes A_2})),$ 

(TT) 
$$\forall A, B \in |K| \ (t_{A \otimes B} = (t_A \otimes t_B) t_{I \otimes I}),$$

$$(O1) \quad \forall A \in |K| \ (A \otimes O = O \otimes A = O),$$

(o1) 
$$\forall A \in |K| \ \forall \varphi \in K[A, O] \ (t_A o = \varphi),$$

and

(o2) 
$$\forall A \in |K| \; \forall \psi \in K[O, A] \; ((1_A \otimes t_O)r_A = \psi)$$

are fulfilled.

 $(K^{\bullet}; d, t, \nabla, o)$  is called diagonal-halfterminal-halfdiagonal-inversional-symmetric monoidal category or Hoehnke category with halfdiagonalinversions (for short  $dhth\nabla s$ -category, in [13] named  $dht\nabla$ -symmetric category), if  $(K^{\bullet}; d, t, o)$  is a dhts-category endowed with a morphism family

$$\nabla = (\nabla_A \in K[A \otimes A, A] \mid A \in |K|)$$
 fulfilling

$$(\mathbf{D}_{1}^{*}) \ \forall A \in |K| \ (d_{A}\nabla_{A} = 1_{A}),$$
  
$$(\mathbf{D}_{2}^{*}) \ \forall A \in |K| \ (\nabla_{A}d_{A}d_{A\otimes A} = d_{A\otimes A}(\nabla_{A}d_{A}\otimes 1_{A\otimes A})).$$

Any ds-, dts-, dhts-, and  $dhth\nabla s$ -category, respectively, is called *strict*, if the underlying symmetric monoidal category is strictly monoidal.

The zero morphisms  $o_{A,B}$  absorb all other morphisms at composition and  $\otimes$ -operation in any *dhts*-category, i.e.

(o3) 
$$\forall A, A', B, B' \in |K| \ \forall \rho \in K[A, A'], \ \sigma \in K[B, B']$$
  
 $(\rho o_{A',B} = o_{A,B} \land \ o_{A,B}\sigma = o_{A,B'}),$ 

(o4)  $\forall A, B, C, D \in |K| \ \forall \xi \in K[C, D]$ 

$$(o_{A,B} \otimes \xi = o_{A \otimes C, B \otimes D} \land \xi \otimes o_{A,B} = o_{C \otimes A, B \otimes D}),$$

(o5) 
$$\forall A \in |K| \ (o_{O,A} = (1_A \otimes t_O)r_A = (t_O \otimes 1_A)l_A).$$

Because of (o1) and (o2), the unit morphism  $1_O$  is identical with the zero morphism  $o_{O,O}$ .

The category <u>*Par*</u> of all partial functions between arbitrary sets is an example for a  $dhth\nabla s$ -category.

In view of the properties of the category  $\underline{Par}$  we will consider mainly dhts-categories fulfilling the conditions

$$(\mathbf{N}_1) \qquad \forall A, \ B \in |K| \ (A \otimes B = O \Rightarrow (A = O \lor B = O)),$$

$$(\mathbf{N}_2) \qquad \forall A, \ B, \ C, \ D \in |K| \ \forall \varphi \in K[A,B] \ \forall \psi \in K[C,D]$$

 $(\varphi \otimes \psi = o_{A \otimes C, B \otimes D} \Rightarrow (\varphi = o_{A,B} \lor \psi = o_{C,D})).$ 

- $(\mathbf{N}_3) \qquad I \neq O,$
- (N<sub>4</sub>)  $\forall A \in |K| \setminus \{\emptyset\} \ (1_A \neq o_{A,A}).$

Observe that  $(K^{\bullet}; d)$  is a *ds*-category for each *dhts*-category  $(K^{\bullet}; d, t, o)$  and  $\nabla$  is the only family in a *dhth* $\nabla$ *s*-category with the properties  $(D_1^*)$  and  $(D_2^*)$ , cf. [11].

Any *dhts*-category  $\underline{K} = (K^{\bullet}; d, t, o)$  has the following properties:

• The class  $T_K := \{ \varphi \in K \mid \varphi t_{\operatorname{cod}\varphi} = t_{\operatorname{dom}\varphi} \}$  of so-called *total morphisms* of <u>K</u> forms a *dts*-subcategory <u>T</u><sub>K</sub> of <u>K</u> ([12]).

• 
$$(A \otimes B, (1_A \otimes t_B)r_A, (t_A \otimes 1_B)l_B)$$

is a categorical product in  $\underline{T}_K$ , but not in the whole category  $\underline{K}$ . The morphisms

$$p_1^{A,B} := (1_A \otimes t_B)r_A$$
 and  $p_2^{A,B} := (t_A \otimes 1_B)l_B$ 

are called the *canonical projections* concerning A and B ([5]).

• The class  $Iso_K$  of all *isomorphisms* of K forms a symmetric monoidal subcategory  $Iso_K^{\bullet}$  and one has

$$Un_K \subseteq \mathbf{C}_K \subseteq Iso_K \subseteq Cor_K \subseteq T_K,$$

where  $Cor_K$  denotes the subcategory of all coretractions of K.

• The relation  $\leq$  defined by

$$\varphi \leq \psi : \Leftrightarrow \exists A, A' \in |K| \ (\varphi, \psi \in K[A, A'] \land \varphi = d_A(\varphi \otimes \psi)p_2^{A', A'})$$

is a partial order relation and it is compatible with composition and  $\otimes$ -operation of morphisms ([11]). Moreover, the following conditions are equivalent ([12]):

$$\begin{split} \varphi &= d_A(\varphi \otimes \psi) p_2^{A',A'}, \\ \varphi &= d_A(\psi \otimes \varphi) p_1^{A',A'}, \\ \varphi d_{A'} &= d_A(\varphi \otimes \psi), \\ \varphi d_{A'} &= d_A(\psi \otimes \varphi). \end{split}$$

• Each morphism  $\varphi \in K$  determines a so-called *subidentity*  $\alpha(\varphi)$  as follows ([11]):

$$\alpha(\varphi) := d_{dom\varphi}(1_{dom\varphi} \otimes \varphi) p_1^{dom\varphi, cod\varphi} \le 1_{dom\varphi}.$$

Moreover, each  $dhth\nabla s$ -category has the properties

$$(h\nabla_1) \quad \forall A, A' \in |K| \quad \forall \varphi \in K[A, A'] \quad (\nabla_A \varphi d_{A'} = d_{A \otimes A} (\nabla_A \varphi \otimes (\varphi \otimes \varphi) \nabla_{A'})),$$

$$(hT_1) \ \forall A, A' \in |K| \ \forall \varphi \in K[A, A'] \ (\varphi t_{A'} d_I = d_A(\varphi t_{A'} \otimes t_A)),$$

therefore  $\nabla_A \varphi \leq (\varphi \otimes \varphi) \nabla_{A'}$  and  $\varphi t_{A'} \leq t_A$  for all morphisms  $\varphi \in K[A, A']$ and all objects  $A, A' \in |K|$  ([15]).

Every morphism set K[A, B] of a  $dhth\nabla s$ -category  $\underline{K}$  forms a meetsemilattice with respect to  $\varphi \wedge \psi = d_A(\varphi \otimes \psi)\nabla_B$ . This semilattice has the minimum  $o_{A,B}$ , maximal elements are the total morphisms. Especially, the morphism sets K[A, I] possess a maximum, namely  $t_A$ .

The basic morphisms related to the distinguished object I in any symmetric monoidal category, any *dhts*-category, or even any *dhth* $\nabla s$ -category have some interesting properties as follows:

**Lemma 1.8.** Let  $K^{\bullet}$  be a symmetric monidal category. Then one has

 $a_{I,I,I} = r_I^{-1} \otimes r_I.$ 

Moreover, every dhts-category <u>K</u> has in addition the properties

$$d_I = r_I^{-1}, \quad r_I d_I = 1_{I \otimes I}, \quad t_I = 1_I \quad ([11]), \quad t_{I \otimes I} = r_I,$$
  
$$i \in Iso_K[I, I] \Rightarrow i = t_I,$$
  
$$\forall X \in |K| \; \forall x \in K[I, X] \; (x \in Iso_K \Rightarrow x^{-1} = t_X).$$

Finally, if <u>K</u> is a dhth $\nabla$ s-category, then the additional property

$$\nabla_I = r_I$$

is true.

**Proof.** The identity  $a_{A,I,B}(r_A \otimes 1_B) = 1_A \otimes l_B$  is one of the defining properties of monoidal-symmetric categories, hence  $a_{I,I,I}(r_I \otimes 1_I) = 1_I \otimes r_I$  by  $r_I = l_I$  and  $a_{I,I,I} = (r_I^{-1} \otimes r_I)$ , since all right-identity morphisms are isomorphisms.

In any *dhts*-category one has the defining identity  $d_A(1_A \otimes t_A)r_A = 1_A$ , hence  $1_I = d_I(1_I \otimes t_I)r_I = d_I(1_I \otimes 1_I)r_I = d_Ir_I$ , since  $t_I = 1_I$ , consequently  $d_I = r_I^{-1}$  and  $r_I d_I = 1_{I \otimes I}$ .

Each coretraction  $\varphi \in K[A, B]$  of a *dhts*-category has the property  $\varphi t_B = t_A$ . Because  $d_I$  is even an isomorphism, one observes  $d_I t_{I \otimes I} = t_I = 1_I$ , therefore  $t_{I \otimes I} = 1_{I \otimes I} t_{I \otimes I} = r_I d_I t_{I \otimes I} = r_I 1_I = r_I$ .

One of the characterizing conditions of the diagonal inversions in a  $dhth\nabla s$ -category is  $d_A\nabla_A = 1_A$ . Therefore,  $\nabla_I = 1_{I\otimes I}\nabla_I = r_I d_I\nabla_I = r_I$  as above. Now let  $i \in K[I, I]$  be an isomorphism of a dhts-category  $\underline{K}$ . Then  $i = i1_I = it_I = t_I$ , because of  $1_i = t_I$ .

Let  $x \in K[I, X]$  be an isomorphism in a *dhts*-category <u>K</u>. Then one obtains in the same manner as above  $1_I = t_I = xt_X$ , hence the assertion.

**Remark 1.9.** Let  $\underline{K}$  be a *dhts*-category. Then its object class |K| forms an illegitimate algebra  $(|K|, \otimes, I, O)$  of type (2, 0, 0). Let J be a nonempty set such that  $J \cap \{I, O\} = \emptyset$ . Then J generates in |K| a subalgebra  $H^{\circ}$  of type (2, 0, 0):

$$\begin{split} H^{\circ(0)} &:= J \cup \{I, O\}, \qquad H^{\circ(n+1)} := H^{\circ(n)} \cup \{X \otimes Y \mid X, Y \in H^{\circ(n)}\}, \\ H^{\circ} &:= \bigcup_{n \, \in \, \mathbb{N}} \, H^{\circ(n)}. \end{split}$$

The *dhts*-subcategory of  $\underline{K}$  generated by  $H^{\circ}$ , respectively by J, will be denoted by  $\underline{H^{\circ}}$ . Obviously,  $\underline{H^{\circ}}$  is again a small category.

Let <u>K</u> be a strict *dhts*-category. Then the algebra  $S^{\circ} := (H^{\circ}, \otimes, I, O)$  generated by a set J is a monoid with unit I and zero O.

#### 2. Hoehnke Theories

Let  $\mathcal{G}$  denote the variety of all algebras of type type (2,0) (groupoids with a distinguished element I). Note that the distinguished element I does not play the role of a unit element in general. By the principles of General Algebra, every set J determines in  $\mathcal{G}$  a free  $\mathcal{G}$ -algebra  $\mathbf{F}_{\mathcal{G}}(J)$  freely generated by J. The algebra  $\mathbf{F}_{\mathcal{G}}(J)$  contains a subalgebra  $\underline{\langle I \rangle}$  consisting of all possible products of I as follows:

$$\langle I \rangle^{(0)} := \{I\}, \ \langle I \rangle^{(n+1)} := \langle I \rangle^{(n)} \cup \{X \otimes Y \mid X, Y \in \langle I \rangle^{(n)}\}, \ \langle I \rangle := \bigcup_{k \in \mathbb{N}} \langle I \rangle^{(k)} = \langle I \rangle$$

Every algebra  $\underline{A} = (A; \otimes, I) \in \mathcal{G}$  can be transferred into an algebra  $(A; \otimes, I, O)$  of type (2, 0, 0) by addition of a distinguished element O with the property  $\forall X \in A \ (X \otimes O = O = O \otimes X).$ 

By  $\mathcal{G}^{\circ}$  shall be denoted the variety of all algebras  $(A; \otimes, I, O)$  of type (2, 0, 0) (groupoids with distinguished element I and zero element O) such that  $\forall X \in A$   $(X \otimes O = O = O \otimes X)$ .  $\mathbf{F}_{\mathcal{G}^{\circ}}(J)$  denotes the free  $\mathcal{G}^{\circ}$ -algebra freely generated by a set J such that  $J \cap \{I, O\} = \emptyset$ . Clearly,  $\mathbf{F}_{\mathcal{G}^{\circ}}(J)$  contains the trivial subalgebra  $\langle I \rangle^{\circ}$  with the carrier set  $\langle I \rangle^{\circ} = \langle I \rangle \cup \{O\}$ .

Let  $\mathcal{M}$  be the variety of all monoids (algebras of type (2,0)) and let  $\mathcal{M}^{\circ}$  be the variety of all monoids with absorbing zero (algebras of type (2,0,0) too).

The free  $\mathcal{M}$ -algebra ( $\mathcal{M}^{\circ}$ -algebra) freely generated by J will be denoted by  $\mathbf{F}_{\mathcal{M}}(J)$  ( $\mathbf{F}_{\mathcal{M}^{\circ}}(J)$ ). The trivial subalgebra  $\underline{\langle I \rangle}$  ( $\underline{\langle I \rangle}^{\circ}$ ) has the carrier set  $\langle I \rangle = \{I\}$  ( $\langle I \rangle^{\circ} = \{I, O\}$ ).

The identical embedding functions from J into the corresponding algebras will be denoted as follows:

$$\iota_{H}: J \hookrightarrow \mathbf{F}_{\mathcal{G}}(J), \ \iota_{H^{\circ}}: J \hookrightarrow \mathbf{F}_{\mathcal{G}^{\circ}}(J),$$
$$\iota_{S}: J \hookrightarrow \mathbf{F}_{\mathcal{M}}(J), \ \iota_{S^{\circ}}: J \hookrightarrow \mathbf{F}_{\mathcal{M}^{\circ}}(J).$$

**Definition 2.1** ([5]). Let  $\underline{\mathbf{T}}$  be a *dhts*-category, a *dhth* $\nabla$ *s*-category, or a *dts*-category and let J be a nonempty set of objects of  $\underline{\mathbf{T}}$  such that  $I, O \notin J$ .

Then  $\underline{\mathbf{T}}$  will be called

J-sorted dhts-theory or J-sorted Hoehnke theory,

J-sorted  $dhth \nabla s$ -theorie or

J-sorted Hoehnke theory with halfdiagonalinversions,

J-sorted dts-theory, respectively,

if  $(|\mathbf{T}|; \otimes, I, O)$  is a free  $\mathcal{G}^{\circ}$ -algebra freely generated by  $J((|\mathbf{T}|; \otimes, I)$  is a free  $\mathcal{G}$ -algebra freely generated by  $J, I \notin J$ ).

The class of all J-sorted dhts-theories (J-sorted dhth $\nabla$ s-theories, J-sorted dts-theories) will be denoted by  $|Th^{\circ}_{dht}(J)|$  ( $|Th^{\circ}_{dhth\nabla}(J)|$ ,  $|Th_{dt}(J)|$ ).

Besides the theory concept above we consider the following, more artifical, but simpler one, which arises in strict monoidal categories by replacing of the groupoid  $\mathbf{F}_{\mathcal{G}^{\circ}}(J)$  ( $\mathbf{F}_{\mathcal{G}}(J)$ ) by the monoid  $\mathbf{F}_{\mathcal{M}^{\circ}}(J)$  ( $\mathbf{F}_{\mathcal{M}}(J)$ ). So, one defines

**Definition 2.2.** Let  $\underline{\mathbf{T}}$  be a *dhts*-category, a *dhth* $\nabla s$ -category, or a *dts*-category such that the underlying symmetric monoidal category  $\mathbf{T}^{\bullet}$  is strictly monoidal, i.e. all the morphisms a, r, and l are unit-morphims only  $(A \otimes (B \otimes C) = (A \otimes B) \otimes C, A \otimes I = A = I \otimes A, a_{A,B,C} = \mathbf{1}_{A \otimes B \otimes C}, r_A = \mathbf{1}_A = l_A$  for all  $A, B, C \in |\mathbf{T}|$ .

Then  $\underline{\mathbf{T}}$  will be called

J-sorted strict dhts-theory or strict J-sorted Hoehnke theory,

J-sorted strict  $dhth\nabla s$ -theory or

strict J-sorted Hoehnke theory with halfdiagonalinversions, J-sorted strict dts-theory, respectively,

if there exists a nonempty set J in  $|\mathbf{T}|$  such that  $I, O \notin J$  and  $(|\mathbf{T}|; \otimes, I, O)$ is a free  $\mathcal{M}^{\circ}$ -algebra  $((|\mathbf{T}|; \otimes, I)$  is a free  $\mathcal{M}$ -algebra) freely generated by J. The class of all J-sorted strict dhts-theories (J-sorted strict  $dhth\nabla s$ -theories, J-sorted strict dts-theories) will be denoted by

 $|sTh^{\circ}_{dht}(J)| \quad (|sTh^{\circ}_{dhth\nabla}(J)|, |sTh_{dt}(J)|).$ 

The categories of the classes  $|Th^{\circ}_{dht}(J)|$ ,  $|Th^{\circ}_{dhth\nabla}(J)|$ ,  $|sTh^{\circ}_{dht}(J)|$ , and  $|sTh^{\circ}_{dhth\nabla}(J)|$  shortly will called *partial theories* (Hoehnke theories) and categories of  $|Th_{dt}(J)|$  and  $|sTh_{dt}(J)|$  are named total theories.

For a given set J one has on the one hand the free algebra  $\mathbf{F}_{\mathcal{G}^{\circ}}(J)$  and on the other hand the free algebra  $\mathbf{F}_{\mathcal{M}^{\circ}}(J)$  and both are algebras of the variety  $\mathcal{G}^{\circ}$  of type (2,0,0). Therefore, there arises the question about a connection between the two algebras.

**Lemma 2.3.** Let  $\mathbf{F}_{\mathcal{G}^{\circ}}(J) =: (H^{\circ}; \otimes, I, O), \mathbf{F}_{\mathcal{M}^{\circ}}(J) =: (S^{\circ}; \otimes, I, O), \mathbf{F}_{\mathcal{G}}(J)$ =:  $(H; \otimes, I)$ , and  $\mathbf{F}_{\mathcal{M}}(J) =: (S; \otimes, I)$  be the algebras defined as above. Then there is exactly one homomorphism  $W^* : \mathbf{F}_{\mathcal{G}^{\circ}}(J) \to \mathbf{F}_{\mathcal{M}^{\circ}}(J) (W^* : \mathbf{F}_{\mathcal{G}}(J) \to \mathbf{F}_{\mathcal{M}}(J))$  such that  $\iota_{H^{\circ}}W^* = \iota_{S^{\circ}} (\iota_{H}W^* = \iota_{S})$ .

The mapping  $W^*$  works as follows:

$$I \mapsto I =: IW^*, \ O \mapsto O =: OW^*, \ J \ni A \mapsto A =: AW^*,$$
$$\forall X, Y \in H \ ((X \otimes Y)W^* = XW^* \otimes YW^*).$$

**Proof.** Let  $\underline{\mathbf{T}} \in |Th^{\circ}_{dht}(J)|$ . The algebra  $\mathbf{F}_{\mathcal{M}^{\circ}}(J) = (S^{\circ}; \otimes, I, O)$ , generated by J, belongs to  $\mathcal{G}^{\circ}$ . Since  $(H^{\circ} := |\mathbf{T}|; \otimes, I, O)$  is a a free  $\mathcal{G}^{\circ}$ -algebra freely generated by J, there is exactly one homomorphism  $W^*$  such that  $\iota_{H^{\circ}}W^* = \iota_{S^{\circ}}$  and this homomorphism is surjective. The assertion about the working of the mapping becomes clear since  $\iota_{S^{\circ}}$  is the identical embedding of J into  $S^{\circ}$ .

The statement concerning groupoids and monoids without zero will be proved in the same manner.  $\hfill\blacksquare$ 

**Corollary 2.4.** The mapping  $W^* : H^\circ \to S^\circ$  has the following properties:

$$\forall X \in \langle I \rangle \ (XW^* = I),$$
  

$$\forall Y \in H^\circ \ \forall X \in \langle I \rangle \ ((Y \otimes X)W^* = (X \otimes Y)W^* = YW^*),$$
  

$$\forall X, Y, Z \in H^\circ \ ((X \otimes (Y \otimes Z))W^* = ((X \otimes Y) \otimes Z)W^*),$$
  

$$\forall X \in H^\circ \setminus \langle I \rangle^\circ \ \exists !!A_1, A_2, ..., A_n \ (XW^* = A_1 \otimes A_2 \otimes \cdots \otimes A_n).$$

**Proof.** The first assertion one proves by induction over the complexity of the elements of  $\langle I \rangle$ .

By Lemma 2.3,  $IW^* = I$ . Assume that for any  $n \in \mathbb{N}$  the condition

$$\forall Y \in \langle I \rangle^{(n)} \ (YW^* = I)$$

is valid. Then

$$\forall X \in \langle I \rangle^{(n+1)} \setminus \langle I \rangle^{(n)} \; \exists X_1, X_2 \in \langle I \rangle^{(n)}$$

$$(XW^* = (X_1 \otimes X_2)W^* = X_1W^* \otimes X_2W^* = I \otimes I = I),$$

hence  $\forall n \in \mathbb{N} \ \forall X \in \langle I \rangle^{(n)} (XW^* = I).$ 

Because of  $(X \otimes Y)W^* = XW^* \otimes YW^*$ ,  $XW^* = I$  for every  $X \in \langle I \rangle$ and I is the unit element in the monoid, the second claim becomes true.

Let X, Y, and Z be elements of  $|T| = H^{\circ}$ . Then  $XW^*, YW^*$ , and  $ZW^*$  are elements of the monoid <u>S</u><sup> $\circ$ </sup> and

$$(X \otimes (Y \otimes Z))W^* = XW^* \otimes YW^* \otimes ZW^* = ((X \otimes Y) \otimes Z)W^*.$$

Because of

$$H = \bigcup_{k \in \mathbb{N}} H^{(n)}, \quad H^{(0)} := J \cup \{I\},$$
$$H^{(n+1)} := H^{(n)} \cup \{X \otimes Y \mid X, Y \in H^{(n)}\}, \ n \in \mathbb{N},$$

one shows the existence of such a representation by induction over the complexity of X.

$$X \in H^{(0)} \setminus \langle I \rangle \Rightarrow X = A \in J \Rightarrow XW^* = AW^* = A.$$

Assuming that for any  $n \in \mathbb{N}$  each  $X \in H^{(n)} \setminus \langle I \rangle$  fulfills the assertion one investigates an arbitrary  $Y \in H^{(n+1)} \setminus H^{(n)} \setminus \langle I \rangle$ . Then there are  $X_1, X_2 \in$  $H^{(n)} \setminus \langle I \rangle$  such that  $YW^* = (X_1 \otimes X_2)W^* = X_1W^* \otimes X_2W^*$ , hence there are  $A_1, \dots, A_j, B_1, \dots B_k \in J$  such that  $YW^* = (X_1 \otimes X_2)W^* = X_1W^* \otimes$  $X_2W^* = A_1 \otimes \dots \otimes A_j \otimes B_1 \otimes \dots \otimes B_k$ .

The uniqueness of the factors of a  $\otimes$ -product which are elements of J is a consequence of the fact that  $(S^{\circ}; \otimes, I, O)$  is a free  $\mathcal{M}^{\circ}$ -algebra freely generated by J.

**Lemma 2.5.** Let be given  $H^{\circ}$  and  $S^{\circ}$  as above related to a fixed set J. Then there is a function  $W: S^{\circ} \to H^{\circ}$  such that

(W1)  $WW^* = 1_{S^\circ}$  and

$$(W2) \quad \forall A, B \in S^{\circ} \ (A \otimes B = (AW \otimes BW)W^*).$$

The function  $\Phi: H^{\circ} \to H^{\circ}$  defined by  $\Phi:=W^*W$  has the properties

(W3)  $\forall X \in \langle I \rangle \ (X\Phi = I),$ 

$$(W4) \quad \forall X \in H \setminus \langle I \rangle \exists !! A_1, ..., A_n \in J \left( X \Phi = \bigotimes_{\substack{j = 1 \\ j = 1}}^n A_j \right),$$

$$(W5) \quad \forall X_1, X_2, Y_1, Y_2 \in H^{\circ}$$

$$((X_1 \otimes X_2)\Phi = (Y_1 \otimes Y_2)\Phi \Leftrightarrow (X_1\Phi) \otimes (X_2\Phi) = (Y_1\Phi) \otimes (Y_2\Phi))$$

178

**Proof.** Ad (W1): Defining

$$OW := O, \ IW := I, \ \forall A_1, ..., A_n \in J\left((A_1 \otimes \cdots \otimes A_n)W := \underset{j=1}{\overset{n}{\otimes}} A_j\right)$$

one gets immediately  $WW^* = 1_{S^\circ}$ .

Ad (W2): The assertion is trivial for A = O or B = O. The same is true if A = I or B = I. Now let  $A, B \in S \setminus \{I\}$ . Then, by definition,

$$A \otimes B = A_1 \otimes \dots \otimes A_n \otimes B_1 \otimes \dots \otimes B_m = \begin{pmatrix} n \\ \otimes \\ k = 1 \end{pmatrix} W^* \otimes \begin{pmatrix} m \\ \otimes \\ j = 1 \end{pmatrix} W^*$$
$$= (AW)W^* \otimes (BW)W^* = (AW \otimes BW)W^*.$$

Ad (W3): The condition is valid for  $X \in \{I, O\}$ , since

$$I\Phi = IW^*W = IW = I$$
 and  $O\Phi = OW^*W = OW = O$ .

Let X be an arbitrary element of  $\langle I \rangle$ . Then

$$X\Phi = (XW^*)W = IW = I.$$

Ad (W4): For all  $X \in H \setminus \langle I \rangle$  one has

$$X\Phi = (XW^*)W = (A_1 \otimes \cdots \otimes A_n)W = \bigotimes_{\substack{j=1\\j=1}}^n A_j$$

and, by the properties of a free algebra,

$$\bigotimes_{\substack{j=1}}^{n} A_j = \bigotimes_{\substack{k=1}}^{m} A'_k \Rightarrow n = m \land A_j = A'_j \text{ for all } j \in \{1, ..., n\}.$$

Ad (W5):

 $(X_1 \otimes X_2)\Phi = (Y_1 \otimes Y_2)\Phi \Leftrightarrow (X_1 \otimes X_2)W^*W = (Y_1 \otimes Y_2)W^*W$ 

$$\Leftrightarrow (X_1 \otimes X_2) W^* = (Y_1 \otimes Y_2) W^*$$

$$\Leftrightarrow X_1 W^* \otimes X_2 W^* = Y_1 W^* \otimes Y_2 W^*$$
  
$$\Leftrightarrow X_1 W^* = Y_1 W^* \wedge X_2 W^* = Y_2 W^*$$
  
$$(\underline{S^{\circ}} \text{ is a free algebra})$$
  
$$\Leftrightarrow X_1 W^* W = Y_1 W^* W \wedge X_2 W^* W = Y_2 W^* W$$
  
$$\Leftrightarrow X_1 \Phi = Y_1 \Phi \wedge X_2 \Phi = Y_2 \Phi$$
  
$$\Leftrightarrow X_1 \Phi \otimes X_2 \Phi = Y_1 \Phi \otimes Y_2 \Phi (\underline{H^{\circ}} \text{ is a free algebra}).$$

Observe that the function  $\Phi : H^{\circ} \to H^{\circ}$  maps O onto O, all elements of  $\langle I \rangle \subseteq H$  onto I, and all elements  $X \in H \setminus \langle I \rangle$  onto an  $\otimes$ -product of elements of J in canonical brackets consisting exactly of the factors of X which are different from I in the same order.

**Lemma 2.6.** Let be  $\underline{H^{\circ}}$ ,  $\underline{S^{\circ}}$ ,  $\Phi: H^{\circ} \to H^{\circ}$  as above. Then

$$\forall X, Y, Z \in H^{\circ} ((X \otimes (Y \otimes Z))\Phi = ((X \otimes Y) \otimes Z)\Phi),$$
  
$$\forall n \in \mathbb{N} \setminus \{0\} \ \forall A_1, \dots, A_n \in J \left( \begin{pmatrix} n \\ \otimes \\ j=1 \end{pmatrix} \Phi = \begin{pmatrix} n \\ \otimes \\ j=1 \end{pmatrix} A_j \right),$$
  
$$\forall X \in \langle I \rangle \ \forall Y \in H^{\circ} ((Y \otimes X)\Phi = (X \otimes Y)\Phi = Y\Phi).$$

## Proof.

 $(X \otimes (Y \otimes Z))\Phi = (X \otimes (Y \otimes Z))W^*W = (XW^* \otimes (YW^* \otimes ZW^*))W$ 

$$= ((XW^* \otimes YW^*) \otimes ZW^*)W = ((X \otimes Y) \otimes Z)\Phi.$$
$$\begin{pmatrix} n\\ \otimes\\ j=1 \end{pmatrix} \Phi = \begin{pmatrix} n\\ \otimes\\ j=1 \end{pmatrix} W^*W = \begin{pmatrix} n\\ \otimes\\ j=1 \end{pmatrix} W = \begin{pmatrix} n\\ \otimes\\ j=1 \end{pmatrix} A_j.$$

 $(Y \otimes X)\Phi = (Y \otimes X)W^*W = (YW^* \otimes XW^*)W = (YW^* \otimes I)W = YW^*W = Y\Phi,$ 

 $(X \otimes Y)\Phi = (X \otimes Y)W^*W = (XW^* \otimes YW^*)W = (I \otimes YW^*)W = YW^*W = Y\Phi.$ 

**Corollary 2.7.** Let  $\underline{\mathbf{T}}$  be any *J*-sorted Hoehnke theory and let  $\Phi : H^{\circ} \to H^{\circ}$ be defined as above. Then there is exactly one central morphism  $c_X := c_{X,X\Phi}$ in  $\mathbf{C}_{\mathbf{T}}$  for every  $X \in |\mathbf{T}|$ . The same statement is true, if  $\underline{\mathbf{T}}$  is a *J*-sorted dts-theory and  $\Phi : H \to H$ .

Moreover,  $\forall X, Y \in |\mathbf{T}| \ (X\Phi = Y\Phi \Rightarrow \exists c_{X,Y} \in \mathbf{C}_{\mathbf{T}}[X,Y]).$ 

**Proof.** The proof is organized by induction over the complexity of the objects  $X \in |\mathbf{T}| = H^{\circ}$ .

Because of  $X\Phi = X$  for every  $X \in J \cup \{I, O\} = H^{\circ(0)}, 1_X \in \mathbf{C}_{\mathbf{T}}[X, X\Phi]$ , hence the start of induction is verified.

Let  $c_X$  exist in  $\mathbf{C}_{\mathbf{T}}$  for any  $X \in H^{\circ(n)}$  and an arbitrary  $n \in \mathbb{N}$ . Let be  $X \in H^{\circ(n+1)} \setminus H^{\circ(n)}$ . Then there are  $X_1, X_2 \in H^{\circ(n)}$  such that  $X = X_1 \otimes X_2$  and  $c_{X_1} \in \mathbf{C}_{\mathbf{T}}[X_1, X_1 \Phi], c_{X_2} \in \mathbf{C}_{\mathbf{T}}[X_2, X_2 \Phi]$ , hence  $(c_{X_1} \otimes c_{X_2}) \in \mathbf{C}_{\mathbf{T}}[X, X_1 \Phi \otimes X_2 \Phi]$ .

Since  $X_1 \Phi = \bigotimes_{\substack{j=1 \\ j=1}}^n A_j$  and  $X_2 \Phi = \bigotimes_{\substack{j=n+1 \\ j=n+1}}^{n+m} A_j$  for suitable  $A_j \in J$ ,  $1 \leq j \leq n+m$ , there is the canonical associativity isomorphism

$$a^{(n,m)}\langle X_1\Phi, X_2\Phi\rangle: X_1\Phi\otimes X_2\Phi \to (X_1\otimes X_2)\Phi = X\Phi \text{ in } \mathbf{C}_{\mathbf{T}},$$

therefore,

$$c_X := (c_{X_1} \otimes c_{X_2}) a^{(n,m)} \langle X_1 \Phi, X_2 \Phi \rangle \in \mathbf{C}_{\mathbf{T}}[X, X \Phi].$$

So, the existence of a central morphism  $c_X$  for every  $X \in |\mathbf{T}| = H^\circ$  is proved. Moreover,  $X\Phi = Y\Phi$  is sufficient for  $c_{X,Y} := c_X(c_Y)^{-1} \in \mathbf{C}_{\mathbf{T}}[X,Y]$ .

The uniqueness is again a consequence of the coherence principle. The claim concerning the dts-case will be proved similarly.

The function  $\Phi$  defined as above induces in a natural manner a functor from a *J*-sorted theory  $\underline{\mathbf{T}}$  into itself with additional interesting properties. This properties concern the monoidal structur of  $\underline{\mathbf{T}}$ .

### 3. Structure preserving functors

Considering different symmetric monoidal categories  $K^{\bullet}$  and  $K'^{\bullet}$  one has to distinguish between the operations and the basic morphisms of  $K^{\bullet}$  and those of  $K'^{\bullet}$ , respectively, for instance between  $r_A^{(K)}$  and  $r_X^{(K')}$ . If there is not danger of confusion, the upper index will be omitted.

**Definition 3.1** ([14]). A functor  $F : K^{\bullet} \to K'^{\bullet}$  between symmetric monoidal categories  $K^{\bullet}$  and  $K'^{\bullet}$  is called *monoidal*, iff there exists in K' a family of morphisms

$$\widetilde{F} = (\widetilde{F}\langle X, Y \rangle : XF \otimes YF \to (X \otimes Y)F \mid X, Y \in |K|)$$

and a morphism

 $i_F: I' \to IF,$ 

such that the following conditions are fulfilled:

- $(F \sim) \quad \forall X, Y \in |K| \ (\widetilde{F} \langle X, Y \rangle \in Iso_{K'}),$
- (FI)  $i_F \in Iso_{K'}$ ,

(FA) 
$$\forall X, Y, Z \in |K| \left( \left( 1_{XF}^{(K')} \otimes \widetilde{F} \langle Y, Z \rangle \right) \widetilde{F} \langle X, Y \otimes Z \rangle \left( a_{X,Y,Z}^{(K)} F \right) \right)$$
  
=  $a_{XF,YF,ZF}^{(K')} \left( \widetilde{F} \langle X, Y \rangle \otimes 1_{ZF}^{(K')} \right) \widetilde{F} \langle X \otimes Y, Z \rangle$ ,

(FR) 
$$\forall X \in |K| \left( \widetilde{F} \langle X, I \rangle \left( r_X^{(K)} F \right) = \left( 1_{XF}^{(K')} \otimes i_F^{-1} \right) r_{XF}^{(K')} \right),$$

(FS) 
$$\forall X, Y \in |K| \left( \widetilde{F} \langle X, Y \rangle \left( s_{X,Y}^{(K)} F \right) = s_{XF,YF}^{(K')} \widetilde{F} \langle Y, X \rangle \right),$$

(FM) 
$$\forall \varphi : X \to Y, \psi : U \to V \in K ((\varphi F \otimes \psi F)\widetilde{F} \langle Y, V \rangle =$$

$$=\widetilde{F}\langle X,U\rangle(\varphi\otimes\psi)F).$$

A monoidal functor  $F: K^{\bullet} \to K'^{\bullet}$  is called *strictly monoidal*, iff all morphisms of the family  $\widetilde{F}$  as well as the morphism  $i_F$  are unit morphisms only.

**Corollary 3.2** ([14]). Let  $F : K^{\bullet} \to K'^{\bullet}$  be a monoidal functor between symmetric monoidal categories with reference to  $\widetilde{F}, i_F$ . Then

(FL) 
$$\forall X \in |K| \left( \widetilde{F} \langle I, X \rangle \left( l_X^{(K)} F \right) = \left( i_F^{-1} \otimes 1_{XF}^{(K')} \right) l_{XF}^{(K')} \right).$$

In applications to theories of algebraic structures, functors  $F : \underline{K} \to \underline{K'}$  between dhts-categories,  $dhth \nabla s$ -categories, or dts-categories are of interest which preserve in addition to the functor properties the dhts-,  $dhth \nabla s$ -, and the dts-structure, respectively, with respect to a family  $\widetilde{F} = (\widetilde{F} \langle X, Y \rangle \mid X, Y \in |K|)$  of isomorphisms  $\widetilde{F} \langle X, Y \rangle : XF \otimes YF \to (X \otimes Y)F$  in  $\underline{K'}$  and an isomorphism  $i_F$  between I' and IF, where I and I' are the distinguished objects in  $\underline{K}$  and  $\underline{K'}$ , respectively, ([5], [12], [14]). All symmetric monoidal categories with additional structures mentioned above are ds-categories. Of importance is the fact that a monoidal functor between at least ds-categories, which respects the diagonal morphisms except for isomorphisms, respects the canonical partial order relation and the distinguished terminal morphisms and the distinguished diagonal inversions, respectively, except for isomorphisms.

**Definition 3.3** ([14]). A monoidal functor  $F : \underline{K} \to \underline{K'}$  between *ds*-categories <u>K</u> and <u>K'</u> is called *d-monoidal*, if in addition the condition

(FD) 
$$\forall A \in |K| \left( d_A^{(K)} F = d_{AF}^{(K')} \widetilde{F} \langle A, A \rangle \right)$$

holds with reference to the corresponding isomorphisms  $\tilde{F}$  and  $i_F$ . A strictly monoidal functor F fulfilling the condition (FD) is called *strictly d-monoidal*.

Obviously, the identical functor  $\mathbf{1}_K$  of  $K^{\bullet}$  forms a strictly monoidal functor with respect to

$$\widetilde{\mathbf{1}_K} = (\widetilde{\mathbf{1}_K} \langle X, Y \rangle = \mathbf{1}_{XF \otimes YF} \mid X, Y \in |K|), \, i_{\mathbf{1}_K} = \mathbf{1}_I$$

and the constant functor  $E: K^{\bullet} \to K'^{\bullet} (X \mapsto I', \varphi \mapsto 1'_{I'})$  with reference to

$$\widetilde{E} = (\widetilde{E}\langle X, Y \rangle = 1'_{I'} \mid X, Y \in |K|), \, i_E = 1'_{I'},$$

too, where  $K^{\bullet}$  and  $K'^{\bullet}$  are arbitrary symmetric monoidal categories.

Both functors are even *d*-monoidal functors, if  $\underline{K} = (K^{\bullet}; d)$  and  $\underline{K'} = (K'^{\bullet}; d')$  are *ds*-categories.

Moreover: Each *d*-monoidal functor  $F : \underline{K} \to \underline{K'}$  between *dhts*-categories possesses the following properties with respect to the corresponding  $\widetilde{F}$ ,  $i_F$  ([11], [14]):

 $\begin{array}{ll} (\mathrm{FI}^{*}) & t_{IF}^{(K')} = i_{F}^{-1}, \\ (\mathrm{Fmon}) \ \forall \varphi, \ \psi \in K \ (\varphi \leq \psi \Rightarrow \varphi F \leq \psi F), \\ (\mathrm{FT}) & \forall X \in |K| \ \left( t_{X}^{(K)} F \, t_{IF}^{(K')} = t_{XF}^{(K')} \right), \\ (\mathrm{FP}) & \forall X, Y \in |K| \ \left( p^{(K)} {}_{j}^{X,Y} F = (\widetilde{F} \langle X, Y \rangle)^{-1} p^{(K')} {}_{j}^{XF,YF} ; \ j = 1, 2 \right), \\ (\mathrm{FE}) & \forall A \in |K| \ \left( e \leq 1_{A}^{(K)} \Rightarrow eF \leq 1_{AF}^{(K')} \right), \\ (\mathrm{FE}\alpha) & \forall X, Y \in |K| \ \forall \varphi \in K[X,Y] \ \left( (\alpha^{(K)}(\varphi))F = \alpha^{(K')}(\varphi F) \right). \\ \mathrm{Let} \ \underline{K}, \ \underline{K'} \ \mathrm{be} \ dhth \nabla s\text{-categories and let} \ F \ : \ \underline{K} \ \to \ \underline{K'} \ \mathrm{be} \ a \ d\text{-monoidal functor. Then, in addition to the the properties above, the following holds} \\ ([14]): \end{array}$ 

(Finf) 
$$\forall X, Y \in |K| \ \forall \varphi, \psi \in K[X, Y] \left( \left( d_X^{(K)}(\varphi \otimes \psi) \nabla_Y^{(K)} \right) \right)$$
  
$$F = d_{XF}^{(K')}(\varphi F \otimes \psi F) \nabla_{YF}^{(K')} \right),$$

(Finj)  $\forall X, Y \in |K| \; \forall \varphi \in K[X, Y] \; \left( (\varphi \otimes \varphi) \nabla_Y^{(K)} = \nabla_X^{(K)} \varphi \right)$  $\Rightarrow (\varphi F \otimes \varphi F) \nabla_{YF}^{(K')} = \nabla_{XF}^{(K')} (\varphi F) ,$ 

(F
$$\nabla$$
)  $\forall X \in |K| \left( \nabla_{XF}^{(K')} = \widetilde{F} \langle X, X \rangle \nabla_X^{(K)} F \right),$ 

$$\begin{split} (\mathbf{F}\nabla_1) \quad \forall X, Y, U \in |K| \; \forall \varphi \in K[X, U] \; \forall \psi \in K[Y, U] \; \left( ((\varphi \otimes \psi) \nabla_U^{(K)}) \right) F \\ &= \widetilde{F} \langle X, Y \rangle \left( (\varphi \otimes \psi) F ) \nabla_{UF}^{(K')} \right), \\ (\mathbf{F}\nabla_2) \quad \forall X, Y \in |K| \; \forall \varphi. \psi \in K[X, Y] \; \left( (\varphi \otimes \psi) \nabla_Y^{(K)} = \nabla_X^{(K)} \varphi \right) \\ \end{split}$$

$$\Rightarrow (\varphi F \otimes \psi F) \nabla_{YF}^{(K')} = \nabla_{XF}^{(K')} (\varphi F) \Big) \,.$$

Obviously, property (Finj) is a special case of  $(F\nabla_2)$  and it expresses once more the monotony of the functor F, namely  $\varphi \leq \psi \Rightarrow \varphi F \leq \psi F$ .

The so-called zero functor  $Z: \underline{K} \to \underline{K'}$  is defined by  $XZ = O^{(K')}$  for all objects  $X \in |K|$  and  $\varphi Z = 1_{O^{(K')}}^{(K')}$  for all morphisms  $\varphi \in K$ . Trivially, this functor is a *d*-monoidal one.

184

**Proposition 3.4** ([14]). Let  $F : \underline{K} \to \underline{K}'$  be a d-monoidal functor between Hoehnke categories such that  $F \neq Z$ . Then one obtains:

$$\begin{aligned} \forall X \in |K| \quad \left( \widetilde{F} \langle X, O \rangle = \widetilde{F} \langle O, X \rangle = \mathbf{1}_{O^{(K')}}^{(K')} \right), \\ \forall X, Y \in |K| \quad \left( o_{X,Y}^{(K)} F = o_{XF,YF}^{(K')} \right), \\ o^{(K)} F = t_{IF}^{(K')} o^{(K')} \quad \left( \Leftrightarrow o^{(K')} = i_F(o^{(K)}F) \right). \end{aligned}$$

By the structure of any Hoehnke categories  $\underline{K}$  and  $\underline{K'}$ , each functor  $F : \underline{K} \to \underline{K'}$  determines with respect to every pair of objects  $X, Y \in |K|$  the morphism

$$F^*\langle X,Y\rangle := d_{(X\otimes Y)F}^{(K')} \left( p^{(K)} {}^{X,Y}_1 F \otimes p^{(K)} {}^{X,Y}_2 F \right) \in K'[(X\otimes Y)F, XF \otimes YF]$$

in the category K'.

**Proposition 3.5** ([5]). In the case that  $F : \underline{K} \to \underline{K'}$  is a d-monoidal functor with reference to  $\widetilde{F}$  and  $i_F$ , the morphisms  $\widetilde{F}\langle X, Y \rangle$  are uniquely determined by

$$(\widetilde{F}\langle X,Y\rangle)^{-1} = d_{(X\otimes Y)F}^{(K')} \left( p^{(K)} {}_1^{X,Y} F \otimes p^{(K)} {}_2^{X,Y} F \right) = F^* \langle X,Y\rangle.$$

Moreover:

**Theorem 3.6** ([5], [14]). Assume that  $F : \underline{K} \to \underline{K}'$  is any functor from a dhts-category  $\underline{K}$  into a dhts-category  $\underline{K}'$  satisfying the following conditions:

(F\*) 
$$\forall X, Y \in |K| (F^* \langle X, Y \rangle \in Iso_{K'}),$$

(FI\*) 
$$t^{(K')}_{IF} \in Iso_{K'},$$

(FM<sup>\*</sup>) 
$$\forall \varphi, \psi \in K \ ((\varphi \otimes \psi)FF^*\langle X', Y' \rangle = F^*\langle X, Y \rangle (\varphi F \otimes \psi F)).$$

Then  $F: \underline{K} \to \underline{K}'$  is d-monoidal with reference to the morphisms

$$\widetilde{F}\langle X,Y\rangle := (F^*\langle X,Y\rangle)^{-1}, \quad i_F := t^{(K')}{}^{-1}_{IF}.$$

The statements in 3.5 and 3.6 allow us to speak about *d*-monoidal functors between Hoehnke categories as such.

Hoehnke has shown in [5] that the composition of dht-symmetric functors  $F: \underline{K} \to \underline{K'}$  and  $G: \underline{K'} \to \underline{K''}$  between Hoehnke categories  $\underline{K}, \underline{K'}, \underline{K''},$  respectively, yields a *dht*-symmetric functor  $FG : \underline{K} \to \underline{K''}$ . The same is true for *d*-monoidal functors between Hoehnke categories. More precisely:

**Proposition 3.7.** Let  $F : \underline{K} \to \underline{K'}$  and  $G : \underline{K'} \to \underline{K''}$  be d-monoidal functors between Hoehnke categories  $\underline{K}, \underline{K'}, \underline{K''}$ . Then the functor  $FG : \underline{K} \to \underline{K''}$  is a d-monoidal functor too.

 $\boldsymbol{Proof.}$  Ad (F\*): Since every functor maps isomorphisms to isomorphism and

$$\begin{split} (FG)^*\langle X,Y\rangle &= d_{(X\otimes Y)(FG)}^{(K')X,Y}(FG) \otimes p_2^{(K)X,Y}(FG) \Big) \\ &= d_{((X\otimes Y)F)G}^{(K'')}\left( \left( p_1^{(K)X,Y}F \right) G \otimes \left( p_2^{(K)X,Y}F \right) G \right) \\ &= \left( d_{(X\otimes Y)F}^{(K')} \right) GG^*\langle (X\otimes Y)F, (X\otimes Y)F \rangle \left( \left( p_1^{(K)X,Y}F \right) G \otimes \left( p_2^{(K)X,Y}F \right) G \right) \\ &= \left( d_{(X\otimes Y)F}^{(K')} \right) G \left( p_1^{(K)X,Y}F \otimes \left( p_2^{(K)X,Y}F \right) GG^*\langle XF,YF \rangle \right) \\ &= \left( d_{(X\otimes Y)F}^{(K')} \left( p_1^{(K)X,Y}F \otimes p_2^{(K)X,Y}F \right) GG^*\langle XF,YF \rangle \\ &= \left( d_{(X\otimes Y)F}^{(K')} \left( p_1^{(K)X,Y}F \otimes p_2^{(K)X,Y}F \right) GG^*\langle XF,YF \rangle \right) \\ &= (F^*\langle X,Y \rangle \right) \right) GG^*\langle XF,YF \rangle \\ &\text{ one obtains } (FG)^*\langle X,Y \rangle \in Iso_{K''}. \end{split}$$
Ad (FI\*):  $t_{I(FG)}^{(K'')} = t_{IF)G}^{(K'')} = \left( t_{IF}^{(K')} \right) Gt_{I(K')G}^{(K'')} \in Iso_{K''} \\ &\text{ since } t_{I(K')G}^{(K'')} \in Iso_{K''} \text{ and } t_{IF}^{(K')} \in Iso_{K'}. \end{cases}$ 
Ad (FM\*):  $(\varphi \otimes \psi) (FG) (FG)^*\langle U,V \rangle = ((\varphi \otimes \psi)F)G(F^*\langle U,V \rangle) GG^*\langle UF,VF \rangle \\ &= (F^*\langle X,Y \rangle) GG^*\langle VF,VF \rangle \\ &= (F^*\langle X,Y \rangle) GG^*\langle VF,VF \rangle \\ &= (F^*\langle X,Y \rangle) GG^*\langle XF,YF \rangle ((\varphi F)G \otimes (\psi F)G) \\ &= (FG)^*\langle X,Y \rangle (\varphi (FG) \otimes \psi (FG)). \end{split}$ 

**Lemma 3.8.** Let  $F : \underline{K} \to \underline{K}'$  be a functor from a Hoehnke category  $\underline{K}$  into a Hoehnke category  $\underline{K'}$  such that the conditions

(sFD) 
$$\forall X \in |K| \left( d_X^{(K)} F = d_{XF}^{(K')} \right),$$

(sFT) 
$$\forall X \in |K| \left( t_X^{(K)} F = t_{XF}^{(K')} \right), and$$

(sFM) 
$$\forall \varphi, \psi \in K \ ((\varphi \otimes \psi)F = (\varphi F \otimes \psi F))$$

are fulfilled.

Then F has the properties  $\forall X, Y \in |K|(F^*\langle X, Y \rangle \in Un_{K'}) \text{ and }$ (sF\*) $(\mathbf{sFI}^*) \qquad t^{(K')}{}_{IF} \in Un_{K'},$ 

i.e.  $F: \underline{K} \to \underline{K}'$  is a strictly d-monoidal functor.

**Proof.** Assuming (sFT) one has  $1_{IF}^{(K')} = 1_I^{(K)}F = t_I^{(K)}F = t_{IF}^{(K')}$ , hence  $IF = I^{(K')}$  and (sFI<sup>\*</sup>) is fulfilled. Moreover,

$$\forall X, Y \in |K| \left( K'[(X \otimes Y)F, (X \otimes Y)F] \ni \mathbf{1}_{X \otimes Y}^{(K)}F = \left(\mathbf{1}_X^{(K)} \otimes \mathbf{1}_Y^{(K)}\right)F$$
$$= \mathbf{1}_X^{(K)}F \otimes \mathbf{1}_Y^{(K)}F = \mathbf{1}_{XF}^{(K')} \otimes \mathbf{1}_{YF}^{(K')} = \mathbf{1}_{XF \otimes YF}^{(K')} \in K'[XF \otimes YF] \right),$$

hence

 $\forall X, Y \in |K| \ ((X \otimes Y)F = XF \otimes YF).$ 

Now let X and Y be any objects of |K|. Then

$$F^*\langle X, Y \rangle = d_{(X \otimes Y)F}^{(K')} \left( p^{(K)} {}_1^{X,Y} F \otimes p^{(K)} {}_2^{X,Y} F \right)$$
 (by definition)

$$= d_{X\otimes Y}^{(K)} F\left(p^{(K)}{}_1^{X,Y} F \otimes p^{(K)}{}_2^{X,Y} F\right)$$
((sFD))

$$= \left( d_{X\otimes Y}^{(K)} \left( p^{(K)} {}_{1}^{X,Y} \otimes p^{(K)} {}_{2}^{X,Y} \right) \right) F \tag{(sFM)}$$

$$= \left(1_{X\otimes Y}^{(K)}\right)F = 1_{XF\otimes YF}^{(K')} \in Un_{K'}.$$

**Proposition 3.9.** If functors  $F : \underline{K} \to \underline{K'}$  and  $G : \underline{K'} \to \underline{K''}$  between Hoehnke categories  $\underline{K}, \underline{K'}, \underline{K''}$  fulfil the conditions (sFD), (sFT), and (sFM), then the functor  $FG : \underline{K} \to \underline{K''}$  satisfies the same conditions.

**Corollary 3.10.** If any functor  $F : \underline{K} \to \underline{K}'$  as above fulfils (sFT) and (sFM), then F is a d-monoidal functor satisfying (sFI<sup>\*</sup>).

**Proof.** It remains to prove the validity of (F\*).

$$\begin{split} F^* \langle X, Y \rangle &= d_{(X \otimes Y)F}^{(K')} \left( p^{(K)} {}_{1}^{X,Y} F \otimes p^{(K)} {}_{2}^{X,Y} F \right) \\ &= d_{XF \otimes YF}^{(K')} \left( \left( \left( 1_X^{(K)} \otimes t_Y^{(K)} \right) r_X^{(K)} \right) F \otimes \left( \left( t_X^{(K)} \otimes 1_Y^{(K)} \right) l_X^{(K)} \right) F \right) \\ &= d_{XF \otimes YF}^{(K')} \left( \left( 1_X^{(K)} F \otimes t_Y^{(K)} F \right) \otimes \left( t_X^{(K)} F \otimes 1_Y^{(K)} F \right) \right) \left( r_X^{(K)} \right) F \otimes l_X^{(K)} F \right) \\ &= \left( d_{XF}^{(K')} \left( \left( 1_X^{(K)} \otimes t_X^{(K)} \right) F \otimes d_{YF}^{(K')} \left( t_Y^{(K)} \otimes 1_Y^{(K)} \right) F \right) b_{XF,IF,IF,YF}^{(K')} \\ &\qquad \left( r_X^{(K)} F \otimes l_X^{(K)} F \right) \\ &= \left( \left( r_{XF}^{(K')} \right)^{-1} \otimes \left( l_{YF}^{(K')} \right)^{-1} \right) 1_{(XF \otimes IF) \otimes (IF \otimes YF)}^{(K')} \left( r_X^{(K)} F \otimes l_X^{(K)} F \right) \\ &= \left( r_{XF}^{(K')} \right)^{-1} r_X^{(K)} F \otimes \left( l_{YF}^{(K')} \right)^{-1} l_X^{(K)} F \in Iso_{K'}. \end{split}$$

#### 4. Functors between theories, theory morphisms

The following considerations are confined to dhts-theories, but it is easily to see that all results are transferable to  $dhth\nabla s$ -theories and dts-theories, respectively.

**Lemma 4.1.** Let F be a d-monoidal functor from a Hoehnke theory  $\underline{\mathbf{T}}$  into a Hoehnke theory  $\underline{\mathbf{T}}'$  such that all morphisms  $\widetilde{F}\langle A, B \rangle$  and  $i_F$  are central morphisms only. Then F maps every central morphism  $c \in \mathbf{C}_{\mathbf{T}}$  to a central morphism  $cF \in \mathbf{C}_{\mathbf{T}'}$ .

**Proof.** Every functor maps unit morphisms to unit morphism. Any d-monoidal functor fulfils the conditions (FA), (FR), and (FL) and since  $i_F$ 

and every  $\widetilde{F}\langle A, B \rangle$  are central morphisms, all images  $a_{A,B,C}F$ ,  $r_AF$ ,  $l_AF$ ,  $(a_{A,B,C}^{-1})F$ ,  $(r_A^{-1})F$ ,  $(l_A^{-1})F$  are central morphisms in  $\underline{\mathbf{T}'}$ .

Therefore, the images of all morphisms of  $\mathbf{C}_{\mathbf{T}}^{(0)}$  are central morphisms in  $\mathbf{T}'$ .

Assuming that all morphisms of  $\mathbf{C}_{\mathbf{T}}^{(n)}$  for any  $n \in \mathbb{N}$  are mapped by F to central morphisms in  $\mathbf{T}'$  one has

$$\forall \varphi \in \mathbf{C}_{\mathbf{T}}^{(n+1)} \setminus \mathbf{C}_{\mathbf{T}}^{(n)} \exists \varphi_1, \varphi_2 \in \mathbf{C}_{\mathbf{T}}^{(n)} \ (\varphi F = (\varphi_1 \varphi_2)F = (\varphi_1 F)(\varphi_2 F) \in \mathbf{C}_{\mathbf{T}'} \lor \ \varphi F = (\varphi_1 \otimes \varphi_2)F = (\widetilde{F} \langle \operatorname{dom} \varphi_1, \operatorname{dom} \varphi_2 \rangle)^{-1} (\varphi_1 F \otimes \varphi_2 F) \widetilde{F} \langle \operatorname{cod} \varphi_1, \operatorname{cod} \varphi_2 \rangle) \in \mathbf{C}_{\mathbf{T}'}$$

hence  $\forall \varphi \in \mathbf{C}_{\mathbf{T}} \ (\varphi F \in \mathbf{C}_{\mathbf{T}'}).$ 

Observe that especially strict d-monoidal functors map central morphisms to central morphisms.

**Theorem 4.2.** Let  $\underline{\mathbf{T}}$  be a *J*-sorted Hoehnke theory. Then the function  $\Phi$  as defined in 2.5 induces a *d*-monoidal functor  $\Phi : \underline{\mathbf{T}} \to \underline{\mathbf{T}}$  relative to  $\widetilde{\Phi}$  and  $i_{\Phi}$  such that

$$\forall X, Y \in |\mathbf{T}| \ (\Phi\langle X, Y \rangle := (c_X^{-1} \otimes c_Y^{-1}) c_{X \otimes Y}) \quad and \quad i_\Phi := 1_I.$$

**Proof.** The object mapping is given by the function  $\Phi : |\mathbf{T}| \to |\mathbf{T}|$ , namely

where  $A_1, ..., A_n \in J$  are exactly the factors appearing in X in this sequence independently of brackets.

Using the uniquely determined central morphisms  $c_X \in \mathbf{C}_{\mathbf{T}}[X, X\Phi]$ define a morphism mapping by

$$\mathbf{T}[X,Y] \ni \varphi \mapsto \varphi \Phi := c_X^{-1} \varphi c_Y \in \mathbf{T}[X\Phi, Y\Phi].$$

Then the functor conditions are fulfilled, since

 $\forall \varphi \in \mathbf{T} \ ((\operatorname{dom}\varphi)\Phi = \operatorname{dom}(\varphi\Phi), (\operatorname{cod}\varphi)\Phi = \operatorname{cod}(\varphi\Phi)) \text{ by definition,}$  $\forall X \in |\mathbf{T}| \ (\mathbf{1}_X\Phi = c_X^{-1}\mathbf{1}_Xc_X = \mathbf{1}_{X\Phi},$  $\forall X, Y, P \in |\mathbf{T}| \ \forall \varphi \in \mathbf{T}[X, Y] \ \forall \psi \in \mathbf{T}[Y, P]$  $((\varphi\psi)\Phi = c_X^{-1}\varphi\psi c_P = c_X^{-1}\varphi c_Y c_Y^{-1}\psi c_P = (\varphi\Phi)(\psi\Phi)).$ 

By Theorem 3.6, it is sufficient to prove the conditions (F\*), (FI\*), and (FM\*) for the functor  $\Phi$ .

Ad (F\*): Let X and Y be arbitrary objects of  $\mathbf{T}$ . Then, by definition,

$$\begin{split} \Phi^* \langle X, Y \rangle &= d_{(X \otimes Y)\Phi}(p_1^{X,Y} \Phi \otimes p_1^{X,Y} \Phi) = d_{(X \otimes Y)\Phi}(c_{X,Y}^{-1} p_1^{X,Y} c_X \otimes c_{X,Y}^{-1} p_2^{X,Y} c_Y) \\ &= c_{X,Y}^{-1} d_{(X \otimes Y)}(p_1^{X,Y} \otimes p_2^{X,Y})(c_X \otimes c_Y) = c_{X,Y}^{-1}(c_X \otimes c_Y) \in \mathbf{C}_{\mathbf{T}} \subseteq Iso_{\mathbf{T}}. \end{split}$$

Ad (FI\*): Because of  $I\Phi = I$ ,  $t_{I\Phi} = t_I = 1_I \in Iso_{\mathbf{T}}$ .

Ad (FM<sup>\*</sup>): For all objects  $X_1, X_2, Y_1, Y_2$  and all morphisms  $\varphi_i \in \mathbf{T}[X_i, Y_i], i \in \{1, 2\}$ , the equation

$$\begin{aligned} (\varphi_1 \otimes \varphi_2) \Phi^* \langle Y_1, Y_2 \rangle &= c_{X_1 \otimes X_2}^{-1} (\varphi_1 \otimes \varphi_2) c_{Y_1 \otimes Y_2} c_{Y_1 \otimes Y_2}^{-1} (c_{Y_1} \otimes c_{Y_2}) \\ &= c_{X_1 \otimes X_2}^{-1} (\varphi_1 c_{Y_1} \otimes \varphi_2 c_{Y_2}) \\ &= c_{X_1 \otimes X_2}^{-1} (c_{X_1} \otimes c_{X_2}) \left( c_{X_1}^{-1} \varphi_1 c_{Y_1} \otimes c_{X_2}^{-1} \varphi_2 c_{Y_2} \right) \\ &= \Phi^* \langle X_1, X_2 \rangle (\varphi_1 \Phi \otimes \varphi_2 \Phi) \end{aligned}$$

is valid. Therefore,  $(\Phi, \widetilde{\Phi}, i_{\Phi})$  with  $\widetilde{\Phi} := (\Phi^*)^{-1}$  and  $i_{\Phi} := 1_I$  is a *d*-monoidal functor from  $\underline{\mathbf{T}}$  into  $\underline{\mathbf{T}}$ .

The functor  $\Phi$  shall be called the canonical functor of  $\underline{\mathbf{T}}$ .

**Corollary 4.3.** Let  $\underline{\mathbf{T}}$  be a *J*-sorted dhts-theory. Then the canonical functor of  $\underline{\mathbf{T}}$  possesses the following properties:

- (1)  $\forall X \in |\mathbf{T}| ((X\Phi)\Phi = X\Phi),$
- (2)  $\forall X \in |\mathbf{T}| \ ((t_X)\Phi = t_X\Phi),$
- (3)  $\forall X \in |\mathbf{T}| \ ((r_X)\Phi = \mathbf{1}_{X\Phi} = (l_X)\Phi),$
- (4)  $\forall X \in |\mathbf{T}| \ (d_X \Phi \Phi^* \langle X, X \rangle = d_X \Phi),$
- (5)  $\forall X \in |\mathbf{T}| \ (\nabla_X \Phi = \Phi^* \langle X, X \rangle \nabla_X \Phi),$
- (6)  $\forall X \in |\mathbf{T}| \ (\Phi^* \langle X, I \rangle = (r_{X\Phi})^{-1}, \Phi^* \langle I, X \rangle = (l_{X\Phi})^{-1}),$
- (7)  $\forall X \in |\mathbf{T}| \ ((c_X)\Phi = \mathbf{1}_{X\Phi} = (\mathbf{1}_X)\Phi = c_{X\Phi}),$
- (8)  $\forall \varphi \in \mathbf{T} \Big( \operatorname{dom} \varphi = \bigotimes_{j=1}^{n} A_j \wedge \operatorname{cod} \varphi = \bigotimes_{k=1}^{m} B_k \wedge A_j, B_k \in J \Rightarrow \varphi \Phi = \varphi \Big),$
- (9)  $\forall \varphi \in \mathbf{T} ((\varphi \Phi) \Phi = \varphi \Phi).$

**Proof.** Ad (1):  $(X\Phi)\Phi = \begin{pmatrix} n \\ \otimes \\ j=1 \end{pmatrix} \Phi = \begin{pmatrix} n \\ \otimes \\ j=1 \end{pmatrix} A_j = X\Phi.$ Ad (2):  $(t_X)\Phi = c_X^{-1}t_Xc_I = t_X\Phi$  since  $c_X \in Iso_T \land c_I = 1_I.$ 

Ad (3): The assertion is a special case of (7).

Ad (4): 
$$d_X \Phi = c_X^{-1} d_X c_{X \otimes X} = d_{X \Phi} \left( c_X^{-1} \otimes c_X^{-1} \right) c_{X \otimes X} = d_X \Phi (\Phi^* \langle X, X \rangle)^{-1}$$
  
$$\Rightarrow d_X \Phi \Phi^* \langle X, X \rangle = d_X \Phi).$$

Ad (5): 
$$\nabla_X \Phi = (c_{X \otimes X})^{-1} \nabla_X c_X = (c_{X \otimes X})^{-1} (c_X \otimes c_X) \nabla_X \Phi = \Phi^* \langle X, X \rangle \nabla_X \Phi$$

Ad (6):  $\Phi^* \langle X, I \rangle \in \mathbf{C}_T[X\Phi, X\Phi \otimes I]$  and  $r_{X\Phi} \in \mathbf{C}_T[X\Phi \otimes I, X\Phi]$ ,

hence  $\Phi^* \langle X, I \rangle = (r_{X\Phi})^{-1}$  by the coherence principle.

Ad (7):  $c_X \in \mathbf{C}_T[X, X\Phi] \Rightarrow (c_X)\Phi \in \mathbf{C}_T[X\Phi, (X\Phi)\Phi] = \mathbf{C}_T[X\Phi, X\Phi] \ni \mathbf{1}_{X\Phi}$ 

$$\Rightarrow (c_X)\Phi = 1_X\Phi = 1_X\Phi.$$

$$c_{X\Phi} \in \mathbf{C}_T[X\Phi, X\Phi\Phi] = \mathbf{C}_T[X\Phi, X\Phi]$$
 shows  $c_{X\Phi} = \mathbf{1}_{X\Phi}$ 

Ad (8): 
$$\varphi \Phi = c_{X\Phi}^{-1} \varphi c_{Y\Phi} = \varphi$$
, where  $X = \bigotimes_{\substack{j=1 \\ k=1}}^{n} A_j = X \Phi \land Y =$ 
$$= \bigotimes_{\substack{k=1 \\ k=1}}^{m} B_k = Y \Phi.$$

Ad (9): 
$$(\varphi \Phi)\Phi = (c_X^{-1}\varphi c_Y)\Phi = (c_X^{-1})\Phi(\varphi)\Phi(c_Y)\Phi = \varphi\Phi.$$

**Definition 4.4.** Let  $\underline{\mathbf{T}}$  be a *J*-sorted Hoehnke theory and let  $\Phi$  be the canonical *d*-monoidal functor of  $\underline{\mathbf{T}}$ . Then define a binary relation  $\varkappa$  for objects and morphisms of  $\mathbf{T}$  as follows:

$$(X,Y) \in \varkappa :\Leftrightarrow X\Phi = Y\Phi,$$
$$(\varphi_1,\varphi_2) \in \varkappa :\Leftrightarrow \varphi_1\Phi = \varphi_2\Phi.$$

**Theorem 4.5.** The relation  $\varkappa$  defined by the canonical d-monoidal functor  $\Phi$  of a J-sorted Hoehnke theory  $\underline{\mathbf{T}}$  as above is a "generalized" congruence on  $\underline{\mathbf{T}}$ .

**Proof.** Concidering small categories as many-sorted total algebras, a congruence  $\rho$  is defined as a family of equivalence relationes on the isolated morphism sets, i.e.  $(\varphi, \psi) \in \rho \Rightarrow \operatorname{dom} \varphi = \operatorname{dom} \psi \land \operatorname{cod} \varphi = \operatorname{cod} \psi$ .

That is not true for the relation  $\varkappa$ , since only  $\forall \varphi, \psi \in \mathbf{T}((\varphi, \psi) \in \varkappa \Rightarrow (\operatorname{dom}\varphi)\Phi = (\operatorname{cod}\psi)\Phi \land (\operatorname{cod}\varphi)\Phi = (\operatorname{cod}\psi)\Phi),$ because of

$$(\varphi,\psi)\in\varkappa\Rightarrow\varphi\Phi=\psi\Phi\Rightarrow c_{\mathrm{dom}\varphi}^{-1}\varphi c_{\mathrm{cod}\varphi}=c_{\mathrm{dom}\psi}^{-1}\varphi c_{\mathrm{cod}\psi}$$

 $\Rightarrow (\mathrm{dom}\varphi)\Phi = (\mathrm{dom}\psi)\Phi \ \land \ (\mathrm{cod}\varphi)\Phi = (\mathrm{cod}\psi)\Phi.$ 

Moreover, the relation  $\varkappa$  is not compatible with the morphism composition in the strong sense.

By definition, the relation  $\varkappa$  is reflexive, symmetric, and transitive for objects and morphisms, respectively.

The relation is compatible with  $\otimes\-$  operation of morphisms and objects, respectively, because of the following argumentation.

Using of  $(FM^*)$  and Corollary 4.3 (5) one has for morphisms:

$$\begin{aligned} (\varphi_1,\varphi_2),(\psi_1,\psi_2) &\in \varkappa \Rightarrow (\varphi_1 \otimes \psi_1) \Phi = \Phi^* \langle X_1, P_1 \rangle (\varphi_1 \Phi \otimes \psi_1 \Phi) (\Phi^* \langle Y_1, Q_1 \rangle)^{-1} \\ &= \Phi^* \langle X_1, P_1 \rangle (\varphi_2 \Phi \otimes \psi_2 \Phi) (\Phi^* \langle Y_1, Q_1 \rangle)^{-1} \\ &= c_{X_1 \otimes P_1}^{-1} \left( c_{X_1} c_{X_2}^{-1} \otimes c_{P_1} c_{P_2}^{-1} \right) (\varphi_2 \otimes \psi_2) \left( c_{Y_2} c_{Y_1}^{-1} \otimes c_{Q_2} c_{Q_1}^{-1} \right) c_{Y_1 \otimes Q_1} \\ &\Rightarrow (\varphi_1 \otimes \psi_1) \Phi = ((\varphi_1 \otimes \psi_1) \Phi) \Phi \\ &= \left( c_{X_1 \otimes P_1}^{-1} \left( c_{X_1} c_{X_2}^{-1} \otimes c_{P_1} c_{P_2}^{-1} \right) (\varphi_2 \otimes \psi_2) \left( c_{Y_2} c_{Y_1}^{-1} \otimes c_{Q_2} c_{Q_1}^{-1} \right) c_{Y_1 \otimes Q_1} \right) \Phi \\ &= (\varphi_2 \otimes \psi_2) \Phi \end{aligned}$$

 $\Rightarrow (\varphi_1 \otimes \psi_1, \varphi_2 \otimes \psi_2) \in \varkappa.$ 

Concerning the object relation one obtains

$$(X_1, X_2) \in \varkappa \land (Y_1, Y_2) \in \varkappa \Rightarrow X_1 \Phi = X_2 \Phi \land Y_1 \Phi = Y_2 \Phi$$
$$\Rightarrow 1_{X_1} \Phi = 1_{X_2} \Phi \land 1_{Y_1} \Phi = 1_{Y_2} \Phi$$
$$\Rightarrow (1_{X_1}, 1_{X_2}) \in \varkappa \land (1_{Y_1}, 1_{Y_2}) \in \varkappa$$
$$\Rightarrow (1_{X_1} \otimes 1_{Y_1}, 1_{X_2} \otimes 1_{Y_2}) \in \varkappa$$
$$\Rightarrow (1_{X_1 \otimes Y_1}, 1_{X_2 \otimes Y_2}) \in \varkappa$$
$$\Rightarrow 1_{X_1 \otimes Y_1} \Phi = 1_{X_2 \otimes Y_2} \Phi$$
$$\Rightarrow (X_1 \otimes Y_1) \Phi = (X_2 \otimes Y_2) \Phi$$
$$\Rightarrow (X_1 \otimes Y_1, X_2 \otimes Y_2) \in \varkappa.$$

The relation  $\varkappa$  is, as already mentioned, reflexive, therefore it preserves all morphisms wich are determined by constant operation symbols.

For the morphism composition:

Let  $\varphi_i \in \mathbf{T}[X_i, Y_i], \psi_i \in \mathbf{T}[P_i, Q_i]$  for  $i \in \{1, 2\}$  be arbitrary morphisms of  $\underline{\mathbf{T}}$ . Then, for  $Y_1 = P_1$ , i. e.  $\varphi_1$  is composable with  $\psi_1$ ,

$$(\varphi_1, \varphi_2), (\psi_1, \psi_2) \in \varkappa \Rightarrow (\varphi_1 \psi_1) \Phi = (\varphi_1 \Phi)(\psi_1 \Phi)$$
$$= (\varphi_2 \Phi)(\psi_2 \Phi) = c_{X_2}^{-1} \varphi_2 c_{Y_2} c_{P_2}^{-1} \psi_2 c_{Q_2},$$

therefore, by Corollary 4.3 (7) and (5),

$$(\varphi_1\psi_1)\Phi = ((\varphi_1\psi_1)\Phi)\Phi = \left(c_{X_2}^{-1}\varphi_2c_{Y_2}c_{P_2}^{-1}\psi_2c_{Q_2}\right)\Phi = (\varphi_2c_{Y_2,P_2}\psi_2)\Phi,$$

hence  $(\varphi_1\psi_1, \varphi_2c_{Y_2,P_2}\psi_2) \in \varkappa$ .

Observe that especially  $\varphi_2$  and  $\psi_2$  have not to be composable in general, but there is a central morphism c such that there exists the compositum  $\varphi_2 c \psi_2$ .

**Remark.** It is easy to verify that the generating central morphisms 1, a,  $a^{-1}$ , r,  $r^{-1}$ , l,  $l^{-1}$  of any *J*-sorted theory  $\underline{\mathbf{T}}$  fulfil even the following conditions:

$$\begin{aligned} \forall X, Y, P \in |\mathbf{T}| & ((1_{X \otimes (Y \otimes P)}, 1_{(X \otimes Y) \otimes P})) \in \varkappa), \\ \forall X, Y, P \in |\mathbf{T}| & ((a_{X,Y,P}, 1_{X \otimes (Y \otimes P)}) \in \varkappa \land ((a_{X,Y,P})^{-1}, 1_{(X \otimes Y) \otimes P})) \in \varkappa), \\ \forall X \in |\mathbf{T}| & ((1_{X \otimes I}, 1_X), (1_{I \otimes X}), 1_X) \in \varkappa), \\ \forall X \in |\mathbf{T}| & ((r_X, 1_{X \otimes I}), ((r_X)^{-1}, 1_X), ((l_X), 1_{I \otimes X}), ((l_X)^{-1}, 1_X) \in \varkappa). \end{aligned}$$

Theorem 4.6. To every J-sorted Hoehnke theory

$$\underline{\mathbf{T}} \in |Th^{\circ}_{dht}(J)|$$

there exists in a natural manner a J-sorted strict Hoehnke theory

$$\underline{\mathbf{T}_{\mathbf{s}}} \in |sTh^{\circ}_{dht}(J)|.$$

**Proof.** The canonical *d*-monoidal functor  $\Phi : \underline{\mathbf{T}} \to \underline{\mathbf{T}}$  related to any *J*-sorted Hoehnke theory  $\underline{\mathbf{T}}$  induces the "generalized" congruence  $\varkappa$ .

Construct a new category  $\mathbf{T_s}$  by using the knowledge about  $\underline{H^{\circ}}, \underline{S^{\circ}}$  and the functions W and  $W^*$ .

$$\begin{aligned} |\mathbf{T}_{\mathbf{s}}| &:= S^{\circ} \quad (:= S), \\ \mathbf{T}_{\mathbf{s}} &:= \{ [\varphi]_{\varkappa} \mid \varphi \in \mathbf{T} \}, \text{ where } [\varphi]_{\varkappa} = \{ \varphi' \in \mathbf{T} \mid \varphi \Phi = \varphi' \Phi \}, \\ \mathrm{dom}^{(\mathbf{T}_{\mathbf{s}})} [\varphi]_{\varkappa} &:= \left( \mathrm{dom}^{(\mathbf{T})} \varphi \right) W^{*}, \ \mathrm{cod}^{(\mathbf{T}_{\mathbf{s}})} [\varphi]_{\varkappa} &:= \left( \mathrm{cod}^{(\mathbf{T})} \varphi \right) W^{*}, \\ \mathbf{1}_{A}^{(\mathbf{T}_{\mathbf{s}})} &:= \left[ \mathbf{1}_{AW}^{(\mathbf{T})} \right]_{\varkappa}, \end{aligned}$$

 $[\varphi]_{\varkappa} \cdot_{(\mathbf{T}_{\mathbf{s}})} [\psi]_{\varkappa} := [\varphi c_{Y,P} \psi]_{\varkappa}, \text{ where } Y \Phi = (\operatorname{cod} \varphi) \Phi = (\operatorname{dom} \psi) \Phi = P \Phi$ 

$$(\Leftrightarrow YW^* = (\operatorname{cod}\varphi)W^* = (\operatorname{dom}\psi)W^*) = PW^*),$$

$$\begin{split} A \otimes_{(\mathbf{T}_{\mathbf{s}})} B &= (AW \otimes_{(\mathbf{T})} BW)W^* \text{ (by (W4))}, \\ [\varphi]_{\varkappa} \otimes_{(\mathbf{T}_{\mathbf{s}})} [\psi]_{\varkappa} &:= [\varphi \otimes_{(\mathbf{T})} \psi]_{\varkappa}, \end{split}$$

$$\begin{aligned} a_{A,B,C}^{(\mathbf{T}_{\mathbf{s}})} &:= \left[ a_{AW,BW,CW}^{(\mathbf{T}_{\mathbf{s}})} \right]_{\varkappa} = \left[ \mathbf{1}_{AW \otimes (BW \otimes CW)}^{(\mathbf{T})} \right]_{\varkappa}, \\ r_{A}^{(\mathbf{T}_{\mathbf{s}})} &:= \left[ r_{AW}^{(\mathbf{T})} \right]_{\varkappa} = \left[ \mathbf{1}_{AW}^{(\mathbf{T})} \right]_{\varkappa} = \left[ l_{AW}^{(\mathbf{T})} \right]_{\varkappa} = : l_{A}^{(\mathbf{T}_{\mathbf{s}})}, \\ s_{A,B}^{(\mathbf{T}_{\mathbf{s}})} &:= \left[ s_{AW,BW}^{(\mathbf{T})} \right]_{\varkappa}, \ d_{A}^{(\mathbf{T}_{\mathbf{s}})} := \left[ d_{AW}^{(\mathbf{T})} \right]_{\varkappa}, t_{A}^{(\mathbf{T}_{\mathbf{s}})} := \left[ t_{AW}^{(\mathbf{T})} \right]_{\varkappa}, \nabla_{A}^{(\mathbf{T}_{\mathbf{s}})} := \left[ \nabla_{AW}^{(\mathbf{T})} \right]_{\varkappa}, \\ o^{(\mathbf{T}_{\mathbf{s}})} &:= \left[ o^{(\mathbf{T})} \right]_{\varkappa}. \end{aligned}$$

Obviously,  $(S^{\circ}; \otimes, I, O)$  is an algebra of type (2, 0, 0) with an associative binary operation, a unit element I, and a zero element O.

Moreover,  $(|\mathbf{T_s}|, \mathbf{T_s}, \cdot, \text{dom}, \text{cod}, 1)$  is a small category, since  $|\mathbf{T_s}|$  is a set and

$$\begin{split} [\varphi]_{\varkappa} \in \mathbf{T}_{\mathbf{s}}[A,B] \Rightarrow \varphi \in \mathbf{T}[X,Y] \wedge A = XW^{*}, \ B = YW^{*} \Rightarrow \mathbf{1}_{A}[\varphi]_{\varkappa} \\ &= [\mathbf{1}_{X}]_{\varkappa}[\varphi]_{\varkappa} = [\mathbf{1}_{X}c_{X,X}\varphi]_{\varkappa} = [\varphi]_{\varkappa} = [\varphi c_{Y,Y}\mathbf{1}_{Y}]_{\varkappa} = [\varphi]_{\varkappa}[\mathbf{1}_{Y}]_{\varkappa} = [\varphi]_{\varkappa}\mathbf{1}_{B}, \\ [\varphi]_{\varkappa} \in \mathbf{T}_{\mathbf{s}}[A,B], [\psi]_{\varkappa} \in \mathbf{T}_{\mathbf{s}}[B,C], [\chi]_{\varkappa} \in \mathbf{T}_{\mathbf{s}}[C,D] \\ &\Rightarrow [\varphi]_{\varkappa}([\psi]_{\varkappa}[\chi]_{\varkappa}) = [\varphi]_{\varkappa}[\psi c_{P,Q}\chi]_{\varkappa} = [\varphi c_{X,Y}\psi c_{P,Q}\chi]_{\varkappa} \\ &= [\varphi c_{X,Y}\psi]_{\varkappa}[\chi]_{\varkappa} = ([\varphi]_{\varkappa}[\psi]_{\varkappa})[\chi]_{\varkappa}. \end{split}$$

 $(\mathbf{T}_{\mathbf{s}}; \otimes, I, 1, 1, 1, s)$  is a symmetric strictly monoidal category since the defining conditions are fulfilled. Observe that to every morphism  $\rho \in \mathbf{T}_{\mathbf{s}}[A, B]$ there is a morphism  $\varphi \in \mathbf{T}[X, Y]$  such that  $A = XW^*, B = YW^*, \rho = [\varphi]_{\varkappa}$ .

Ad (F1): 
$$\forall \rho, \rho' \in \mathbf{T}_{\mathbf{s}} (\operatorname{dom} (\rho \otimes \rho') = \operatorname{dom} ([\varphi]_{\varkappa} \otimes [\varphi']_{\varkappa})$$
  

$$= \operatorname{dom} [\varphi \otimes \varphi']_{\varkappa} = (\operatorname{dom} (\varphi \otimes \varphi'))W^*$$

$$= ((\operatorname{dom} \varphi) \otimes (\operatorname{dom} \varphi'))W^* = (\operatorname{dom} \varphi)W^* \otimes (\operatorname{dom} \varphi')W^*$$

$$= (\operatorname{dom} [\varphi]_{\varkappa}) \otimes (\operatorname{dom} [\varphi']_{\varkappa}) = \operatorname{dom} \rho \otimes \operatorname{dom} \rho').$$

Ad (F2): The assertion  $\forall \rho, \rho' \in \mathbf{T}_{\mathbf{s}} \ (\operatorname{cod} (\rho \otimes \rho') = \operatorname{cod} \rho \otimes \operatorname{cod} \rho')$  will be proved in the same manner.

Ad (F3): 
$$\forall A, B \in |\mathbf{T}_{\mathbf{s}}| \ (\mathbf{1}_{A \otimes B} = [\mathbf{1}_{(A \otimes B)W}]_{\varkappa} = [\mathbf{1}_{AW \otimes BW}]_{\varkappa}$$
$$= [\mathbf{1}_{AW} \otimes \mathbf{1}_{BW}]_{\varkappa} = [\mathbf{1}_{AW}]_{\varkappa} \otimes [\mathbf{1}_{BW}]_{\varkappa} = \mathbf{1}_{A} \otimes \mathbf{1}_{B}),$$

since  $\underline{\mathbf{T}}$  is a symmetric monoidal category and for all  $A, B \in S^{\circ}$  one has  $(A \otimes B)W\Phi = (A \otimes B)WW^*W = (A \otimes B)W = (AWW^* \otimes BWW^*)W = (AW \otimes BW)\Phi$ .

Ad (F4): 
$$\forall A, B, C, A', B', C' \in |\mathbf{T}_{\mathbf{s}}| \ \forall \rho \in \mathbf{T}_{\mathbf{s}}[A, B]$$
  
 $\forall \sigma \in \mathbf{T}_{\mathbf{s}}[B, C] \ \forall \rho' \in \mathbf{T}_{\mathbf{s}}[A', B'] \forall \sigma' \in \mathbf{T}_{\mathbf{s}}[B', C']$ 

$$\begin{aligned} ((\rho \otimes \rho')(\sigma \otimes \sigma') &= ([\varphi]_{\varkappa} \otimes [\varphi']_{\varkappa})([\psi]_{\varkappa} \otimes [\psi']_{\varkappa}) \\ &= [\varphi \otimes \varphi']_{\varkappa} [\psi \otimes \psi']_{\varkappa} \\ &= [(\varphi \otimes \varphi')c_{Y \otimes Y', P \otimes P'}(\psi \otimes \psi')]_{\varkappa} \\ &= [(\varphi \otimes \varphi')(c_{Y, P} \otimes c_{Y', P'})(\psi \otimes \psi')]_{\varkappa} \\ &= [\varphi c_{Y, P} \psi \otimes \varphi' c_{Y', P'} \psi']_{\varkappa} \\ &= [\varphi c_{Y, P} \psi]_{\varkappa} \otimes [\varphi' c_{Y', P'} \psi']_{\varkappa} \\ &= [\varphi]_{\varkappa} [\psi]_{\varkappa} \otimes [\varphi']_{\varkappa} [\psi']_{\varkappa} \\ &= [\varphi]_{\varkappa} [\psi]_{\varkappa} \otimes [\varphi']_{\varkappa} [\psi']_{\varkappa} \end{aligned}$$

Ad (M1), (M2), (M3): The conditions are trivially fulfilled since a and r consist of unit morphisms only.

Ad (M4): 
$$\forall A, B \in |\mathbf{T}_{\mathbf{s}}| \left( s_{A,B}^{(\mathbf{T}_{\mathbf{s}})} s_{B,A}^{(\mathbf{T}_{\mathbf{s}})} = \left[ s_{AW,BW}^{(\mathbf{T})} \right]_{\varkappa} \left[ s_{BW,AW}^{(\mathbf{T})} \right]_{\varkappa}$$
  

$$= \left[ s_{AW,BW}^{(\mathbf{T})} c_{BW\otimes AW,BW\otimes AW} s_{BW,AW}^{(\mathbf{T})} \right]_{\varkappa}$$

$$= \left[ s_{AW,BW}^{(\mathbf{T})} s_{BW,AW}^{(\mathbf{T})} \right]_{\varkappa} = \left[ 1_{AW\otimes BW}^{(\mathbf{T})} \right]_{\varkappa} = 1_{(AW\otimes BW)W^*}^{(\mathbf{T}_{\mathbf{s}})} = 1_{A\otimes B}^{(\mathbf{T}_{\mathbf{s}})} \right].$$
Ad (M5):  $\forall A \in |\mathbf{T}_{\mathbf{s}}| \left( s_{A,I}^{(\mathbf{T}_{\mathbf{s}})} l_A^{(\mathbf{T}_{\mathbf{s}})} = \left[ s_{AW,IW}^{(\mathbf{T})} \right]_{\varkappa} \left[ l_{AW}^{(\mathbf{T})} \right]_{\varkappa} = \left[ s_{AW,IW}^{(\mathbf{T})} l_{AW}^{(\mathbf{T})} \right]_{\varkappa}$ 

$$= \left[ r_{AW}^{(\mathbf{T})} \right]_{\varkappa} = r_{A}^{(\mathbf{T}_{\mathbf{s}})} = 1_{A}^{(\mathbf{T}_{\mathbf{s}})} \right].$$

Ad (M6):  $\forall A, B, C, A', B', C' \in |\mathbf{T_s}| \ \forall \rho \in \mathbf{T_s}[A, A']$ 

$$\forall \sigma \in \mathbf{T}_{\mathbf{s}}[B, B'] \forall \tau \in \mathbf{T}_{\mathbf{s}}[C, C']$$
$$\left( a_{A, B, C}^{(\mathbf{T}_{\mathbf{s}})}((\rho \otimes \sigma) \otimes \tau) = \left[ a_{X, Y, P}^{(\mathbf{T})} \right]_{\varkappa} (([\varphi]_{\varkappa} \otimes [\psi]_{\varkappa}) \otimes [\chi]_{\varkappa})$$

$$= \left[ a_{X,Y,P}^{(\mathbf{T})} c_{(X\otimes Y)\otimes P,(X\otimes Y)\otimes P}((\varphi \otimes \psi) \otimes \chi) \right]_{\varkappa}$$

$$= \left[ (\varphi \otimes (\psi \otimes \chi)) a_{X',Y',P'}^{(\mathbf{T})} \right]_{\varkappa}$$

$$= \left[ (\varphi \otimes (\psi \otimes \chi)) c_{X'\otimes (Y'\otimes P'),X'\otimes (Y'\otimes P')} a_{X',Y',P'}^{(\mathbf{T})} \right]_{\varkappa}$$

$$= \left( [\varphi]_{\varkappa} \otimes ([\psi]_{\varkappa} \otimes [\chi]_{\varkappa}) \right) \left[ a_{X',Y',P'}^{(\mathbf{T})} \right]_{\varkappa}$$

$$= (\rho \otimes (\sigma \otimes \tau)) a_{A',B',C'}^{(\mathbf{T}_s)} \right).$$
Ad (M7):  $\forall A, A' \in |\mathbf{T}_s| \ \forall \rho \in \mathbf{T}_s[A, A'] \ \left( r_A^{(\mathbf{T}_s)} \rho = \left[ r_{AW}^{(\mathbf{T})} \right]_{\varkappa} [\varphi]_{\varkappa}$ 

$$= \left[ r_{AW}^{(\mathbf{T})} c_{AW,X} \varphi \right]_{\varkappa} \qquad (by \ XW^* = AWW^* = A)$$

$$= \left[ \left( c_{AW,X} \varphi \otimes 1_I^{(\mathbf{T})} \right) c_{X'\otimes I,X'\otimes I} r_{X'}^{(\mathbf{T})} \right]_{\varkappa}$$

$$= \left[ c_{AW,X} \varphi \otimes 1_I^{(\mathbf{T})} \right]_{\varkappa} \left[ r_{X'}^{(\mathbf{T})} \right]_{\varkappa}$$

$$= \left[ (c_{AW,X} \varphi \otimes 1_I^{(\mathbf{T})} \right]_{\varkappa} \left[ r_{X'}^{(\mathbf{T})} \right]_{\varkappa}$$

$$= \left[ (e_{AW,X} \varphi \otimes 1_I^{(\mathbf{T})} \right]_{\varkappa} \left[ r_{X'}^{(\mathbf{T})} \right]_{\varkappa}$$

$$= \left[ (e_{AW,X} \varphi \otimes 1_I^{(\mathbf{T})} \right]_{\varkappa} \right] \left[ r_{X'}^{(\mathbf{T})} \right]_{\varkappa}$$

$$= \left( [\varphi]_{\varkappa} \otimes \left[ 1_I^{(\mathbf{T})} \right]_{\varkappa} \right) \left[ r_{X'}^{(\mathbf{T})} \right]_{\varkappa}$$

$$= \left( [\varphi \otimes 1_I^{(\mathbf{T})}]_{\varkappa} \right) \left[ r_{X'}^{(\mathbf{T})} \right]_{\varkappa}$$

Ad (M8):  $\forall A,B\in |\mathbf{T_s}| \; \forall \rho \in \mathbf{T_s}[A,A'], \sigma \in \mathbf{T_s}[B,B']$ 

$$\left( s_{A,B}^{(\mathbf{T}_{\mathbf{s}})}(\sigma \otimes \rho) = \left[ s_{AW,BW}^{(\mathbf{T})} \right]_{\varkappa} ([\psi]_{\varkappa} \otimes [\varphi]_{\varkappa} )$$

$$= \left[ s_{AW,BW}^{(\mathbf{T})} \right]_{\varkappa} [\psi \otimes \varphi]_{\varkappa}$$

$$= \left[ s_{AW,BW}^{(\mathbf{T})} c_{BW \otimes AW,Y \otimes X} (\psi \otimes \varphi) \right]_{\varkappa}$$

$$= \left[ c_{AW \otimes BW,X \otimes Y} s_{X,Y}^{(\mathbf{T})} (\psi \otimes \varphi) \right]_{\varkappa}$$

198

$$= \left[ c_{AW \otimes BW, X \otimes Y} (\varphi \otimes \psi) s_{X',Y'}^{(\mathbf{T})} \right]_{\varkappa}$$
$$= \left[ (\varphi \otimes \psi) c_{X' \otimes Y', X' \otimes Y'} s_{X',Y'}^{(\mathbf{T})} \right]_{\varkappa}$$
$$= \left[ \varphi \otimes \psi \right]_{\varkappa} \left[ s_{X',Y'}^{(\mathbf{T})} \right]_{\varkappa}$$
$$= \left( [\varphi]_{\varkappa} \otimes [\psi]_{\varkappa} \right) \left[ s_{X',Y'}^{(\mathbf{T})} \right]_{\varkappa}$$
$$= (\rho \otimes \sigma) s_{A',B'}^{(\mathbf{T}_{s})},$$

where

$$XW^* = AWW^* = A, \quad X'W^* = A'WW^* = A',$$
  
 $YW^* = BWW^* = B, \quad Y'W^* = B'WW^* = B'.$ 

**Theorem 4.7.** Let  $\underline{\mathbf{T}} \in |Th^{\circ}_{dht}(J)|$  be a *J*-sorted Hoehnke theory. Then there exists in a natural manner a strictly *d*-monoidal functor  $\Psi$  into the corresponding strict Hoehnke theory  $\underline{\mathbf{T}}_{\mathbf{s}} \in |sTh^{\circ}_{dht}(J)|$ .

**Proof.** Defining  $X\Psi := XW^*$ ,  $\varphi\Psi := [\varphi]_{\varkappa}$  one obtains for arbitrary objects X, Y, P and morphisms  $\varphi \in T[X, Y], \psi \in T[Y, P]$ 

$$\left( \operatorname{dom}^{(T)} \varphi \right) \Psi = X\Psi = XW^* = \operatorname{dom}^{(T_s)} [\varphi]_{\varkappa} = \operatorname{dom}^{(T_s)} (\varphi \Psi),$$

$$\left( \operatorname{cod}^{(T)} \varphi \right) \Psi = Y\Psi = YW^* = \operatorname{cod}^{(T_s)} [\varphi]_{\varkappa} = \operatorname{cod}^{(T_s)} (\varphi \Psi),$$

$$1_X^{(T)} \Psi = \left[ 1_X^{(T)} \right]_{\varkappa} = 1_{XW^*}^{(T_s)} = 1_{X\Psi}^{(T_s)},$$

$$(\varphi \cdot_{(T)} \psi) \Psi = [\varphi \cdot_{(T)} \psi]_{\varkappa} = [\varphi]_{\varkappa} \cdot_{(T_s)} [\psi]_{\varkappa} = (\varphi \Psi) \cdot_{(T_s)} \psi \Psi),$$

hence  $\Psi$  is a functor.

By Lemma 3.8, it is sufficient to show (sFD), (sFT), and (sFM).

Ad (sFD): 
$$d_X^{(\mathbf{T})}\Psi = \left[d_X^{(\mathbf{T})}\right]_{\varkappa} = \left[d_{XW^*W}^{(\mathbf{T})}\right]_{\varkappa} = d_{XW^*}^{(\mathbf{T}_s)} = d_{X\Psi}^{(\mathbf{T}_s)}.$$

Ad (sFT): 
$$t_X^{(\mathbf{T})}\Psi = \begin{bmatrix} t_X^{(\mathbf{T})} \end{bmatrix}_{\varkappa} = \begin{bmatrix} t_{XW^*W}^{(\mathbf{T})} \end{bmatrix}_{\varkappa} = t_{XW^*}^{(\mathbf{T}_s)} = t_{X\Psi}^{(\mathbf{T}_s)}.$$

Ad (sFM): 
$$(\varphi \otimes \psi)\Psi = [\varphi \otimes \psi]_{\varkappa} = [\varphi]_{\varkappa} \otimes [\psi]_{\varkappa} = \varphi \Psi \otimes \psi \Psi.$$

Therefore,  $\Psi: \underline{T} \to \underline{T_s}$  is a strictly *d*-monoidal functor.

The converse question is also positively answered by the following theorem:

**Theorem 4.8.** Let  $\underline{\mathbf{T}}_s \in |sT^{\circ}_{dht}(J)|$  be a strict J-sorted Hoehnke theory. Then there corresponds to  $\underline{\mathbf{T}}_s$  in a natural way a J-sorted Hoehnke theory  $\underline{\mathbf{T}} \in |T^{\circ}_{dht}(J)|$ .

**Proof.** Take  $|\mathbf{T}| = H^{\circ}$  (|T| = H), where  $(H^{\circ}; \otimes, I, O)$  ( $(H; \otimes, I)$ ) is the free  $\mathcal{G}^{\circ}$ -algebra (free  $\mathcal{G}$ -algebra) freely generated by J.

Defining  $\mathbf{T}[X,Y] := \{(X,\varphi,Y) \mid \varphi \in \mathbf{T}_{\mathbf{s}}[XW^*,YW^*]\}$  for arbitrary  $X, Y \in H^{\circ}$   $(X,Y \in H)$  one obtains obviously  $\mathbf{T}[X,Y] \cup \mathbf{T}[X',Y'] = \emptyset$  if  $X \neq X'$  or  $Y \neq Y'$  and, by definition,  $\operatorname{dom}^{(\mathbf{T})}(X,\varphi,Y) = X$ ,  $\operatorname{cod}^{(\mathbf{T})}(X,\varphi,Y) = Y$  and  $\mathbf{1}_X^{(\mathbf{T})} = (X,\mathbf{1}_{XW^*}^{(\mathbf{T}_{\mathbf{s}})},X)$ .

Morphisms  $(X, \varphi, Y)$  and  $(P, \psi, Q)$  are composable for Y = P defined by

$$(X,\varphi,Y)\cdot_{(\mathbf{T})}(Y,\psi,Q):=(X,\varphi\cdot_{(\mathbf{T}_{\mathbf{s}})}\psi,Q).$$

Then

$$\begin{split} & \mathbf{1}_{X}^{(\mathbf{T})} \cdot_{(\mathbf{T})} \left( X, \varphi, Y \right) = \left( X, \mathbf{1}_{XW^{*}}^{(\mathbf{T}_{\mathbf{s}})}, X \right) \cdot_{(\mathbf{T})} \left( X, \varphi, Y \right) = \left( X, \mathbf{1}_{XW^{*}}^{(\mathbf{T}_{\mathbf{s}})}, \varphi, Y \right) = \left( X, \varphi, Y \right), \\ & (X, \varphi, Y) \cdot_{(\mathbf{T})} \mathbf{1}_{Y}^{(\mathbf{T})} = \left( X, \varphi, Y \right) \cdot_{(\mathbf{T})} \left( Y, \mathbf{1}_{YW^{*}}^{(\mathbf{T}_{\mathbf{s}})}, Y \right) = \left( X, \varphi \mathbf{1}_{YW^{*}}^{(\mathbf{T}_{\mathbf{s}})}, Y \right) = \left( X, \varphi, Y \right), \\ & (X, \varphi, Y) \cdot_{(\mathbf{T})} \left( \left( Y, \psi, P \right) \cdot_{(\mathbf{T})} \left( P, \chi, Q \right) \right) = \left( X, \varphi(\psi\chi), Q \right) \end{split}$$

$$= (X, (\varphi\psi)\chi, Q) = ((X, \varphi, Y) \cdot_{(\mathbf{T})} (Y, \psi, P)) \cdot_{(\mathbf{T})} (P, \chi, Q) + (Y, \psi, P) \cdot_{(\mathbf{T})} (P, \chi, Q) + (Y, \psi, Q) + (Y, Q$$

hence one has a category.

By the agreements

$$(X_1,\varphi_1,Y_1)\otimes_{(\mathbf{T})}(X_2,\varphi_2,Y_2):=(X_1\otimes_{(\mathbf{T}_{\mathbf{s}})}X_2,\varphi_1\otimes_{(\mathbf{T}_{\mathbf{s}})}\varphi_2,Y_1\otimes_{(\mathbf{T}_{\mathbf{s}})}Y_2),$$

$$\begin{aligned} a_{X,Y,P}^{(\mathbf{T})} &:= (X \otimes (Y \otimes P), \mathbf{1}_{XW^* \otimes YW^* \otimes PW^*}^{(\mathbf{T}_s)}, (X \otimes Y) \otimes P), \\ r_X^{(\mathbf{T})} &:= \left(X \otimes I, \mathbf{1}_{XW^*}^{(\mathbf{T}_s)}, X\right), \\ l_X^{(\mathbf{T})} &:= \left(I \otimes X, \mathbf{1}_{XW^*}^{(\mathbf{T}_s)}, X\right), \\ s_{X,Y}^{(\mathbf{T})} &:= \left(X \otimes Y, s_{XW^* \otimes YW^*}^{(\mathbf{T}_s)}, Y \otimes X\right), \\ d_X^{(\mathbf{T})} &:= \left(X, d_{XW^*}^{(\mathbf{T}_s)}, X \otimes X\right), \\ t_X^{(\mathbf{T})} &:= \left(X, t_{XW^*}^{(\mathbf{T}_s)}, I\right), \\ o^{(\mathbf{T})} &:= \left(I, o^{(\mathbf{T}_s)}, O\right) \end{aligned}$$

one obtains a *dhts*-category  $(\mathbf{T}, \otimes_{(\mathbf{T})}, I, a^{(\mathbf{T})}, r^{(\mathbf{T})}, l^{(\mathbf{T})}, s^{(\mathbf{T})}, t^{(\mathbf{T})}, o^{(\mathbf{T})})$ , i.e. a Hoehnke theory in  $|T_{dht}^{\circ}(J)|$ , since the validity of the defining axioms obviously carries over from  $\underline{\mathbf{T}}_{\underline{s}}$  into  $\underline{\mathbf{T}}$ .

**Remark.** If  $\underline{\mathbf{T}}_{\underline{s}} \in |sT^{\circ}_{dhth\nabla}(J)|$  is even any strict *J*-sorted Hoehnke theory with halfdiagonal inversions, then one obtains by the additional agreement

$$\nabla^{(\mathbf{T})}_X := \left(X \otimes X, \nabla^{(\mathbf{T}_{\mathbf{s}})}_{XW^*}, X\right)$$

a  $dhth\nabla s$ -category  $(\mathbf{T}, \otimes_{(\mathbf{T})}, I, a^{(\mathbf{T})}, r^{(\mathbf{T})}, l^{(\mathbf{T})}, s^{(\mathbf{T})}, t^{(\mathbf{T})}, \nabla^{(\mathbf{T})}, o^{(\mathbf{T})})$ , i.e. a Hoehnke theory in  $|T^{\circ}_{dhth\nabla}(J)|$ .

**Definition 4.9.** Let  $\underline{\mathbf{T}}$  and  $\underline{\mathbf{T}'}$  be *J*-sorted Hoehnke theories in  $|Th^{\circ}_{dht}(J)|$ and  $|sTh^{\circ}_{dht}(J)|$ , respectively.

Then a *d*-monoidal functor  $F : \underline{\mathbf{T}} \to \underline{\mathbf{T}'}$  is called *theory morphism*, if, in addition, the conditions

(Th1) 
$$\forall X \in |\mathbf{T}| \ (XF = X),$$

 $(\mathrm{sF}*) \quad \forall X, Y \in |\mathbf{T}| \ (\widetilde{F}\langle X, Y \rangle \in Un_{K'})$ are fulfilled.

**Lemma 4.10.** Every theory morphism  $F : \underline{\mathbf{T}} \to \underline{\mathbf{T}}'$  has the properties (sFD), (sFT), (sFM), (sFI<sup>\*</sup>).

Conversely, any functor  $F : \underline{\mathbf{T}} \to \underline{\mathbf{T}}'$  is a theory morphism between *J*-sorted Hoehnke theories  $\underline{\mathbf{T}}$  and  $\underline{\mathbf{T}}'$ , whenever *F* satisfies (Th1), (sFD), (sFT), and (sFM).

**Proof.** The assertion is an immediate consequence of Lemma 3.8 and Corollary 3.10.

**Theorem 4.11.** All J-sorted Hoehnke theories together with the corresponding theory morphisms form a category  $Th^{\circ}_{dht}(J)$  and  $sTh^{\circ}_{dht}(J)$ , respectively, where the composition of theory morphisms is defined by the usual composition of functors.

**Proof.** Obviously, dom  $(F : \underline{\mathbf{T}} \to \underline{\mathbf{T}}') = \underline{\mathbf{T}}, \operatorname{cod} (F : \underline{\mathbf{T}} \to \underline{\mathbf{T}}') = \underline{\mathbf{T}}'.$ 

The identical functor  $1_{\underline{T}}: \underline{T} \to \underline{T}$  is a theory morphism with respect to

$$\widetilde{\mathbf{1}_{\underline{\mathbf{T}}}} = (\widetilde{\mathbf{1}_{\underline{\mathbf{T}}}} \langle X, Y \rangle = \mathbf{1}_{X \otimes Y} \mid X, Y \in H^{\circ}), \quad i_{1\underline{\mathbf{T}}} = \mathbf{1}_{I}.$$

Let  $F : \underline{\mathbf{T}} \to \underline{\mathbf{T}'}$  and  $G : \underline{\mathbf{T}'} \to \underline{\mathbf{T}''}$  be theory morphisms. Then, by definition, FG is a functor fulfilling the condition (Th1).

Moreover, because of Lemma 4.10 and Proposition 3.9, FG is a theory morphism.

Trivially,  $F1_{\underline{\mathbf{T}}} = F = F1_{\underline{\mathbf{T}}'}$  and F(GH) = (FG)H for every theory morphism F and all composable theory morphisms F, G and H.

**Theorem 4.12.** Let  $Th^{\circ}_{dht}(J)$  and  $sTh^{\circ}_{dht}(J)$  be the categories introduced above. Then there are the functors

$$\begin{split} \Sigma : Th^{\circ}_{dht}(J) &\to sTh^{\circ}_{dht}(J) \\ & \underline{\mathbf{T}} \mapsto \underline{\mathbf{T}} \Sigma := \underline{\mathbf{T}}_{\mathbf{s}} \text{ (see 4.6)}, \\ & (F : \underline{\mathbf{T}} \to \underline{\mathbf{T}}') \mapsto (F\Sigma : \underline{\mathbf{T}}_{\mathbf{s}} \to \underline{\mathbf{T}}_{\mathbf{s}}') \text{ defined by} \\ & XW^* \mapsto XW^*, \ [\varphi]_{\varkappa} \mapsto [\varphi F]_{\varkappa'} \end{split}$$

202

and

$$\begin{split} \Pi : sTh_{dht}^{\circ}(J) &\to Th_{dht}^{\circ}(J) \\ & \underline{\mathbf{T}_{\mathbf{s}}} \mapsto \underline{\mathbf{T}_{\mathbf{s}}} \Pi := \underline{\mathbf{T}} \text{ (see 4.7),} \\ & (F : \underline{\mathbf{T}_{\mathbf{s}}} \to \underline{\mathbf{T}_{\mathbf{s}}}') \mapsto (F\Pi : \underline{\mathbf{T}} \to \underline{\mathbf{T}}') \text{ defined by} \\ & X \mapsto X, \ (X, \varphi, Y) \mapsto (X, \varphi F, Y) \end{split}$$

such that  $\Sigma$  is a left-adjoint functor of the functor  $\Pi$ .

**Proof.** a) The functor property of  $\Sigma$ :

The mapping on objects is well defined by Theorem 4.5. Let F be a theory morphism from a J-sorted theory  $\underline{\mathbf{T}}$  into a J-sorted theory  $\underline{\mathbf{T}}'$ , i.e.  $F \in Th^{\circ}_{dht}(J)[\underline{\mathbf{T}}, \underline{\mathbf{T}}']$ . Then  $F\Sigma$ , defined as above, is a theory morphism too, more precisely,

$$F\Sigma \in sTh^{\circ}(J)[\underline{\mathbf{T}}\Sigma, \underline{\mathbf{T}}'\Sigma].$$

By definition, the mapping  $F\Sigma$  respects "dom" and "cod" and one obtains

$$\mathbf{1}_{XW^*}^{(\mathbf{T}\Sigma)}(F\Sigma) = \begin{bmatrix} \mathbf{1}_X^{(\mathbf{T})} \end{bmatrix}_{\varkappa} (F\Sigma) = \begin{bmatrix} \mathbf{1}_X^{(\mathbf{T})} F \end{bmatrix}_{\varkappa} = \begin{bmatrix} \mathbf{1}_X^{(\mathbf{T}')} \end{bmatrix}_{\varkappa} = \mathbf{1}_{XW^*}^{(\mathbf{T}'\Sigma)} = \mathbf{1}_{(XW^*)(F\Sigma)}^{(\mathbf{T}'\Sigma)}$$

for all objects  $X \in |\mathbf{T}|$ .

Now let  $[\varphi]_{\varkappa} \in \mathbf{T}\Sigma[XW^*, YW^*], [\psi]_{\varkappa} \in \mathbf{T}\Sigma[UW^*, VW^*]$  be arbitrary morphisms such that  $YW^* = UW^*$ . Then

$$([\varphi]_{\varkappa}[\psi]_{\varkappa})(F\Sigma) = [\varphi c_{Y,U}\psi]_{\varkappa})(F\Sigma) = [\varphi F]_{\varkappa'}[c_{Y,U}F]_{\varkappa'}[\psi F]_{\varkappa'}$$
$$= [\varphi F]_{\varkappa'}[c'_{Y,U}]_{\varkappa'}[\psi F]_{\varkappa'} = [\varphi F]_{\varkappa'}[1'_{YW^*,UW^*}]_{\varkappa'}[\psi F]_{\varkappa'}$$
$$= [\varphi F]_{\varkappa'}[\psi F]_{\varkappa'} = [\varphi]_{\varkappa}(F\Sigma)[\psi]_{\varkappa}(F\Sigma).$$

Furthermore, the functor  $F\Sigma$  satisfies (Th1) by definition, (sFD) and (sFT) since for all  $A \in S^{\circ}$  one has

$$d_{A}^{(\mathbf{T}\Sigma)}(F\Sigma) = \left[d_{AW}^{(\mathbf{T})}\right]_{\varkappa}(F\Sigma) = \left[d_{AW}^{(\mathbf{T})}F\right]_{\varkappa'} = \left[d_{(AW)F}^{(\mathbf{T}')}\right]_{\varkappa'} = \left[d_{AW}^{(\mathbf{T}')}\right]_{\varkappa'} = d_{A(F\Sigma)}^{(\mathbf{T}'\Sigma)}$$

 $\quad \text{and} \quad$ 

$$t_{A}^{(\mathbf{T}\Sigma)}(F\Sigma) = \begin{bmatrix} t_{AW}^{(\mathbf{T})} \end{bmatrix}_{\varkappa}(F\Sigma) = \begin{bmatrix} t_{AW}^{(\mathbf{T})}F \end{bmatrix}_{\varkappa'} = \begin{bmatrix} t_{(AW)F}^{(\mathbf{T}')} \end{bmatrix}_{\varkappa'} = \begin{bmatrix} t_{AW}^{(\mathbf{T}')} \end{bmatrix}_{\varkappa'} = t_{A(F\Sigma)}^{(\mathbf{T}'\Sigma)},$$

and (sFM) since for all  $\varphi \in \mathbf{T}[X, U], \ \psi \in \mathbf{T}[Y, V]$  the equation

$$([\varphi]_{\varkappa} \otimes [\psi]_{\varkappa})(F\Sigma) = [(\varphi \otimes \psi)F]_{\varkappa'} = [\varphi F \otimes \psi F]_{\varkappa'}$$
$$= [\varphi F]_{\varkappa'} \otimes [\psi F]_{\varkappa'} = [\varphi]_{\varkappa}(F\Sigma) \otimes [\psi]_{\varkappa'}(F\Sigma)$$

is valid.

**b)** The functor property of  $\Pi$ :

The mapping on objects  $\underline{\mathbf{T}}_{\mathbf{s}}$  is well defined by Theorem 4.7. Let  $(F: \underline{\mathbf{T}}_{\mathbf{s}} \to \underline{\mathbf{T}}'_{\mathbf{s}})$  be a theory morphism. Then  $(F\Pi: \underline{\mathbf{T}} \to \underline{\mathbf{T}}')$  defined by

$$X\mapsto X,\,(X,\varphi,Y)\mapsto (X,\varphi F,Y)$$

is a theory morphism too, since the conditions (Th1), (sFD), (sFT), and (sFM) are satisfied.

Ad (Th1): 
$$\forall X \in H^{\circ} (X(F\Pi) = X)$$
 by definition.

Ad (sFD):  

$$\forall X \in H^{\circ} \left( d_{X}^{(\mathbf{T})}(F\Pi) = \left( X, d_{XW^{*}}^{(\mathbf{T}_{s})}, X \otimes X \right) (F\Pi) = \left( X, d_{XW^{*}}^{(\mathbf{T}_{s})}, F, X \otimes X \right) \right)$$

$$= \left( X, d_{XW^{*}F}^{(\mathbf{T}_{s})}, X \otimes X \right) = \left( X, d_{XW^{*}}^{(\mathbf{T}_{s})}, X \otimes X \right) = d_{X}^{(\mathbf{T}')} = d_{X(F\Pi)}^{(\mathbf{T}')} \right).$$
Ad (sFT): 
$$\forall X \in H^{\circ} \left( t_{X}^{(\mathbf{T})}(F\Pi) = \left( X, t_{XW^{*}}^{(\mathbf{T}_{s})}, I \right) (F\Pi) = \left( X, t_{XW^{*}}^{(\mathbf{T}_{s})}, F, I \right)$$

$$= \left( X, t_{XW^{*}F}^{(\mathbf{T}_{s})}, I \right) = \left( X, t_{XW^{*}}^{(\mathbf{T}_{s})}, I \right) = t_{X}^{(\mathbf{T}')} = t_{X(F\Pi)}^{(\mathbf{T}')} \right).$$

/

Ad (sFM): 
$$\forall \rho \in \mathbf{T}[X, U], \ \sigma \in \mathbf{T}[Y, V] \left( (\rho \otimes \sigma)(F\Pi) \\ = ((X, \varphi, U) \otimes (Y, \psi, V))(F\Pi) \\ = (X \otimes Y, \varphi \otimes \psi, U \otimes V)(F\Pi) \\ = (X \otimes Y, \varphi \otimes \psi)F, U \otimes V) \\ = (X \otimes Y, \varphi F \otimes \psi F, U \otimes V) \\ = (X, \varphi F, U) \otimes (Y, \psi F, V) \\ = (X, \varphi, U)(F\Pi) \otimes (Y, \psi, V)(F\Pi) \\ = \rho(F\Pi) \otimes \sigma(F\Pi) \Big).$$

c) It remains to show that  $\Sigma$  is a left-adjoint of  $\Pi$ . We will prove in several steps that for every  $\underline{\mathbf{T}} \in |Th^{\circ}_{dht}(J)|$  and every  $\underline{\mathbf{T}}_{\mathbf{s}} \in |sTh^{\circ}_{dht}(J)|$  there is an isomorphism between the sets  $sTh^{\circ}_{dht}(J)[\underline{\mathbf{T}}\Sigma, \underline{\mathbf{T}}_{\mathbf{s}}]$  and  $Th^{\circ}_{dht}(J)[\underline{\mathbf{T}}, \underline{\mathbf{T}}_{\mathbf{s}}\Pi]$ .

**1.** A functor from a theory  $\underline{\mathbf{T}}$  into  $\underline{\mathbf{T}}(\Sigma \Pi)$ :

Define a mapping  $\Theta_{\mathbf{T}}$  on objects and morphisms of any Hoehnke theory by  $X\Theta_{\mathbf{T}} := X$  and  $\varphi \Theta_{\mathbf{T}} := (X, [\varphi]_{\varkappa}, Y)$  for  $\varphi \in \mathbf{T}[X, Y]$ . This mappings are well defined and the values are objects and morphisms of  $\underline{\mathbf{T}}(\Sigma \Pi)$ .

 $\Theta_{\mathbf{T}}: \underline{\mathbf{T}} \to \underline{\mathbf{T}}(\Sigma \Pi)$  is a functor, since the object mapping is compatible with "dom" and "cod" and

$$\begin{split} \mathbf{1}_{X}^{(\mathbf{T})} \Theta_{\mathbf{T}} &= \left(X, \left[\mathbf{1}_{X}^{(\mathbf{T})}\right]_{\varkappa}, X\right) = \left(X, \mathbf{1}_{XW^{*}}^{(\mathbf{T}(\Sigma))}, X\right) = \mathbf{1}_{X}^{((\mathbf{T}\Sigma)\Pi)} = \mathbf{1}_{X\Theta_{\mathbf{T}}}^{(\mathbf{T}(\Sigma\Pi))}, \\ (\varphi\psi)\Theta_{\mathbf{T}} &= (X, [\varphi\psi]_{\varkappa}, U) = (X, [\varphi]_{\varkappa}[\psi]_{\varkappa}, U) \\ &= (X, [\varphi]_{\varkappa}, Y)(Y, [\psi]_{\varkappa}, U) = (\varphi\Theta_{\mathbf{T}})(\psi\Theta_{\mathbf{T}}). \end{split}$$

Moreover,  $\Theta_{\mathbf{T}} : \underline{\mathbf{T}} \to \underline{\mathbf{T}}(\Sigma \Pi)$  is even a theory morphism because of the validity of (Th1), (sFD), (sFT), and (sFM) as follows:

 $\begin{aligned} \forall X \in |\mathbf{T}| \ (X\Theta_{\mathbf{T}} = X) \text{ by definition.} \\ \forall X \in |\mathbf{T}| \ \left( d_X^{(\mathbf{T})} \Theta_{\mathbf{T}} = \left( X, \left[ d_X^{(\mathbf{T})} \right]_{\varkappa}, X \otimes X \right) = \left( X, d_{XW^*}^{(\mathbf{T}\Sigma)}, X \otimes X \right) \\ &= d_X^{((\mathbf{T})\Sigma)\Pi} = d_{X\Theta_{\mathbf{T}}}^{(\mathbf{T}(\Sigma\Pi))} \right). \\ \forall X \in |\mathbf{T}| \ \left( t_X^{(\mathbf{T})} \Theta_{\mathbf{T}} = \left( X, \left[ t_X^{(\mathbf{T})} \right]_{\varkappa}, I \right) = \left( X, t_{XW^*}^{(\mathbf{T}\Sigma)}, I \right) = t_X^{((\mathbf{T})\Sigma)\Pi} \\ &= t_{X\Theta_{\mathbf{T}}}^{(\mathbf{T}(\Sigma\Pi))} \right). \\ \forall \varphi \in \mathbf{T}[X, U], \ \psi \in \mathbf{T}[Y, V] \ ((\varphi \otimes \psi)\Theta_{\mathbf{T}} = (X \otimes Y, [\varphi \otimes \psi]_{\varkappa}, U \otimes V) \\ &= (X, [\varphi]_{\varkappa}, U) \otimes (Y, [\psi]_{\varkappa}, V) = \varphi \Theta_{\mathbf{T}} \otimes \psi \Theta_{\mathbf{T}}). \end{aligned}$ 

In such a way, every theory morphism  $G' \in |sTh^{\circ}_{dht}(J)|$  determines uniquely a theory morphism  $G := \Theta_T(G'\Pi) \in Th^{\circ}_{dht}(J)[\underline{\mathbf{T}}, \underline{\mathbf{T}}_{\underline{\mathbf{s}}}\Pi].$ 

**2.** A construction of a strictly *d*-monoidal functor  $\overline{G} : \underline{\mathbf{T}} \to \mathbf{T}_{\mathbf{s}}$ :

To every theory morphism  $G \in Th^{\circ}_{dht}(J)[\underline{\mathbf{T}}, \underline{\mathbf{T}}_{\mathbf{s}}\Pi]$  there is assigned in a natural manner a strictly *d*-monoidal functor  $\overline{G}: \underline{\mathbf{T}} \to \underline{\mathbf{T}}_{\mathbf{s}}$  as follows:

Let be given any  $G \in Th^{\circ}_{dht}(J)[\underline{\mathbf{T}}, \mathbf{T}_{\mathbf{s}}\Pi]$ . Then

 $XG = X \ (X \in |\mathbf{T}|)$  and

$$\mathbf{T}[X,U] \ni \varphi \mapsto \varphi G = (X,\varphi_G,U) \in \mathbf{T}_{\mathbf{s}}\Pi[X,U],$$

where  $\varphi_G \in \mathbf{T}_{\mathbf{s}}[XW^*, UW^*]$ .

The agreements

 $H^\circ \ni X \mapsto X\Xi := XW^* \in S^\circ$ 

and

$$\begin{split} \mathbf{T_s}\Pi[X,U] \ni (X,\psi,U) \mapsto (X,\psi,U)\Xi := \psi \in \mathbf{T_s}[XW^*,UW^*] \\ \text{define a functor } \Xi : \underline{\mathbf{T_s}}\Pi \to \underline{\mathbf{T_s}} \text{ because of:} \end{split}$$

$$dom^{(\mathbf{T}_{\mathbf{s}})}((X,\psi,U)\Xi) = dom^{(\mathbf{T}_{\mathbf{s}})}(\psi) = XW^{*} = X\Xi = \left(dom^{(\mathbf{T}_{\mathbf{s}}\Pi)}(X,\psi,U)\right)\Xi,$$
  

$$cod^{(\mathbf{T}_{\mathbf{s}})}((X,\psi,U)\Xi) = cod^{(\mathbf{T}_{\mathbf{s}})}(\psi) = UW^{*} = U\Xi = \left(cod^{(\mathbf{T}_{\mathbf{s}}\Pi)}(X,\psi,U)\right)\Xi,$$
  

$$1_{X}^{(\mathbf{T}_{\mathbf{s}}\Pi)}\Xi = \left(X, 1_{XW^{*}}^{(\mathbf{T}_{\mathbf{s}})}, X\right)\Xi = 1_{XW^{*}}^{(\mathbf{T}_{\mathbf{s}})} = 1_{X\Xi}^{(\mathbf{T}_{\mathbf{s}})},$$
  

$$((X,\psi_{1},U)(U,\psi_{2},Y))\Xi = (X,\psi_{1}\psi_{2},Y)\Xi = \psi_{1}\psi_{2} = (X,\psi_{1},U)\Xi(U,\psi_{2},Y)\Xi.$$

 $\Xi : \underline{\mathbf{T}_{s}}\Pi \to \underline{\mathbf{T}_{s}}$  is a strictly *d*-monoidal functor since (sFD), (sFT), and (sFM) are valid:

$$d_X^{(\mathbf{T}_{\mathbf{s}}\Pi)} \Xi = \left(X, d_{XW^*}^{(\mathbf{T}_{\mathbf{s}})}, X \otimes X\right) \Xi = d_{XW^*}^{(\mathbf{T}_{\mathbf{s}})} = d_{X\Xi}^{(\mathbf{T}_{\mathbf{s}})},$$
$$t_X^{(\mathbf{T}_{\mathbf{s}}\Pi)} \Xi = \left(X, t_{XW^*}^{(\mathbf{T}_{\mathbf{s}})}, I\right) \Xi = t_{XW^*}^{(\mathbf{T}_{\mathbf{s}})} = t_{X\Xi}^{(\mathbf{T}_{\mathbf{s}})},$$
$$((X_1, \psi_1, U_1) \otimes (X_2, \psi_2, U_2)) \Xi = (X_1 \otimes X_2, \psi_1 \otimes \psi_2, U_1 \otimes U_2) \Xi$$
$$= \psi_1 \otimes \psi_2 = (X_1, \psi_1, U_1) \Xi \otimes (X_2, \psi_2, U_2) \Xi.$$

The compositum  $\overline{G} := G\Xi$  is strictly *d*-monoidal functor from  $\underline{\mathbf{T}}$  into  $\mathbf{T}_{\mathbf{s}}$ .

**3.** The induced theory morphism  $G' \in sTh_{dht}^{\circ}(J)$ :

Let G,  $\Xi$ , and  $\overline{G}$  be given as above. Then define a mapping G' by AG' := A for all  $A \in S^{\circ}$  and  $[\varphi]_{\varkappa}G' := \varphi \overline{G} = (\varphi G)\Xi = (X, \varphi_G, U)\Xi = \varphi_G \in \mathbf{T}_{\mathbf{s}}[XW^*, UW^*]$  for all  $\varphi \in \mathbf{T}[X, U]$ , where  $\varphi_G$  is a well-defined morphism of  $\mathbf{T}_{\mathbf{s}}$ .

Because of  

$$\varphi_1 \in \mathbf{T}[X_1, U_1] \land \varphi_2 \in \mathbf{T}[X_2, U_2] \land [\varphi_1]_{\varkappa} = [\varphi_2]_{\varkappa} \Rightarrow$$
  
 $\Rightarrow X_1 W^* = X_2 W^* := A \land U_1 W^* = U_2 W^* := B$   
 $\land c_{X_1}^{-1} \varphi_1 c_{U_1} = c_{X_2}^{-1} \varphi_2 c_{U_2} \in \mathbf{T_s}[AW, BW] \Rightarrow$ 

$$\Rightarrow (c_{X_1}^{-1}G)(\varphi_1G)(c_{U_1}G) = (c_{X_2}^{-1}G)(\varphi_2G)(c_{U_2}G) \in \mathbf{T_s}\Pi[A, B]$$
$$\Rightarrow \left(AW, \mathbf{1}_A^{(\mathbf{T_s})}, X_1\right) (X_1, (\varphi_1)_G, U_1) \left(U_1, \mathbf{1}_B^{(\mathbf{T_s})}, BW\right)$$
$$= \left(AW, \mathbf{1}_A^{(\mathbf{T_s})}, X_2\right) (X_2, (\varphi_2)_G, U_2) \left(U_2, \mathbf{1}_B^{(\mathbf{T_s})}, BW\right)$$
$$\Rightarrow (X_1, (\varphi_1)_G, U_1) = (X_2, (\varphi_2)_G, U_2)$$
$$\Rightarrow (\varphi_1)_G = (\varphi_2)_G,$$

possibly different representants of the same  $\varkappa$ -class of morphisms determine identical images, thus  $[\varphi_1]\varkappa G' = [\varphi_2]\varkappa G'$ .

The mapping G' determines a functor  $G': \underline{\mathbf{T}}\Sigma \to \underline{\mathbf{T}}_{\mathbf{s}}$  since

$$dom^{(\mathbf{T}_{\mathbf{s}})}([\varphi]_{\varkappa}G') = dom^{(\mathbf{T}_{\mathbf{s}})}(\varphi_{G}) = XW^{*} = (XW^{*})G' = \left(dom^{(\mathbf{T}\Sigma)}([\varphi]_{\varkappa})\right)G',$$

$$cod^{(\mathbf{T}_{\mathbf{s}})}([\varphi]_{\varkappa}G') = cod^{(\mathbf{T}_{\mathbf{s}})}(\varphi_{G}) = UW^{*} = (UW^{*})G' = \left(cod^{(\mathbf{T}\Sigma)}([\varphi]_{\varkappa})\right)G',$$

$$\left(1_{A}^{(\mathbf{T}\Sigma)}\right)G' = \left(\left[1_{AW}^{(\mathbf{T})}\right]_{\varkappa}\right)G' = \left(1_{AW}^{(\mathbf{T})}\right)\overline{G} = \left(1_{AW}^{(\mathbf{T})}\right)(G\Xi) = \left(\left(1_{AW}^{(\mathbf{T})}\right)G\right)\Xi$$

$$= \left(1_{(AW)G}^{(\mathbf{T}_{\mathbf{s}}\Pi)}\right)\Xi = 1_{((AW)G)\Xi}^{(\mathbf{T}_{\mathbf{s}})} = 1_{A}^{(\mathbf{T}_{\mathbf{s}})} = 1_{AG'}^{(\mathbf{T}_{\mathbf{s}})},$$

$$([\varphi]_{\varkappa}[\psi]_{\varkappa})G' = ([\varphi c_{U,Y}\psi]_{\varkappa})G' = (\varphi c_{U,Y}\psi)\overline{G} = (\varphi \overline{G})(c_{U,Y}\overline{G})(\psi\overline{G})$$

$$= \varphi_{G}\psi_{G} = ([\varphi]_{\varkappa}G')([\psi]_{\varkappa}G').$$

Moreover, G' is even a theory morphism in  $sTh_{dht}^{\circ}(J)$  because of the validity of (Th1) by definition and the validity of (sFD), (sFT), and (sFM) as follows:

$$\begin{pmatrix} d_A^{(\mathbf{T}\Sigma)} \end{pmatrix} G' = \begin{bmatrix} d_A^{(\mathbf{T})} \end{bmatrix}_{\varkappa} G' = d_A^{(\mathbf{T})} \overline{G} = d_{AW}^{(\mathbf{T}_s\Pi)} \Xi = d_A^{(\mathbf{T}_s)} = d_{AG'}^{(\mathbf{T}_s)},$$
$$\begin{pmatrix} t_A^{(\mathbf{T}\Sigma)} \end{pmatrix} G' = \begin{bmatrix} t_A^{(\mathbf{T})} \end{bmatrix}_{\varkappa} G' = t_A^{(\mathbf{T})} \overline{G} = t_{AW}^{(\mathbf{T}_s\Pi)} \Xi = t_A^{(\mathbf{T}_s)} = t_{AG'}^{(\mathbf{T}_s)},$$

$$([\varphi]_{\varkappa} \otimes [\psi]_{\varkappa})G' = ([\varphi \otimes \psi]_{\varkappa})G' = (\varphi \otimes \psi)\overline{G} = (\varphi\overline{G}) \otimes (\psi\overline{G}) =$$
$$= [\varphi]_{\varkappa}G' \otimes [\psi]_{\varkappa}G'.$$

By the functor  $\Pi : sTh^{\circ} - dht(J) \to Th^{\circ}_{dht}(J), \ G'\Pi : \underline{\mathbf{T}}(\Sigma\Pi) \to \underline{\mathbf{T}}_{\mathbf{s}}\Pi$  is a theory morphism.

Moreover, this theory morphism has the property

$$G = \Theta_{\mathbf{T}}(G'\Pi).$$

This is a consequence of

$$H^{\circ} \ni X \mapsto X(\Theta_{\mathbf{T}}(G'\Pi)) = (X\Theta_{\mathbf{T}})(G'\Pi) = X(G'\Pi) = X = XG$$

and

$$\mathbf{T}[X,U] \ni \varphi \mapsto \varphi(\Theta_{\mathbf{T}}(G'\Pi)) = (\varphi \Theta_{\mathbf{T}})(G'\Pi) = (X, [\varphi]_{\varkappa}, U)(G'\Pi) =$$

$$= (X, [\varphi]_{\varkappa}G', U) = (X, \varphi_G, U) = \varphi G.$$

Finally, let  $L : \underline{\mathbf{T}}\Sigma \to \underline{T_s}$  be a theory morphism such that  $\Theta_{\mathbf{T}}(L\Pi) = G$ . Then

$$\forall X \in H^{\circ} \ ((XW^*)G' = XW^* = (XW^*)G)$$

and

$$\begin{split} \forall X, U \in H^{\circ} \ \forall \varphi \in \mathbf{T}[X, U] \ ((X, [\varphi]_{\varkappa} G', U) = (X, \varphi \overline{G}, U) = \varphi G = \\ &= \varphi(\Theta_{\mathbf{T}})(L\Pi)) = (\varphi \Theta_{\mathbf{T}})(L\Pi) = (X, [\varphi]_{\varkappa}, U)(L\Pi) = (X, [\varphi]_{\varkappa} L, U) \\ &\Rightarrow [\varphi]_{\varkappa} G' = [\varphi]_{\varkappa} L), \end{split}$$

thus L = G', i.e. G' is the only theory morphism in  $sTh^{\circ}_{dht}(J)$  with the property

$$G = \Theta_{\mathbf{T}}(G'\Pi).$$

209



The diagram illustrates the individual *d*-monoidal functors and theory morphisms, respectively, which are considered in the proof of the last theorem. This diagram is commutative in all of its parts, namely  $G = \Theta_{\mathbf{T}}(G'\Pi)$  was shown above,  $\overline{G} = G\Xi$  by definition, and  $\overline{G} = \Psi G'$  follows by

$$X(\Psi G') = (X\Psi)G' = (XW^*)G' = XW^* = X\overline{G}$$

and

$$\varphi(\Psi G') = (\varphi \Psi)G' = [\varphi]_{\varkappa}G' = \varphi_G = \varphi\overline{G}.$$

**Corollary 4.13.** The theory morphisms  $\Theta_T$ ,  $\underline{\mathbf{T}} \in |Th^{\circ}_{dht}(J)|$  form a natural transformation  $\Theta : Id_{Th^{\circ}_{dht}(J)} \to \Sigma \Pi$ .

**Proof.**  $\Theta = (\Theta_T \mid \underline{T} \in |Th^{\circ}_{dht}(J)|)$  is a natural transformation  $\Theta : Id_{Th^{\circ}_{dht}(J)} \to \Sigma \Pi$  because of the commutativity of the following diagram for arbitrary theories and theory morphisms of  $Th^{\circ}_{dht}(J)$ :



Let X be any object of  $\underline{\mathbf{T}}$ . Then

$$X(F\Theta_{\mathbf{T}'}) = (XF)\Theta_{\mathbf{T}'} = X\Theta_{\mathbf{T}'} = X$$

and

$$X(\Theta_{\mathbf{T}}F(\Sigma\Pi)) = (X\Theta_{\mathbf{T}})((F\Sigma)\Pi) = X.$$

For every morphism  $\varphi \in \mathbf{T}[X, U]$  one has

$$\varphi(F\Theta_{\mathbf{T}'}) = (\varphi F)\Theta_{\mathbf{T}'} = (X, [\varphi F]_{\varkappa'}, U)$$

and

$$\begin{split} \varphi(\Theta_{\mathbf{T}}F(\Sigma\Pi) &= (\varphi\Theta_{\mathbf{T}})((F\Sigma)\Pi) = \\ &= (X, [\varphi]_{\varkappa}, U)((F\Sigma)\Pi)) = \\ &= (X, [\varphi]_{\varkappa}(F\Sigma), U) = (X, [\varphi F]_{\varkappa'}, U), \end{split}$$

hence

$$\Theta_{\mathbf{T}}F(\Sigma\Pi) = F\Theta_{\mathbf{T}'}.$$

## References

- G. Birkhoff and J.D. Lipson, *Heterogeneous algebras*, J. Combinat. Theory 8 (1970), 115–133.
- [2] L. Budach and H.-J. Hoehnke, Automaten und Funktoren, Akademie Verlag, Berlin 1975 (the part: "Allgemeine Algebra der Automaten", by H.-J. Hoehnke).
- [3] S. Eilenberg and G.M. Kelly, Closed categories, pp. 421–562 in: Proc. Conf. Categorical Algebra (La Jolla, 1965), Springer, New York 1966.
- [4] P.J. Higgins, Algebras with a scheme of operators, Math. Nachr. 27 (1963), 115–132.
- [5] H.-J. Hoehnke, On partial algebras, p. 373–412 in: Colloq. Soc. J. Bolyai, Vol. 29, "Universal Algebra; Esztergom (Hungary) 1977", North-Holland, Amsterdam, 1981.
- [6] G.M. Kelly, On MacLane's conditions for coherence of natural associativities, commutativities, etc., J. Algebra 4 (1964), 397–402.
- [7] G.M. Kelly and S. MacLane, Coherence in closed categories, + Erratum, Pure Appl. Algebra 1 (1971), 97–140, 219.
- [8] F.W. Lawvere, Functorial semantics of algebraic theories, Proc. Nat. Acad. Sci. U.S.A. 50 (1963), 869–872.
- [9] S. MacLane, Natural associativity and commutativity, Rice Univ. Studies 49 (1963), no. 4, 28–46.
- [10] J. Schreckenberger, Uber die zu monoidalen Kategorien adjungierten Kronecker-Kategorien, Dissertation (A), Päd. Hochschule, Potsdam 1978.
- [11] J. Schreckenberger, Über die Einbettung von dht-symmetrischen Kategorien in die Kategorie der partiellen Abbildungen zwischen Mengen, Preprint P-12/80, Zentralinst. f. Math., Akad. d. Wiss. d. DDR, Berlin 1980.
- [12] J. Schreckenberger, Zur Theorie der dht-symmetrischen Kategorien, Disseration (B), Päd. Hochschule Potsdam, Math.-Naturwiss. Fak., Potsdam 1984.
- [13] H.-J. Vogel, Eine kategorientheoretische Sprache zur Beschreibung von Birkhoff-Algebren, Report R-Math-06/84, Inst. f. Math., Akad. d. Wiss. d. DDR, Berlin 1984.
- [14] H.-J. Vogel, On functors between dht∇-symmetric categories, Discuss. Math.– Algebra & Stochastic Methods, 18 (1998), 131–147.
- [15] H.-J. Vogel, On properties of dht∇-symmetric categories, Contributions to General Algebra 11 (1999), 211–223.

Received 25 July 2003 Revised 21 October, 2003