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Abstract

The categorical concept of a theory for algebras of a given type was
foundet by Lawvere in 1963 (see [8]). Hoehnke extended this concept
to partial heterogenous algebras in 1976 (see [5]). A partial theory is
a dhts-category such that the object class forms a free algebra of type
(2,0,0) freely generated by a nonempty set J in the variety determined
by the identities ox ≈ o and xo ≈ o, where o and i are the elements
selected by the 0-ary operation symbols.

If the object class of a dhts-category forms even a monoid with unit
element I and zero element O, then one has a strict partial theory.

In this paper is shown that every J-sorted partial theory corre-
sponds in a natural manner to a J-sorted strict partial theory via a
strongly d-monoidal functor. Moreover, there is a pair of adjoint func-
tors between the category of all J-sorted theories and the category of
all corresponding J-sorted strict theories.

This investigation needs an axiomatic characterization of the fun-
damental properties of the category Par of all partial function between
arbitrary sets and this characterization leads to the concept of dhts-
and dhth∇s-categories, respectively (see [5], [11], [13]).
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1. Introduction

Heterogeneous algebras (many-sorted algebras) are, as well-known, algebraic
systems consisting of a family of carrier sets and a family of functions such
that their definition domain are cartesian products of certain carrier sets
and their values are elements of a distinguished carrier set. The concept of
such algebraic systems was independently introduced and investigated by
P.J. Higgins ([4]) and G. Birkhoff & J.D. Lipson ([1]).

The development of a functorial semantic of algebraic theories
for heterogeneous partial algebras requires a good knowledge about
diagonal-halfterminal-halfdiagonal-inversional-symmetric monoidal cate-
gories (dhth∇s-categories).

The morphism class of a category K will be denoted by K too, the
object class of K by |K|, and the set of all morphisms in K out of an object
A into an object B by K[A,B].

The concept of a symmetric monoidal category in the sense of ([3]) is of
fundamental importance.

Definition 1.1 ([3]). A sequence

K• = (K,⊗, I, a, r, l, s)

is called symmetric monoidal category, if K is a category, ⊗ : K×K→K is
a bifunctor, I is a distinguished object of K, a = (aA,B,C ∈ K[A⊗ (B⊗C),
(A ⊗ B) ⊗ C] | A,B,C ∈ |K|), r = (rA ∈ K[A ⊗ I, A] | A ∈ |K|),
l = (lA ∈ K[I⊗A,A] | A ∈ |K|), s = (sA,B ∈ K[A⊗B,B⊗A] | A, B ∈ |K|)
are families of isomorphisms in K (associativity, right-identity, left-identity,
symmetry) such that

(F1) ∀ρ, ρ′ ∈ K (dom (ρ⊗ ρ′) = dom ρ⊗ dom ρ′),

(F2) ∀ρ, ρ′ ∈ K (cod (ρ⊗ ρ′) = cod ρ⊗ cod ρ′),

(F3) ∀A,B ∈ |K| (1A⊗B = 1A ⊗ 1B),

(F4) ∀A,B, C, A′, B′, C ′ ∈ |K| ∀ρ ∈ K[A,B], σ ∈ K[B, C],

ρ′ ∈ K[A′, B′], σ′ ∈ K[B′, C ′] ((ρ⊗ ρ′)(σ ⊗ σ′) = ρσ ⊗ ρ′σ′),

(M1) ∀A,B, C, D ∈ |K|
(aA,B,C⊗DaA⊗B,C,D = (1A ⊗ aB,C,D)aA,B⊗C,D(aA,B,C ⊗ 1D)),

(M2) ∀A,B ∈ |K| (aA,I,B(rA ⊗ 1B) = 1A ⊗ lB),
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(M3) ∀A,B, C∈|K|(aA,B,CsA⊗B,CaC,A,B =(1A⊗sB,C)aA,C,B(sA,C⊗1B)),

(M4) ∀A,B ∈ |K| (sA,BsB,A = 1A⊗B),

(M5) ∀A ∈ |K| (sA,I lA = rA),

(M6) ∀A,B, C,A′, B′, C ′∈|K| ∀ρ ∈ K[A, A′], σ ∈ K[B, B′], τ ∈ K[C, C ′]

(aA,B,C((ρ⊗ σ)⊗ τ) = (ρ⊗ (σ ⊗ τ))aA′,B′,C′),
(M7) ∀A,A′ ∈ |K| ∀ρ ∈ K[A,A′] (rAρ = (ρ⊗ 1I)rA′),

(M8) ∀A,B ∈ |K| ∀ρ ∈ K[A,A′], σ ∈ K[B,B′] (sA,B(σ ⊗ ρ) =

= (ρ⊗ σ)sA′,B′).

A symmetric monoidal category is called symmetric strictly monoidal, if
all associativity, right-identity, and all left-identity isomorphisms, are unit
morphisms, i.e. identity morphisms in K (in the other terminology), only.

The defining conditions determine a lot of properties as follows.

Corollary 1.2. Let K• be a symmetric monoidal category. Then

(M9) ∀A, B ∈ |K| (aI,A,B(lA ⊗ 1B) = lA⊗B),

(M10) ∀A,B ∈ |K| (aA,B,IrA⊗B = 1A ⊗ rB),

(M11) rI = lI ,
(M12) sI,I = 1I⊗I ,

(M13) ∀A ∈ |K| (sI,ArA = lA),

(M14) ∀A,A′ ∈ |K| ∀ρ ∈ K[A,A′] (lAρ = (1I ⊗ ρ)lA′),

(ASR) ∀A, B ∈ |K| (a−1
A,B,I(1A ⊗ sB,I)aA,I,B = rA⊗B(r−1

A ⊗ 1B)),

(ASL) ∀A,B ∈ |K| (aI,A,B(sI,A ⊗ 1B)a−1
A,I,B = lA⊗B(1A ⊗ l−1

B )).

Defining

(B1) bA,B,C,D := aA⊗B,C,D(a−1
A,B,C(1A ⊗ sB,C)aA,C,B ⊗ 1D)a−1

A⊗C,B,D

for arbitrary A,B, C,D ∈ |K|,

one obtains furthermore
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(B2) ∀A,B, C,D ∈ |K| (bA,B,C,D =

= a−1
A,B,C⊗D(1A ⊗ aB,C,D(sB,C ⊗ 1D)a−1

C,B,D)aA,C,B⊗D),

(M15) ∀A, B,C, D, A′, B′, C ′, D′ ∈ |K| ∀ρ ∈ K[A,A′], σ ∈ K[B, B′],

λ ∈ K[C,C ′], µ ∈ K[D, D′]

(bA,B,C,D((ρ⊗ σ)⊗ (λ⊗ µ) = ((ρ⊗ λ)⊗ (σ ⊗ µ)bA′,B′,C′,D′),

(M16) ∀A, B,C, D ∈ |K| (bA,B,C,DbA,C,B,D = 1A⊗B ⊗ 1C⊗D),
(M17) ∀A, B,C, D ∈ |K| (bA,B,C,D(sA,C ⊗ sB,D) = sA⊗B,C⊗DbC,D,A,B,

(M18) ∀A, A′, B, B′, C, C ′ ∈ |K|
(b(A,(B⊗C)),A′,(B′⊗C′)(1A⊗A′ ⊗ bB,C,B′,C′)aA⊗A′,B⊗B′,C⊗C′

= (aA,B,C ⊗ aA′,B′,C′)b(A⊗B),C,(A′⊗B′),C′(bA,B,A′,B′ ⊗ 1C⊗C′)),
or equivalently,

∀A,A′, B,B′, C, C ′ ∈ |K|
(aA⊗A′,B⊗B′,C⊗C′(bA,A′,B,B′ ⊗ 1C⊗C′)b(A⊗B),(A′⊗B′),C,C′

= (1A⊗A′ ⊗ bB,B′,C,C′)bA,A′,(B⊗C),(B′⊗C′)(aA,B,C ⊗ aA′,B′,C′)),

(M19) ∀A, B ∈ |K| (bA,I,I,B = 1A⊗I ⊗ 1I⊗B),

(M20) ∀A, B ∈ |K| (bA,I,B,I = (rA ⊗ rB)((1A⊗B ⊗ rI)rA⊗B)−1),

(M21) ∀A, B ∈ |K| (bI,A,I,B = (lA ⊗ lB)((lI ⊗ 1A⊗B)lA⊗B)−1),

(M22) ∀A, B ∈ |K| (bI,A,B,I = sI⊗A,B⊗I(sB,I ⊗ sI,A)),

(M23) ∀A, B ∈ |K| (bA,B,I,I = (1A⊗B ⊗ rI)rA⊗B(r−1
A ⊗ r−1

B )),

(M24) ∀A, B ∈ |K| (bI,I,A,B = (lI ⊗ 1A⊗B)lA⊗B(l−1
A ⊗ l−1

B )).

Remark 1.3. By definition, the object class of a symmetric monoidal
category K• forms an illegitimate algebra (|K|,⊗, I) of type (2, 0), because
the carrier is not a set.

Especially, of interest are objects consisting of finitely many factors I
in arbitrary brackets, namely objects of the subalgebra 〈I〉 generated by the
one element set {I} as follows:

〈I〉(0) := {I}, 〈I〉(n+1) := 〈I〉(n) ∪ {X ⊗ Y | X, Y ∈ 〈I〉(n)},

〈I〉 :=
⋃

n ∈ N
〈I〉(n).
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This is in fact an algebra of type (2, 0). The set 〈I〉 determines in a natural
manner a symmetric monoidal subcategory 〈I〉• of K•.

Moreover, every nonempty set J ⊆ |K|, I /∈ J , determines a subalgebra
H of type (2, 0) as follows:

H(0) := J ∪ {I}, H(n+1) := H(n) ∪ {X ⊗ Y | X, Y ∈ H(n)},

H :=
⋃

n ∈ N
H(n).

The symmetric monoidal subcategory of K• generated by H, respectively
by J , will be denoted by H•. Obviously, H• is a small category, since the
carrier is a set.

If K• is a symmetric strictly monoidal category, then (|K|,⊗, I) is an
illegitimate monoid, 〈I〉 is a one element set and every set J generates a
monoid S with unit I.

Definition 1.4 ([10]). Let K• be a symmetric monoidal category. The
monoidal subcategory C•

K of K• generated by the morphism class

{1X |X∈|K|}∪{aX,Y,Z |X,Y, Z∈|K|} ∪ {rX |X∈|K|} ∪ {lX |X∈|K|}

∪{a−1
X,Y,Z |X,Y, Z∈|K|} ∪ {r−1

X |X∈|K|} ∪ {l−1
X |X∈|K|}

is called central subcategory of K•, its morphisms are called central mor-
phisms of K•.

Remark 1.5. The class CK of all central morphisms of a symmetric monoidal
category K• is given by the construction

C(0)
K :={1X |X∈|K|}∪{aX,Y,Z |X, Y, Z∈|K|}∪{rX |X∈|K|}∪{lX |X∈|K|}

∪{a−1
X,Y,Z |X,Y, Z∈|K|} ∪ {r−1

X |X∈|K|} ∪ {l−1
X |X∈|K|},

C(n+1)
K := C(n)

K ∪ {c1c2 | c1∈K[X, Y ] ∧ c2∈K[Y, P ] ∧ c1, c2 ∈ C(n)
K

∧X, Y, P ∈|K|} ∪ {c1 ⊗ c2 | c1, c2∈C(n)
K },

CK =
⋃

n∈N
C(n)

K

and forms a monoidal subcategory C•
K of K•.
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CK consists of unit morphisms only, if K• is symmetric strictly monoidal.
The class of all unit morphisms of K is denotetd by UnK .

Coherence principle ([9], [6], [7]). Let K• be a symmetric monoidal cate-
gory. Then every planar closed diagram of central morphisms is commuta-
tive.

Corollary 1.6. Let K• be a symmetric monoidal category. Then, by the
coherence principle, there is at most one central morphism cX,Y ∈ K be-
tween objects X and Y for every X, Y ∈ |K|. The central morphisms are
isomorphisms only.

Let X and Y be arbitrary objects of 〈I〉•. Then there is exactly one
central morphism in the set 〈I〉[X,Y ].

The isomorphisms

i(n) : In → I and i∗(n) :
n

⊗∗
k = 1

I → I,

where In :=
n

⊗
k = 1

I and
1

⊗∗
k = 1

I := I,
n + 1

⊗∗
k = 1

I := I ⊗
(

n

⊗∗
K = 1

I

)
,

between the different powers of I and the object I are expressable in the
following form:

i(1) = 1I , i(n+1) = (i(n) ⊗ 1I)rI , n ≥ 1, especially i(2) = rI ,

i∗(1) = 1I , i∗(n+1) = (1I ⊗ i∗(n))lI , n ≥ 1, especially i∗(2) = lI .

Proof. It remains to show the existence of an central morphism between
arbitrary X and Y of 〈I〉.

a) One proves by induction over the complexity of X: ∀X ∈ 〈I〉 ∃c ∈
〈I〉[X, I] (c ∈ CK) :

∀X ∈ 〈I〉(0) (X = I ∧ 1I ∈ CK);

∀n ∈ N [∀X ∈ 〈I〉(n) ∃c ∈ 〈I〉[X, I] (c ∈ CK) ⇒

⇒ ∀X ∈ 〈I〉(n+1) ∃c ∈ 〈I〉[X, I] (c ∈ CK)],
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since

∀X ∈ (〈I〉(n+1) \ 〈I〉(n)) ∃X1, X2 ∈ 〈I〉(n) ∃ci ∈ 〈I〉[Xi, I] ∩CK (i = 1, 2)

(X = X1 ⊗X2 ∧ c1 ⊗ c2 ∈ CK ⇒ (c1 ⊗ c2)rI ∈ 〈I〉[X, I] ∩CK).

b) One proves by induction over the complexity of Y :

∀X ∈ 〈I〉 ∀Y ∈ 〈I〉 ∃c ∈ 〈I〉[X,Y ] (c ∈ CK).

The truth of the assertion for an arbitrary X ∈ 〈I〉 and for Y ∈ 〈I〉(0) was
shown in a).

∀X ∈ 〈I〉 ∀n ∈ N [∀Y ∈ 〈I〉(n) ∃c ∈ 〈I〉[X, Y ] (c ∈ CK) ⇒

⇒ ∀Y ∈ 〈I〉(n+1) ∃c ∈ 〈I〉[X, Y ] (c ∈ CK)],

since

∀Y ∈ (〈I〉(n+1) \ 〈I〉(n)) ∃Y1, Y2 ∈ 〈I〉(n) ∃c1 ∈ 〈I〉[X, Y1] ∩CK

∃c2 ∈ 〈I〉[I, Y2] ∩CK

(Y = Y1 ⊗ Y2 ∧ c1 ⊗ c2 ∈ CK ⇒ r−1
X (c1 ⊗ c2) ∈ 〈I〉[X,Y ] ∩CK).

Definitions 1.7. Let K• be a symmetric monoidal category in the sense
of [3].

A sequence (K•; d) is called diagonal-symmetric monoidal category
(shortly ds-category) (in [2] considered in the strict case as a special Kronec-
ker-category, in [13] as “diagonal-symmetrische Kategorie”), if d = (dA ∈
K[A,A⊗A] | A ∈ |K|) is a family of morphisms of K such that

(D1) ∀A,A′ ∈ |K| ∀ϕ ∈ K[A,A′] (ϕd[A′ = dA(ϕ⊗ ϕ)),

(D2) ∀A ∈ |K| (dA(dA ⊗ 1A) = dA(1A ⊗ dA)aA,A,A),

(D3) ∀A ∈ |K| (dAsA,A = dA),

(D4) ∀A,B ∈ |K| ((dA ⊗ dB)bA,A,B,B = dA⊗B)
are fulfilled.
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(K•, d, t) is called diagonal-terminal-symmetric monoidal category
(dts-category) ([2]), if (K•, d) is a ds-category with a family t = (tA | A ∈
|K|) of terminal morphisms tA ∈ K[A, I] such that the conditions

(T1) ∀A,A′ ∈ |K| ∀ϕ ∈ K[A,A′] (ϕtA′ = tA)
and

(DTR) ∀A ∈ |K| (dA(1A ⊗ tA)rA = 1A)

are right.

(K•; d, t, o) will be called diagonal-halfterminal-symmetric monoidal cate-
gory or Hoehnke category (shortly dhts-category) ([5], [11], [13]) , if d and t
are morphism families as above and o : I → O is a distinguished morphism
in K related to a distinguished object O ∈ |K|, such that

(D1) ∀A,A′ ∈ |K| ∀ϕ ∈ K[A,A′] (dA(ϕ⊗ ϕ) = ϕdA′),

(DTR) ∀A ∈ |K| (dA(1A ⊗ tA)rA = 1A),

(DTL) ∀A ∈ |K| (dA(tA ⊗ 1A)lA = 1A),

(DTRL) ∀A1, A2∈|K|(dA1⊗A2((1A1⊗tA2)rA1⊗(tA1⊗1A2)lA2)=1A1⊗A2)),

(TT) ∀A,B ∈ |K| (tA⊗B = (tA ⊗ tB)tI⊗I),

(O1) ∀A ∈ |K| (A⊗O = O ⊗A = O),

(o1) ∀A ∈ |K| ∀ϕ ∈ K[A,O] (tAo = ϕ),
and
(o2) ∀A ∈ |K| ∀ψ ∈ K[O, A] ((1A ⊗ tO)rA = ψ)

are fulfilled.
(K•; d, t,∇, o) is called diagonal-halfterminal-halfdiagonal-inversional-sym-
metric monoidal category or Hoehnke category with halfdiagonalinversions
(for short dhth∇s-category, in [13] named dht∇-symmetric category), if
(K•; d, t, o) is a dhts-category endowed with a morphism family

∇ = (∇A ∈ K[A⊗A,A] | A ∈ |K|) fulfilling
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(D∗1) ∀A ∈ |K| (dA∇A = 1A),

(D∗2) ∀A ∈ |K| (∇AdAdA⊗A = dA⊗A(∇AdA ⊗ 1A⊗A)).

Any ds-, dts-, dhts-, and dhth∇s-category, respectively, is called strict, if
the underlying symmetric monoidal category is strictly monoidal.

The zero morphisms oA,B absorb all other morphisms at composition
and ⊗-operation in any dhts-category, i.e.

(o3) ∀A,A′, B, B′ ∈ |K| ∀ρ ∈ K[A,A′], σ ∈ K[B,B′]

(ρoA′,B = oA,B ∧ oA,Bσ = oA,B′),

(o4) ∀A,B, C, D ∈ |K| ∀ξ ∈ K[C,D]

(oA,B ⊗ ξ = oA⊗C,B⊗D ∧ ξ ⊗ oA,B = oC⊗A,B⊗D),

(o5) ∀A ∈ |K| (oO,A = (1A ⊗ tO)rA = (tO ⊗ 1A)lA).

Because of (o1) and (o2), the unit morphism 1O is identical with the zero
morphism oO,O.

The category Par of all partial functions between arbitrary sets is an
example for a dhth∇s-category.

In view of the properties of the category Par we will consider mainly
dhts-categories fulfilling the conditions

(N1) ∀A, B ∈ |K| (A⊗B = O ⇒ (A = O ∨ B = O)),

(N2) ∀A, B, C, D ∈ |K| ∀ϕ ∈ K[A,B] ∀ψ ∈ K[C, D]

(ϕ⊗ ψ = oA⊗C,B⊗D ⇒ (ϕ = oA,B ∨ ψ = oC,D)).

(N3) I 6= O,

(N4) ∀A ∈ |K| \ {∅} (1A 6= oA,A).
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Observe that (K•; d) is a ds-category for each dhts-category (K•; d, t, o) and
∇ is the only family in a dhth∇s-category with the properties (D∗1) and (D∗2),
cf. [11].

Any dhts-category K = (K•; d, t, o) has the following properties:

• The class TK := {ϕ ∈ K | ϕtcodϕ = tdomϕ} of so-called total morphisms of
K forms a dts-subcategory TK of K ([12]).

• (A⊗B, (1A ⊗ tB)rA, (tA ⊗ 1B)lB)

is a categorical product in TK , but not in the whole category K. The mor-
phisms

pA,B
1 := (1A ⊗ tB)rA and pA,B

2 := (tA ⊗ 1B)lB

are called the canonical projections concerning A and B ([5]).
• The class IsoK of all isomorphisms of K forms a symmetric monoidal
subcategory Iso•K and one has

UnK ⊆ CK ⊆ IsoK ⊆ CorK ⊆ TK ,

where CorK denotes the subcategory of all coretractions of K.

• The relation ≤ defined by

ϕ ≤ ψ :⇔ ∃A,A′ ∈ |K| (ϕ,ψ ∈ K[A,A′] ∧ ϕ = dA(ϕ⊗ ψ)pA′,A′
2 )

is a partial order relation and it is compatible with composition and
⊗-operation of morphisms ([11]). Moreover, the following conditions are
equivalent ([12]):

ϕ = dA(ϕ⊗ ψ)pA′,A′
2 ,

ϕ = dA(ψ ⊗ ϕ)pA′,A′
1 ,

ϕdA′ = dA(ϕ⊗ ψ),

ϕdA′ = dA(ψ ⊗ ϕ).
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• Each morphism ϕ ∈ K determines a so-called subidentity α(ϕ) as follows
([11]):

α(ϕ) := ddomϕ(1domϕ ⊗ ϕ)pdomϕ,codϕ
1 ≤ 1domϕ.

Moreover, each dhth∇s-category has the properties

(h∇1) ∀A, A′∈|K| ∀ϕ∈K[A,A′] (∇AϕdA′=dA⊗A(∇Aϕ⊗ (ϕ⊗ ϕ)∇A′)),

(hT1) ∀A,A′ ∈ |K| ∀ϕ ∈ K[A,A′] (ϕtA′dI = dA(ϕtA′ ⊗ tA)),

therefore ∇Aϕ ≤ (ϕ⊗ϕ)∇A′ and ϕtA′ ≤ tA for all morphisms ϕ ∈ K[A,A′]
and all objects A, A′ ∈ |K| ([15]).

Every morphism set K[A, B] of a dhth∇s-category K forms a meet-
semilattice with respect to ϕ ∧ ψ = dA(ϕ⊗ ψ)∇B. This semilattice has the
minimum oA,B, maximal elements are the total morphisms. Especially, the
morphism sets K[A, I] possess a maximum, namely tA.

The basic morphisms related to the distinguished object I in any sym-
metric monoidal category, any dhts-category, or even any dhth∇s-category
have some interesting properties as follows:

Lemma 1.8. Let K• be a symmetric monidal category. Then one has

aI,I,I = r−1
I ⊗ rI .

Moreover, every dhts−category K has in addition the properties

dI = r−1
I , rIdI = 1I⊗I , tI = 1I ([11]), tI⊗I = rI ,

i ∈ IsoK [I, I] ⇒ i = tI ,

∀X ∈ |K| ∀x ∈ K[I, X] (x ∈ IsoK ⇒ x−1 = tX).

Finally, if K is a dhth∇s-category, then the additional property

∇I = rI

is true.
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Proof. The identity aA,I,B(rA ⊗ 1B) = 1A ⊗ lB is one of the defining
properties of monoidal-symmetric categories, hence aI,I,I(rI ⊗ 1I) = 1I ⊗ rI

by rI = lI and aI,I,I = (r−1
I ⊗ rI), since all right-identity morphisms are

isomorphisms.
In any dhts-category one has the defining identity dA(1A⊗ tA)rA = 1A,

hence 1I = dI(1I ⊗ tI)rI = dI(1I ⊗ 1I)rI = dIrI , since tI = 1I , consequently
dI = r−1

I and rIdI = 1I⊗I .
Each coretraction ϕ ∈ K[A,B] of a dhts-category has the property

ϕtB = tA. Because dI is even an isomorphism, one observes dItI⊗I = tI =
1I , therefore tI⊗I = 1I⊗ItI⊗I = rIdItI⊗I = rI1I = rI .

One of the characterizing conditions of the diagonal inversions in a
dhth∇s-category is dA∇A = 1A. Therefore, ∇I = 1I⊗I∇I = rIdI∇I = rI as
above. Now let i ∈ K[I, I] be an isomorphism of a dhts-category K. Then
i = i1I = itI = tI , because of 1i = tI .

Let x ∈ K[I,X] be an isomorphism in a dhts-category K. Then one
obtains in the same manner as above 1I = tI = xtX , hence the assertion.

Remark 1.9. Let K be a dhts-category. Then its object class |K| forms
an illegitimate algebra (|K|,⊗, I, O) of type (2, 0, 0). Let J be a nonempty
set such that J ∩ {I, O} = ∅. Then J generates in |K| a subalgebra H◦ of
type (2, 0, 0):

H◦(0) := J ∪ {I, O}, H◦(n+1) := H◦(n) ∪ {X ⊗ Y | X, Y ∈ H◦(n)},

H◦ :=
⋃

n ∈ N
H◦(n).

The dhts-subcategory of K generated by H◦, respectively by J , will be
denoted by H◦. Obviously, H◦ is again a small category.

Let K be a strict dhts-category. Then the algebra S◦ := (H◦,⊗, I, O)
generated by a set J is a monoid with unit I and zero O.

2. Hoehnke theories

Let G denote the variety of all algebras of type type (2, 0) (groupoids with
a distinguished element I). Note that the distinguished element I does
not play the role of a unit element in general. By the principles of General
Algebra, every set J determines in G a free G-algebra FG(J) freely generated
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by J . The algebra FG(J) contains a subalgebra 〈I〉 consisting of all possible
products of I as follows:

〈I〉(0) := {I}, 〈I〉(n+1) := 〈I〉(n)∪{X⊗Y |X,Y ∈ 〈I〉(n)}, 〈I〉 :=
⋃

k ∈ N
〈I〉(k).

Every algebra A = (A;⊗, I) ∈ G can be transfered into an algebra (A;⊗, I, O)
of type (2, 0, 0) by addition of a distinguished element O with the property
∀X ∈ A (X ⊗O = O = O ⊗X).

By G◦ shall be denoted the variety of all algebras (A;⊗, I, O) of type
(2, 0, 0) (groupoids with distinguished element I and zero element O) such
that ∀X ∈ A (X ⊗ O = O = O ⊗ X). FG◦(J) denotes the free G◦-algebra
freely generated by a set J such that J∩{I, O} = ∅. Clearly, FG◦(J) contains
the trivial subalgebra 〈I〉◦ with the carrier set 〈I〉◦ = 〈I〉 ∪ {O}.

Let M be the variety of all monoids (algebras of type (2, 0)) and let M◦

be the variety of all monoids with absorbing zero (algebras of type (2, 0, 0)
too).

The free M-algebra (M◦-algebra) freely generated by J will be denoted
by FM(J) (FM◦(J)). The trivial subalgebra 〈I〉 (〈I〉◦) has the carrier set
〈I〉 = {I} (〈I〉◦ = {I, O}).

The identical embedding functions from J into the corresponding alge-
bras will be denoted as follows:

ιH : J ↪→ FG(J), ιH◦ : J ↪→ FG◦(J),

ιS : J ↪→ FM(J), ιS◦ : J ↪→ FM◦(J).

Definition 2.1 ([5]). Let T be a dhts-category, a dhth∇s-category, or a
dts-category and let J be a nonempty set of objects of T such that I, O /∈ J .

Then T will be called
J-sorted dhts-theory or J-sorted Hoehnke theory,
J-sorted dhth∇s-theorie or
J-sorted Hoehnke theory with halfdiagonalinversions,
J-sorted dts-theory, respectively,

if (|T|;⊗, I, O) is a free G◦-algebra freely generated by J ((|T|;⊗, I) is a
free G-algebra freely generated by J, I /∈ J ).

The class of all J-sorted dhts-theories (J-sorted dhth∇s-theories,
J-sorted dts-theories) will be denoted by |Th◦dht(J)| (|Th◦dhth∇(J)|,
|Thdt(J)|).
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Besides the theory concept above we consider the following, more artifical,
but simpler one, which arises in strict monoidal categories by replacing of
the groupoid FG◦(J) (FG(J)) by the monoid FM◦(J) (FM(J)). So, one
defines

Definition 2.2. Let T be a dhts-category, a dhth∇s-category, or a dts-
category such that the underlying symmetric monoidal category T• is strictly
monoidal, i.e. all the morphisms a, r, and l are unit-morphims only
(A ⊗ (B ⊗ C) = (A ⊗ B) ⊗ C, A ⊗ I = A = I ⊗ A, aA,B,C = 1A⊗B⊗C ,
rA = 1A = lA for all A,B, C ∈ |T|).

Then T will be called
J-sorted strict dhts-theory or strict J-sorted Hoehnke theory,
J-sorted strict dhth∇s-theory or

strict J-sorted Hoehnke theory with halfdiagonalinversions,
J-sorted strict dts-theory, respectively,

if there exists a nonempty set J in |T| such that I,O /∈ J and (|T|;⊗, I, O)
is a free M◦-algebra ((|T|;⊗, I) is a free M-algebra) freely generated by J .
The class of all J-sorted strict dhts-theories (J-sorted strict dhth∇s-theories,
J-sorted strict dts-theories) will be denoted by

|sTh◦dht(J)| (|sTh◦dhth∇(J)|, |sThdt(J)|).
The categories of the classes |Th◦dht(J)|, |Th◦dhth∇(J)|, |sTh◦dht(J)|, and
|sTh◦dhth∇(J)| shortly will called partial theories (Hoehnke theories) and
categories of |Thdt(J)| and |sThdt(J)| are named total theories.

For a given set J one has on the one hand the free algebra FG◦(J) and on
the other hand the free algebra FM◦(J) and both are algebras of the variety
G◦ of type (2, 0, 0). Therefore, there arises the question about a connection
between the two algebras.

Lemma 2.3. Let FG◦(J) =: (H◦;⊗, I, O), FM◦(J) =: (S◦;⊗, I, O), FG(J)
=: (H;⊗, I), and FM(J) =: (S;⊗, I) be the algebras defined as above. Then
there is exactly one homomorphism W ∗ : FG◦(J) → FM◦(J) (W ∗ : FG(J) →
FM(J)) such that ιH◦W ∗ = ιS◦ (ιHW ∗ = ιS).

The mapping W ∗ works as follows:

I 7→ I =: IW ∗, O 7→ O =: OW ∗, J 3 A 7→ A =: AW ∗,

∀X, Y ∈ H ((X ⊗ Y )W ∗ = XW ∗ ⊗ Y W ∗).
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Proof. Let T ∈ |Th◦dht(J)|. The algebra FM◦(J) = (S◦;⊗, I, O), gener-
ated by J , belongs to G◦. Since (H◦ := |T|;⊗, I, O) is a a free G◦-algebra
freely generated by J , there is exactly one homomorphism W ∗ such that
ιH◦W ∗ = ιS◦ and this homomorphism is surjective. The assertion about the
working of the mapping becomes clear since ιS◦ is the identical embedding
of J into S◦.

The statement concerning groupoids and monoids without zero will be
proved in the same manner.

Corollary 2.4. The mapping W ∗ : H◦ → S◦ has the following properties:

∀X ∈ 〈I〉 (XW ∗ = I),

∀Y ∈ H◦ ∀X ∈ 〈I〉 ((Y ⊗X)W ∗ = (X ⊗ Y )W ∗ = Y W ∗),

∀X, Y, Z ∈ H◦ ((X ⊗ (Y ⊗ Z))W ∗ = ((X ⊗ Y )⊗ Z)W ∗),

∀X ∈ H◦ \ 〈I〉◦ ∃!!A1, A2, ..., An (XW ∗ = A1 ⊗A2 ⊗ · · · ⊗An).

Proof. The first assertion one proves by induction over the complexity of
the elements of 〈I〉.

By Lemma 2.3, IW ∗ = I. Assume that for any n ∈ N the condition

∀Y ∈ 〈I〉(n) (Y W ∗ = I)

is valid. Then

∀X ∈ 〈I〉(n+1) \ 〈I〉(n) ∃X1, X2 ∈ 〈I〉(n)

(XW ∗ = (X1 ⊗X2)W ∗ = X1W
∗ ⊗X2W

∗ = I ⊗ I = I),

hence ∀n ∈ N ∀X ∈ 〈I〉(n)(XW ∗ = I).
Because of (X ⊗ Y )W ∗ = XW ∗ ⊗ Y W ∗, XW ∗ = I for every X ∈ 〈I〉

and I is the unit element in the monoid, the second claim becomes true.
Let X,Y, and Z be elements of |T | = H◦. Then XW ∗, Y W ∗, and ZW ∗

are elements of the monoid S◦ and

(X ⊗ (Y ⊗ Z))W ∗ = XW ∗ ⊗ Y W ∗ ⊗ ZW ∗ = ((X ⊗ Y )⊗ Z)W ∗.
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Because of

H =
⋃

k ∈ N
H(n), H(0) := J ∪ {I},

H(n+1) := H(n) ∪ {X ⊗ Y | X,Y ∈ H(n)}, n ∈ N,

one shows the existence of such a representation by induction over the com-
plexity of X.

X ∈ H(0) \ 〈I〉 ⇒ X = A ∈ J ⇒ XW ∗ = AW ∗ = A.

Assuming that for any n ∈ N each X ∈ H(n) \ 〈I〉 fulfills the assertion one
investigates an arbitrary Y ∈ H(n+1) \H(n) \ 〈I〉. Then there are X1, X2 ∈
H(n) \ 〈I〉 such that Y W ∗ = (X1 ⊗X2)W ∗ = X1W

∗ ⊗X2W
∗, hence there

are A1, · · · , Aj , B1, · · ·Bk ∈ J such that Y W ∗ = (X1 ⊗X2)W ∗ = X1W
∗ ⊗

X2W
∗ = A1 ⊗ · · · ⊗Aj ⊗B1 ⊗ · · · ⊗Bk.

The uniqueness of the factors of a ⊗-product which are elements of J
is a consequence of the fact that (S◦;⊗, I, O) is a free M◦-algebra freely
generated by J .

Lemma 2.5. Let be given H◦ and S◦ as above related to a fixed set J . Then
there is a function W : S◦ → H◦ such that

(W1) WW ∗ = 1S◦ and

(W2) ∀A,B ∈ S◦ (A⊗B = (AW ⊗BW )W ∗).

The function Φ : H◦ → H◦ defined by Φ := W ∗W has the properties

(W3) ∀X ∈ 〈I〉 (XΦ = I),

(W4) ∀X ∈ H \ 〈I〉 ∃!! A1, ..., An ∈ J

(
XΦ =

n

⊗
j = 1

Aj

)
,

(W5) ∀X1, X2, Y1, Y2 ∈ H◦

((X1 ⊗X2)Φ = (Y1 ⊗ Y2)Φ ⇔ (X1Φ)⊗ (X2Φ) = (Y1Φ)⊗ (Y2Φ)).
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Proof. Ad (W1): Defining

OW := O, IW := I, ∀A1, ..., An∈J

(
(A1 ⊗ · · · ⊗An)W :=

n

⊗
j = 1

Aj

)

one gets immediately WW ∗ = 1S◦ .

Ad (W2): The assertion is trivial for A = O or B = O. The same is true if
A = I or B = I. Now let A,B ∈ S \ {I}. Then, by definition,

A⊗B =A1 ⊗ · · · ⊗An ⊗B1 ⊗ · · · ⊗Bm =

(
n

⊗
k = 1

Ak

)
W ∗ ⊗

(
m

⊗
j = 1

Bj

)
W ∗

= (AW )W ∗ ⊗ (BW )W ∗ = (AW ⊗BW )W ∗.

Ad (W3): The condition is valid for X ∈ {I,O}, since

IΦ = IW ∗W = IW = I and OΦ = OW ∗W = OW = O.

Let X be an arbitrary element of 〈I〉. Then

XΦ = (XW ∗)W = IW = I.

Ad (W4): For all X ∈ H \ 〈I〉 one has

XΦ = (XW ∗)W = (A1 ⊗ · · · ⊗An)W =
n

⊗
j = 1

Aj

and, by the properties of a free algebra,
n

⊗
j = 1

Aj =
m

⊗
k = 1

A′k ⇒ n = m ∧ Aj = A′j for all j ∈ {1, ..., n}.

Ad (W5):
(X1 ⊗X2)Φ = (Y1 ⊗ Y2)Φ ⇔ (X1 ⊗X2)W ∗W = (Y1 ⊗ Y2)W ∗W

⇔ (X1 ⊗X2)W ∗ = (Y1 ⊗ Y2)W ∗
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⇔ X1W
∗ ⊗X2W

∗ = Y1W
∗ ⊗ Y2W

∗

⇔ X1W
∗ = Y1W

∗ ∧ X2W
∗ = Y2W

∗

(S◦ is a free algebra)

⇔ X1W
∗W = Y1W

∗W ∧ X2W
∗W = Y2W

∗W

⇔ X1Φ = Y1Φ ∧ X2Φ = Y2Φ

⇔ X1Φ⊗X2Φ = Y1Φ⊗ Y2Φ (H◦ is a free algebra).

Observe that the function Φ : H◦ → H◦ maps O onto O, all elements of
〈I〉 ⊆ H onto I, and all elements X ∈ H \〈I〉 onto an ⊗-product of elements
of J in canonical brackets consisting exactly of the factors of X which are
different from I in the same order.

Lemma 2.6. Let be H◦, S◦, Φ : H◦ → H◦ as above. Then

∀X, Y, Z ∈ H◦ ((X ⊗ (Y ⊗ Z))Φ = ((X ⊗ Y )⊗ Z)Φ),

∀n ∈ N \ {0} ∀A1, ..., An ∈ J

((
n

⊗
j = 1

Aj

)
Φ =

n

⊗
j = 1

Aj

)
,

∀X ∈ 〈I〉 ∀Y ∈ H◦ ((Y ⊗X)Φ = (X ⊗ Y )Φ = Y Φ).

Proof.

(X ⊗ (Y ⊗ Z))Φ = (X ⊗ (Y ⊗ Z))W ∗W = (XW ∗ ⊗ (Y W ∗ ⊗ ZW ∗))W

= ((XW ∗ ⊗ Y W ∗)⊗ ZW ∗)W = ((X ⊗ Y )⊗ Z)Φ.

(
n

⊗
j = 1

Aj

)
Φ =

(
n

⊗
j = 1

Aj

)
W ∗W =

(
n

⊗
j = 1

Aj

)
W =

n

⊗
j = 1

Aj .
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(Y ⊗ X)Φ = (Y ⊗ X)W ∗W = (Y W ∗ ⊗ XW ∗)W = (Y W ∗ ⊗ I)W =
Y W ∗W = Y Φ,

(X ⊗ Y )Φ = (X ⊗ Y )W ∗W = (XW ∗ ⊗ Y W ∗)W = (I ⊗ Y W ∗)W =
Y W ∗W = Y Φ.

Corollary 2.7. Let T be any J-sorted Hoehnke theory and let Φ : H◦ → H◦

be defined as above. Then there is exactly one central morphism cX := cX,XΦ

in CT for every X ∈ |T|. The same statement is true, if T is a J-sorted
dts-theory and Φ : H → H.

Moreover, ∀X,Y ∈ |T| (XΦ = Y Φ ⇒ ∃cX,Y ∈ CT[X, Y ]).

Proof. The proof is organized by induction over the complexity of the
objects X ∈ |T| = H◦.

Because of XΦ = X for every X ∈ J∪{I, O} = H◦(0), 1X ∈ CT[X,XΦ],
hence the start of induction is verified.

Let cX exist in CT for any X ∈ H◦(n) and an arbitrary n ∈ N. Let
be X ∈ H◦(n+1) \ H◦(n). Then there are X1, X2 ∈ H◦(n) such that X =
X1 ⊗X2 and cX1 ∈ CT[X1, X1Φ], cX2 ∈ CT[X2, X2Φ], hence (cX1 ⊗ cX2) ∈
CT[X,X1Φ⊗X2Φ].

Since X1Φ =
n

⊗
j = 1

Aj and X2Φ =
n + m

⊗
j = n + 1

Aj for suitable Aj ∈
J, 1 ≤ j ≤ n + m, there is the canonical associativity isomorphism

a(n,m)〈X1Φ, X2Φ〉 : X1Φ⊗X2Φ → (X1 ⊗X2)Φ = XΦ in CT,

therefore,

cX := (cX1 ⊗ cX2)a
(n,m)〈X1Φ, X2Φ〉 ∈ CT[X, XΦ].

So, the existence of a central morphism cX for every X ∈ |T| = H◦ is proved.
Moreover, XΦ = Y Φ is sufficient for cX,Y := cX(cY )−1 ∈ CT[X, Y ].

The uniqueness is again a consequence of the coherence principle.
The claim concerning the dts-case will be proved similarly.

The function Φ defined as above induces in a natural manner a functor from
a J-sorted theory T into itself with additional interesting properties. This
properties concern the monoidal structur of T.
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3. Structure preserving functors

Considering different symmetric monoidal categories K• and K ′• one has
to distinguish between the operations and the basic morphisms of K• and
those of K ′•, respectively, for instance between r

(K)
A and r

(K′)
X . If there is

not danger of confusion, the upper index will be omitted.

Definition 3.1 ([14]). A functor F : K• → K ′• between symmetric mon-
oidal categories K• and K ′• is called monoidal, iff there exists in K ′ a family
of morphisms

F̃ = (F̃ 〈X, Y 〉 : XF ⊗ Y F → (X ⊗ Y )F | X, Y ∈ |K|)
and a morphism

iF : I ′ → IF ,

such that the following conditions are fulfilled:

(F ∼) ∀X, Y ∈ |K| (F̃ 〈X,Y 〉 ∈ IsoK′),

(FI) iF ∈ IsoK′ ,

(FA) ∀X, Y, Z ∈ |K|
((

1(K′)
XF ⊗ F̃ 〈Y,Z〉

)
F̃ 〈X, Y ⊗ Z〉

(
a

(K)
X,Y,ZF

)

= a
(K′)
XF,Y F,ZF

(
F̃ 〈X,Y 〉 ⊗ 1(K′)

ZF

)
F̃ 〈X ⊗ Y,Z〉

)
,

(FR) ∀X ∈ |K|
(
F̃ 〈X, I〉

(
r
(K)
X F

)
=

(
1(K′)

XF ⊗ i−1
F

)
r
(K′)
XF

)
,

(FS) ∀X, Y ∈ |K|
(
F̃ 〈X,Y 〉

(
s
(K)
X,Y F

)
= s

(K′)
XF,Y F F̃ 〈Y, X〉

)
,

(FM) ∀ϕ : X → Y, ψ : U → V ∈ K ((ϕF ⊗ ψF )F̃ 〈Y, V 〉 =

= F̃ 〈X,U〉(ϕ⊗ ψ)F ).

A monoidal functor F : K• → K ′• is called strictly monoidal, iff all mor-
phisms of the family F̃ as well as the morphism iF are unit morphisms
only.

Corollary 3.2 ([14]). Let F : K• → K ′• be a monoidal functor between
symmetric monoidal categories with reference to F̃ , iF . Then

(FL) ∀X ∈ |K|
(
F̃ 〈I,X〉

(
l
(K)
X F

)
=

(
i−1
F ⊗ 1(K′)

XF

)
l
(K′)
XF

)
.
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In applications to theories of algebraic structures, functors F : K → K ′

between dhts-categories, dhth∇s-categories, or dts-categories are of interest
which preserve in addition to the functor properties the dhts-, dhth∇s-, and
the dts-structure, respectively, with respect to a family F̃ = (F̃ 〈X,Y 〉 | X,
Y ∈ |K|) of isomorphisms F̃ 〈X,Y 〉 : XF ⊗ Y F → (X ⊗ Y )F in K ′ and an
isomorphism iF between I ′ and IF , where I and I ′ are the distinguished
objects in K and K ′, respectively, ([5], [12], [14]). All symmetric monoidal
categories with additional structures mentioned above are ds-categories. Of
importance is the fact that a monoidal functor between at least ds-categories,
which respects the diagonal morphisms except for isomorphisms, respects
the canonical partial order relation and the distinguished terminal mor-
phisms and the distinguished diagonal inversions, respectively, except for
isomorphisms.

Definition 3.3 ([14]). A monoidal functor F : K → K ′ between ds-
categories K and K ′ is called d-monoidal, if in addition the condition

(FD) ∀A ∈ |K|
(
d

(K)
A F = d

(K′)
AF F̃ 〈A,A〉

)

holds with reference to the corresponding isomorphisms F̃ and iF . A strictly
monoidal functor F fulfilling the condition (FD) is called strictly d-monoidal.

Obviously, the identical functor 1K of K• forms a strictly monoidal
functor with respect to

1̃K = (1̃K〈X,Y 〉 = 1XF⊗Y F | X, Y ∈ |K|), i1K = 1I

and the constant functor E : K• → K ′• (X 7→ I ′, ϕ 7→ 1′I′) with reference
to

Ẽ = (Ẽ〈X, Y 〉 = 1′I′ | X, Y ∈ |K|), iE = 1′I′ ,

too, where K• and K ′• are arbitrary symmetric monoidal categories.
Both functors are even d-monoidal functors, if K = (K•; d) and K ′ =

(K ′•; d′) are ds-categories.
Moreover: Each d-monoidal functor F : K → K ′ between dhts-categories

possesses the following properties with respect to the corresponding F̃ , iF
([11], [14]):
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(FI∗) t
(K′)
IF = i−1

F ,

(Fmon) ∀ϕ, ψ ∈ K (ϕ ≤ ψ ⇒ ϕF ≤ ψF ),

(FT) ∀X ∈ |K|
(
t
(K)
X F t

(K′)
IF = t

(K′)
XF

)
,

(FP) ∀X, Y ∈ |K|
(
p(K)X,Y

j F = (F̃ 〈X, Y 〉)−1p(K′)XF,Y F
j ; j = 1, 2

)
,

(FE) ∀A ∈ |K|
(
e ≤ 1(K)

A ⇒ eF ≤ 1(K′)
AF

)
,

(FEα) ∀X, Y ∈ |K| ∀ϕ ∈ K[X, Y ]
(
(α(K)(ϕ))F = α(K′)(ϕF )

)
.

Let K, K ′ be dhth∇s-categories and let F : K → K ′ be a d-monoidal
functor. Then, in addition to the the properties above, the following holds
([14]):

(Finf) ∀X, Y ∈|K| ∀ϕ,ψ ∈ K[X,Y ]
((

d
(K)
X (ϕ⊗ ψ)∇(K)

Y

)

F = d
(K′)
XF (ϕF ⊗ ψF )∇(K′)

Y F

)
,

(Finj) ∀X, Y ∈ |K| ∀ϕ ∈ K[X, Y ]
(
(ϕ⊗ ϕ)∇(K)

Y = ∇(K)
X ϕ

⇒ (ϕF ⊗ ϕF )∇(K′)
Y F = ∇(K′)

XF (ϕF )
)

,

(F∇) ∀X ∈ |K|
(
∇(K′)

XF = F̃ 〈X,X〉∇(K)
X F

)
,

(F∇1) ∀X, Y, U ∈ |K| ∀ϕ ∈ K[X, U ] ∀ψ ∈ K[Y, U ]
(
((ϕ⊗ ψ)∇(K)

U

)
F

= F̃ 〈X,Y 〉
(
(ϕ⊗ ψ)F )∇(K′)

UF

)
,

(F∇2) ∀X, Y ∈ |K| ∀ϕ.ψ ∈ K[X, Y ]
(
(ϕ⊗ ψ)∇(K)

Y = ∇(K)
X ϕ

⇒ (ϕF ⊗ ψF )∇(K′)
Y F = ∇(K′)

XF (ϕF )
)

.

Obviously, property (Finj) is a special case of (F∇2) and it expresses once
more the monotony of the functor F , namely ϕ ≤ ψ ⇒ ϕF ≤ ψF .

The so-called zero functor Z : K → K ′ is defined by XZ = O(K′) for all
objects X ∈ |K| and ϕZ = 1(K′)

O(K′) for all morphisms ϕ ∈ K. Trivially, this
functor is a d-monoidal one.
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Proposition 3.4 ([14]). Let F : K → K ′ be a d-monoidal functor between
Hoehnke categories such that F 6= Z. Then one obtains:

∀X ∈ |K|
(
F̃ 〈X, O〉 = F̃ 〈O,X〉 = 1(K′)

O(K′)

)
,

∀X,Y ∈ |K|
(
o
(K)
X,Y F = o

(K′)
XF,Y F

)
,

o(K)F = t
(K′)
IF o(K′)

(
⇔ o(K′) = iF (o(K)F )

)
.

By the structure of any Hoehnke categories K and K ′, each functor F :
K → K ′ determines with respect to every pair of objects X,Y ∈ |K| the
morphism

F ∗〈X,Y 〉 := d
(K′)
(X⊗Y )F

(
p(K)X,Y

1 F ⊗ p(K)X,Y

2 F
)
∈ K ′[(X ⊗ Y )F,XF ⊗ Y F ]

in the category K ′.

Proposition 3.5 ([5]). In the case that F : K → K ′ is a d-monoidal
functor with reference to F̃ and iF , the morphisms F̃ 〈X,Y 〉 are uniquely
determined by

(F̃ 〈X,Y 〉)−1 = d
(K′)
(X⊗Y )F

(
p(K)X,Y

1 F ⊗ p(K)X,Y

2 F
)

= F ∗〈X, Y 〉.

Moreover:

Theorem 3.6 ([5], [14]). Assume that F : K → K ′ is any functor from a
dhts-category K into a dhts-category K ′ satisfying the following conditions:

(F∗) ∀X,Y ∈ |K|(F ∗〈X,Y 〉 ∈ IsoK′),

(FI∗) t(K
′)

IF ∈ IsoK′,

(FM∗) ∀ϕ, ψ ∈ K ((ϕ⊗ ψ)F F ∗〈X ′, Y ′〉 = F ∗〈X, Y 〉(ϕF ⊗ ψF )).

Then F : K → K ′ is d-monoidal with reference to the morphisms

F̃ 〈X, Y 〉 := (F ∗〈X, Y 〉)−1, iF := t(K
′)−1

IF .

The statements in 3.5 and 3.6 allow us to speak about d-monoidal functors
between Hoehnke categories as such.

Hoehnke has shown in [5] that the composition of dht-symmetric func-
tors F : K → K ′ and G : K ′ → K ′′ between Hoehnke categories K, K ′, K ′′,
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respectively, yields a dht-symmetric functor FG : K → K ′′. The same is
true for d-monoidal functors between Hoehnke categories. More precisely:

Proposition 3.7. Let F : K → K ′ and G : K ′ → K ′′ be d-monoidal
functors between Hoehnke categories K, K ′, K ′′. Then the functor FG :
K → K ′′ is a d-monoidal functor too.

Proof. Ad (F∗): Since every functor maps isomorphisms to isomorphism
and

(FG)∗〈X, Y 〉 = d
(K′′)
(X⊗Y )(FG)

(
p
(K)
1

X,Y
(FG)⊗ p

(K)
2

X,Y
(FG)

)

= d
(K′′)
((X⊗Y )F )G

((
p
(K)
1

X,Y
F

)
G⊗ (p(K)

2

X,Y
F )G

)

=
(
d

(K′)
(X⊗Y )F

)
GG∗〈(X⊗Y )F, (X⊗Y )F 〉

((
p
(K)
1

X,Y
F

)
G⊗

(
p
(K)
2

X,Y
F

)
G

)

=
(
d

(K′)
(X⊗Y )F

)
G

(
p
(K)
1

X,Y
F ⊗

(
p
(K)
2

X,Y
F

)
GG∗〈XF, Y F 〉

=
(

d
(K′)
(X⊗Y )F

(
p
(K)
1

X,Y
F ⊗ p

(K)
2

X,Y
F

)
GG∗〈XF, Y F 〉

= (F ∗〈X, Y 〉
))

GG∗〈XF, Y F 〉

one obtains (FG)∗〈X, Y 〉 ∈ IsoK′′ .

Ad (FI∗): t
(K′′)
I(FG) = t

(K′′)
(IF )G =

(
t
(K′)
IF

)
Gt

(K′′)
I(K′)G)

∈ IsoK′′

since t
(K′′)
I(K′)G

∈ IsoK′′ and t
(K′)
IF ∈ IsoK′ .

Ad (FM∗): (ϕ⊗ψ)(FG)(FG)∗〈U, V 〉=((ϕ⊗ψ)F )G(F ∗〈U, V 〉)GG∗〈UF, V F 〉
= ((ϕ⊗ ψ)FF ∗〈U, V 〉)GG∗〈UF, V F 〉
= (F ∗〈X, Y 〉(ϕF ⊗ ψF ))GG∗〈UF, V F 〉
= (F ∗〈X, Y 〉)G(ϕF ⊗ ψF )GG∗〈UF, V F 〉
= (F ∗〈X, Y 〉)GG∗〈XF, Y F 〉((ϕF )G⊗ (ψF )G)

= (FG)∗〈X, Y 〉(ϕ(FG)⊗ ψ(FG)).
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Lemma 3.8. Let F : K → K ′ be a functor from a Hoehnke category K into
a Hoehnke category K ′ such that the conditions

(sFD) ∀X ∈ |K|
(
d

(K)
X F = d

(K′)
XF

)
,

(sFT) ∀X ∈ |K|
(
t
(K)
X F = t

(K′)
XF

)
, and

(sFM) ∀ϕ, ψ ∈ K ((ϕ⊗ ψ)F = (ϕF ⊗ ψF ))

are fulfilled.

Then F has the properties
(sF∗) ∀X, Y ∈ |K|(F ∗〈X, Y 〉 ∈ UnK′) and

(sFI∗) t(K
′)

IF ∈ UnK′,

i.e. F : K → K ′ is a strictly d-monoidal functor.

Proof. Assuming (sFT) one has 1(K′)
IF = 1(K)

I F = t
(K)
I F = t

(K′)
IF , hence

IF = I(K′) and (sFI∗) is fulfilled.
Moreover,

∀X, Y ∈ |K|
(
K ′[(X ⊗ Y )F, (X ⊗ Y )F ] 3 1(K)

X⊗Y F =
(
1(K)

X ⊗ 1(K)
Y

)
F

= 1(K)
X F ⊗ 1(K)

Y F = 1(K′)
XF ⊗ 1(K′)

Y F = 1(K′)
XF⊗Y F ∈ K ′[XF ⊗ Y F ]

)
,

hence
∀X, Y ∈ |K| ((X ⊗ Y )F = XF ⊗ Y F ).

Now let X and Y be any objects of |K|. Then

F ∗〈X, Y 〉 = d
(K′)
(X⊗Y )F

(
p(K)X,Y

1 F ⊗ p(K)X,Y
2 F

)
(by definition)

= d
(K)
X⊗Y F

(
p(K)X,Y

1 F ⊗ p(K)X,Y
2 F

)
((sFD))

=
(
d

(K)
X⊗Y

(
p(K)X,Y

1 ⊗ p(K)X,Y
2

))
F ((sFM))

=
(
1(K)

X⊗Y

)
F = 1(K′)

XF⊗Y F ∈ UnK′ .
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Proposition 3.9. If functors F : K → K ′ and G : K ′ → K ′′ between
Hoehnke categories K, K ′, K ′′ fulfil the conditions (sFD), (sFT), and (sFM),
then the functor FG : K → K ′′ satifies the same conditions.

Corollary 3.10. If any functor F : K → K ′ as above fulfils (sFT) and
(sFM), then F is a d-monoidal functor satisfying (sFI∗).

Proof. It remains to prove the validity of (F∗).

F ∗〈X, Y 〉 = d
(K′)
(X⊗Y )F

(
p(K)X,Y

1 F ⊗ p(K)X,Y
2 F

)

= d
(K′)
XF⊗Y F

(((
1(K)

X ⊗ t
(K)
Y

)
r
(K)
X

)
F ⊗

((
t
(K)
X ⊗ 1(K)

Y

)
l
(K)
X

)
F

)

= d
(K′)
XF⊗Y F

((
1(K)

X F ⊗ t
(K)
Y F

)
⊗

(
t
(K)
X F ⊗ 1(K)

Y F
))(

r
(K)
X

)
F ⊗ l

(K)
X F

)

=
(
d

(K′)
XF

((
1(K)

X ⊗ t
(K)
X

)
F ⊗ d

(K′)
Y F

(
t
(K)
Y ⊗ 1(K)

Y

)
F

)
b
(K′)
XF,IF,IF,Y F

(
r
(K)
X F ⊗ l

(K)
X F

)

=
((

r
(K′)
XF

)−1
⊗

(
l
(K′)
Y F

)−1
)

1(K′)
(XF⊗IF )⊗(IF⊗Y F )

(
r
(K)
X F ⊗ l

(K)
X F

)

=
(
r
(K′)
XF

)−1
r
(K)
X F ⊗

(
l
(K′)
Y F

)−1
l
(K)
X F ∈ IsoK′ .

4. Functors between theories, theory morphisms

The following considerations are confined to dhts-theories, but it is easily
to see that all results are transferable to dhth∇s-theories and dts-theories,
respectively.

Lemma 4.1. Let F be a d-monoidal functor from a Hoehnke theory T into
a Hoehnke theory T′ such that all morphisms F̃ 〈A, B〉 and iF are central
morphisms only. Then F maps every central morphism c ∈ CT to a central
morphism cF ∈ CT′.

Proof. Every functor maps unit morphisms to unit morphism. Any
d-monoidal functor fulfils the conditions (FA), (FR), and (FL) and since iF
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and every F̃ 〈A,B〉 are central morphisms, all images aA,B,CF, rAF, lAF,
(a−1

A,B,C)F, (r−1
A )F, (l−1

A )F are central morphisms in T′.

Therefore, the images of all morphisms of C(0)
T are central morphisms

in T′.
Assuming that all morphisms of C(n)

T for any n ∈ N are mapped by F
to central morphisms in T′ one has

∀ϕ ∈ C(n+1)
T \C(n)

T ∃ϕ1, ϕ2 ∈ C(n)
T (ϕF = (ϕ1ϕ2)F =

(ϕ1F )(ϕ2F ) ∈ CT′ ∨ ϕF = (ϕ1 ⊗ ϕ2)F =

(F̃ 〈domϕ1, domϕ2〉)−1(ϕ1F ⊗ ϕ2F )F̃ 〈cod ϕ1, cod ϕ2〉) ∈ CT′),

hence ∀ϕ ∈ CT (ϕF ∈ CT′).

Observe that especially strict d-monoidal functors map central mor-
phisms to central morphisms.

Theorem 4.2. Let T be a J-sorted Hoehnke theory. Then the function Φ
as defined in 2.5 induces a d-monoidal functor Φ : T → T relative to Φ̃ and
iΦ such that

∀X, Y ∈ |T| (Φ̃〈X, Y 〉 := (c−1
X ⊗ c−1

Y )cX⊗Y ) and iΦ := 1I .

Proof. The object mapping is given by the function Φ : |T| → |T|, namely

XΦ =





X, for all X ∈ J ∪ {I,O},
I, for all X ∈ 〈I〉,

n

⊗
j = 1

Aj for all X ∈ |T| \ 〈I〉◦,

where A1, ..., An ∈ J are exactly the factors appearing in X in this sequence
independently of brackets.

Using the uniquely determined central morphisms cX ∈ CT[X,XΦ]
define a morphism mapping by

T[X, Y ] 3 ϕ 7→ ϕΦ := c−1
X ϕcY ∈ T[XΦ, Y Φ].

Then the functor conditions are fulfilled, since
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∀ϕ ∈ T ((domϕ)Φ = dom(ϕΦ), (codϕ)Φ = cod(ϕΦ)) by definition,

∀X ∈ |T| (1XΦ = c−1
X 1XcX = 1XΦ,

∀X, Y, P ∈ |T| ∀ϕ ∈ T[X,Y ] ∀ψ ∈ T[Y, P ]

(
(ϕψ)Φ = c−1

X ϕψcP = c−1
X ϕcY c−1

Y ψcP = (ϕΦ)(ψΦ)
)
.

By Theorem 3.6, it is sufficient to prove the conditions (F∗), (FI∗), and
(FM∗) for the functor Φ.

Ad (F∗): Let X and Y be arbitrary objects of T. Then, by definition,

Φ∗〈X, Y 〉 = d(X⊗Y )Φ(pX,Y
1 Φ⊗pX,Y

1 Φ) = d(X⊗Y )Φ(c−1
X,Y pX,Y

1 cX⊗c−1
X,Y pX,Y

2 cY )

= c−1
X,Y d(X⊗Y )(p

X,Y
1 ⊗ pX,Y

2 )(cX ⊗ cY ) = c−1
X,Y (cX ⊗ cY ) ∈ CT ⊆ IsoT.

Ad (FI∗): Because of IΦ = I, tIΦ = tI = 1I ∈ IsoT.

Ad (FM∗): For all objects X1, X2, Y1, Y2 and all morphisms ϕi ∈ T[Xi, Yi], i ∈
{1, 2}, the equation

(ϕ1 ⊗ ϕ2)Φ∗〈Y1, Y2〉 = c−1
X1⊗X2

(ϕ1 ⊗ ϕ2)cY1⊗Y2c
−1
Y1⊗Y2

(cY1 ⊗ cY2)

= c−1
X1⊗X2

(ϕ1cY1 ⊗ ϕ2cY2)

= c−1
X1⊗X2

(cX1 ⊗ cX2)
(
c−1
X1

ϕ1cY1 ⊗ c−1
X2

ϕ2cY2

)

= Φ∗〈X1, X2〉(ϕ1Φ⊗ ϕ2Φ)

is valid. Therefore, (Φ, Φ̃, iΦ) with Φ̃ := (Φ∗)−1 and iΦ := 1I is a d-monoidal
functor from T into T.

The functor Φ shall be called the canonical functor of T.

Corollary 4.3. Let T be a J-sorted dhts-theory. Then the canonical func-
tor of T possesses the following properties:
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(1) ∀X ∈ |T| ((XΦ)Φ = XΦ),

(2) ∀X ∈ |T| ((tX)Φ = tXΦ),

(3) ∀X ∈ |T| ((rX)Φ = 1XΦ = (lX)Φ),

(4) ∀X ∈ |T| (dXΦΦ∗〈X, X〉 = dXΦ),

(5) ∀X ∈ |T| (∇XΦ = Φ∗〈X, X〉∇XΦ),

(6) ∀X ∈ |T| (
Φ∗〈X, I〉 = (rXΦ)−1,Φ∗〈I, X〉 = (lXΦ)−1

)
,

(7) ∀X ∈ |T| ((cX)Φ = 1XΦ = (1X)Φ = cXΦ),

(8) ∀ϕ ∈ T
(
domϕ =

n

⊗
j = 1

Aj ∧ codϕ =
m

⊗
k = 1

Bk ∧Aj , Bk∈J⇒ ϕΦ = ϕ
)
,

(9) ∀ϕ ∈ T ((ϕΦ)Φ = ϕΦ).

Proof. Ad (1): (XΦ)Φ =

(
n

⊗
j = 1

Aj

)
Φ =

n

⊗
j = 1

Aj = XΦ.

Ad (2): (tX)Φ = c−1
X tXcI = tXΦ since cX ∈ IsoT ∧ cI = 1I .

Ad (3): The assertion is a special case of (7).

Ad (4): dXΦ = c−1
X dXcX⊗X = dXΦ

(
c−1
X ⊗ c−1

X

)
cX⊗X = dXΦ(Φ∗〈X,X〉)−1

⇒ dXΦΦ∗〈X, X〉 = dXΦ).

Ad (5): ∇XΦ=(cX⊗X)−1∇XcX =(cX⊗X)−1(cX⊗cX)∇XΦ =Φ∗〈X,X〉∇XΦ.

Ad (6): Φ∗〈X, I〉 ∈ CT [XΦ, XΦ⊗ I] and rXΦ ∈ CT [XΦ⊗ I, XΦ],

hence Φ∗〈X, I〉 = (rXΦ)−1 by the coherence principle.
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Ad (7): cX ∈CT [X, XΦ]⇒(cX)Φ∈CT [XΦ, (XΦ)Φ]=CT [XΦ, XΦ]31XΦ

⇒ (cX)Φ = 1XΦ = 1XΦ.

cXΦ ∈ CT [XΦ, XΦΦ] = CT [XΦ, XΦ] shows cXΦ = 1XΦ.

Ad (8): ϕΦ = c−1
XΦϕcY Φ = ϕ, where X =

n

⊗
j = 1

Aj = XΦ ∧ Y =

=
m

⊗
k = 1

Bk = Y Φ.

Ad (9): (ϕΦ)Φ =
(
c−1
X ϕcY

)
Φ =

(
c−1
X

)
Φ(ϕ)Φ(cY )Φ = ϕΦ.

Definition 4.4. Let T be a J-sorted Hoehnke theory and let Φ be the
canonical d-monoidal functor of T. Then define a binary relation κ for ob-
jects and morphisms of T as follows:

(X, Y ) ∈ κ :⇔ XΦ = Y Φ,

(ϕ1, ϕ2) ∈ κ :⇔ ϕ1Φ = ϕ2Φ.

Theorem 4.5. The relation κ defined by the canonical d-monoidal functor
Φ of a J-sorted Hoehnke theory T as above is a “generalized” congruence
on T.

Proof. Concidering small categories as many-sorted total algebras, a con-
gruence ρ is defined as a family of equivalence relationes on the isolated
morphism sets, i.e. (ϕ, ψ) ∈ ρ ⇒ domϕ = domψ ∧ codϕ = codψ.

That is not true for the relation κ, since only
∀ϕ,ψ ∈ T((ϕ,ψ) ∈ κ ⇒ (domϕ)Φ=(domψ)Φ ∧ (codϕ)Φ=(codψ)Φ),
because of

(ϕ,ψ) ∈ κ ⇒ ϕΦ = ψΦ ⇒ c−1
domϕϕccodϕ = c−1

domψϕccodψ

⇒ (domϕ)Φ = (domψ)Φ ∧ (codϕ)Φ = (codψ)Φ.
Moreover, the relation κ is not compatible with the morphism composition
in the strong sense.
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By definition, the relation κ is reflexive, symmetric, and transitive for
objects and morphisms, respectively.

The relation is compatible with ⊗-operation of morphisms and objects,
respectively, because of the following argumentation.
Using of (FM∗) and Corollary 4.3 (5) one has for morphisms:

(ϕ1, ϕ2), (ψ1, ψ2) ∈ κ ⇒ (ϕ1⊗ψ1)Φ = Φ∗〈X1, P1〉(ϕ1Φ⊗ψ1Φ)(Φ∗〈Y1, Q1〉)−1

= Φ∗〈X1, P1〉(ϕ2Φ⊗ ψ2Φ)(Φ∗〈Y1, Q1〉)−1

= c−1
X1⊗P1

(
cX1c

−1
X2
⊗ cP1c

−1
P2

)
(ϕ2 ⊗ ψ2)

(
cY2c

−1
Y1
⊗ cQ2c

−1
Q1

)
cY1⊗Q1

⇒ (ϕ1 ⊗ ψ1)Φ = ((ϕ1 ⊗ ψ1)Φ)Φ

=
(
c−1
X1⊗P1

(
cX1c

−1
X2
⊗ cP1c

−1
P2

)
(ϕ2 ⊗ ψ2)

(
cY2c

−1
Y1
⊗ cQ2c

−1
Q1

)
cY1⊗Q1

)
Φ

= (ϕ2 ⊗ ψ2)Φ

⇒ (ϕ1 ⊗ ψ1, ϕ2 ⊗ ψ2) ∈ κ.

Concerning the object relation one obtains

(X1, X2) ∈ κ ∧ (Y1, Y2) ∈ κ ⇒ X1Φ = X2Φ ∧ Y1Φ = Y2Φ

⇒ 1X1Φ = 1X2Φ ∧ 1Y1Φ = 1Y2Φ

⇒ (1X1 , 1X2) ∈ κ ∧ (1Y1 , 1Y2) ∈ κ

⇒ (1X1 ⊗ 1Y1 , 1X2 ⊗ 1Y2) ∈ κ

⇒ (1X1⊗Y1 , 1X2⊗Y2) ∈ κ

⇒ 1X1⊗Y1Φ = 1X2⊗Y2Φ

⇒ 1(X1⊗Y1)Φ = 1(X2⊗Y2)Φ

⇒ (X1 ⊗ Y1)Φ = (X2 ⊗ Y2)Φ

⇒ (X1 ⊗ Y1, X2 ⊗ Y2) ∈ κ.
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The relation κ is, as already mentioned, reflexive, therefore it preserves all
morphisms wich are determined by constant operation symbols.

For the morphism composition:

Let ϕi ∈ T[Xi, Yi], ψi ∈ T[Pi, Qi] for i ∈ {1, 2} be arbitrary morphisms
of T. Then, for Y1 = P1, i. e. ϕ1 is composable with ψ1,

(ϕ1, ϕ2), (ψ1, ψ2) ∈ κ ⇒ (ϕ1ψ1)Φ = (ϕ1Φ)(ψ1Φ)

= (ϕ2Φ)(ψ2Φ) = c−1
X2

ϕ2cY2c
−1
P2

ψ2cQ2 ,

therefore, by Corollary 4.3 (7) and (5),

(ϕ1ψ1)Φ = ((ϕ1ψ1)Φ)Φ =
(
c−1
X2

ϕ2cY2c
−1
P2

ψ2cQ2

)
Φ = (ϕ2cY2,P2ψ2)Φ,

hence (ϕ1ψ1, ϕ2cY2,P2ψ2) ∈ κ.

Observe that especially ϕ2 and ψ2 have not to be composable in general,
but there is a central morphism c such that there exists the compositum
ϕ2cψ2.

Remark. It is easy to verify that the generating central morphisms
1, a, a−1, r, r−1, l, l−1 of any J-sorted theory T fulfil even the following
conditions:

∀X, Y, P ∈ |T| ((1X⊗(Y⊗P ), 1(X⊗Y )⊗P )) ∈ κ),

∀X, Y, P ∈ |T| ((aX,Y,P , 1X⊗(Y⊗P )) ∈ κ ∧ ((aX,Y,P )−1, 1(X⊗Y )⊗P )) ∈ κ),

∀X ∈ |T| ((1X⊗I , 1X), (1I⊗X), 1X) ∈ κ),

∀X ∈ |T| ((rX , 1X⊗I),
(
(rX)−1, 1X

)
, ((lX), 1I⊗X),

(
(lX)−1, 1X

) ∈ κ).

Theorem 4.6. To every J-sorted Hoehnke theory

T ∈ |Th◦dht(J)|
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there exists in a natural manner a J-sorted strict Hoehnke theory

Ts ∈ |sTh◦dht(J)|.

Proof. The canonical d-monoidal functor Φ : T → T related to any J-
sorted Hoehnke theory T induces the “generalized” congruence κ.

Construct a new category Ts by using the knowledge about H◦, S◦ and
the functions W and W ∗.

|Ts| := S◦ (:= S),

Ts := {[ϕ]κ | ϕ ∈ T}, where [ϕ]κ = {ϕ′ ∈ T | ϕΦ = ϕ′Φ},

dom(Ts)[ϕ]κ :=
(
dom(T)ϕ

)
W ∗, cod(Ts)[ϕ]κ :=

(
cod(T)ϕ

)
W ∗,

1(Ts)
A :=

[
1(T)

AW

]
κ
,

[ϕ]κ ·(Ts) [ψ]κ := [ϕcY,P ψ]κ, where Y Φ = (codϕ)Φ = (domψ)Φ = PΦ

(⇔ Y W ∗ = (codϕ)W ∗ = (domψ)W ∗) = PW ∗),

A⊗(Ts) B = (AW ⊗(T) BW )W ∗ (by (W4)),
[ϕ]κ ⊗(Ts) [ψ]κ := [ϕ⊗(T) ψ]κ,

a
(Ts)
A,B,C :=

[
a

(T)
AW,BW,CW

]
κ

= [1(T)
AW⊗(BW⊗CW )]κ,

r
(Ts)
A :=

[
r
(T)
AW

]
κ

=
[
1(T)

AW

]
κ

=
[
l
(T)
AW

]
κ

=: l
(Ts)
A ,

s
(Ts)
A,B :=

[
s
(T)
AW,BW

]
κ

, d
(Ts)
A :=

[
d

(T)
AW

]
κ

, t
(Ts)
A :=

[
t
(T)
AW

]
κ

,∇(Ts)
A :=

[
∇(T)

AW

]
κ
,

o(Ts) :=
[
o(T)

]
κ.

Obviously, (S◦;⊗, I, O) is an algebra of type (2, 0, 0) with an associative
binary operation, a unit element I, and a zero element O.

Moreover, (|Ts|,Ts, ·, dom, cod, 1) is a small category, since |Ts| is a set
and
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[ϕ]κ ∈ Ts[A, B] ⇒ ϕ ∈ T[X,Y ] ∧ A = XW ∗, B = Y W ∗ ⇒ 1A[ϕ]κ

= [1X ]κ[ϕ]κ = [1XcX,Xϕ]κ = [ϕ]κ = [ϕcY,Y 1Y ]κ = [ϕ]κ[1Y ]κ = [ϕ]κ1B,

[ϕ]κ ∈ Ts[A, B], [ψ]κ ∈ Ts[B, C], [χ]κ ∈ Ts[C, D]

⇒ [ϕ]κ([ψ]κ[χ]κ) = [ϕ]κ[ψcP,Qχ]κ = [ϕcX,Y ψcP,Qχ]κ

= [ϕcX,Y ψ]κ[χ]κ = ([ϕ]κ[ψ]κ)[χ]κ.

(Ts;⊗, I, 1, 1, 1, s) is a symmetric strictly monoidal category since the defin-
ing conditions are fulfilled. Observe that to every morphism ρ ∈ Ts[A,B]
there is a morphism ϕ ∈ T[X, Y ] such that A = XW ∗, B = Y W ∗, ρ = [ϕ]κ.

Ad (F1): ∀ρ, ρ′ ∈ Ts (dom (ρ⊗ ρ′) = dom ([ϕ]κ ⊗ [ϕ′]κ)

= dom [ϕ⊗ ϕ′]κ = (dom (ϕ⊗ ϕ′))W ∗

= ((domϕ)⊗ (domϕ′))W ∗ = (domϕ)W ∗ ⊗ (domϕ′)W ∗

= (dom [ϕ]κ)⊗ (dom [ϕ′]κ) = dom ρ⊗ dom ρ′).

Ad (F2): The assertion ∀ρ, ρ′ ∈ Ts (cod (ρ ⊗ ρ′) = cod ρ ⊗ cod ρ′) will be
proved in the same manner.

Ad (F3): ∀A,B ∈ |Ts| (1A⊗B = [1(A⊗B)W ]κ = [1AW⊗BW ]κ

= [1AW ⊗ 1BW ]κ = [1AW ]κ ⊗ [1BW ]κ = 1A ⊗ 1B),

since T is a symmetric monoidal category and for all A,B ∈ S◦ one has
(A ⊗ B)WΦ = (A ⊗ B)WW ∗W = (A ⊗ B)W = (AWW ∗ ⊗ BWW ∗)W =
(AW ⊗BW )Φ.

Ad (F4): ∀A,B, C, A′, B′, C ′ ∈ |Ts| ∀ρ ∈ Ts[A,B]

∀σ ∈ Ts[B, C] ∀ρ′ ∈ Ts[A′, B′]∀σ′ ∈ Ts[B′, C ′]



Adjointness between theories and strict theories 197

((ρ⊗ ρ′)(σ ⊗ σ′) = ([ϕ]κ ⊗ [ϕ′]κ)([ψ]κ ⊗ [ψ′]κ)

= [ϕ⊗ ϕ′]κ[ψ ⊗ ψ′]κ

= [(ϕ⊗ ϕ′)cY⊗Y ′,P⊗P ′(ψ ⊗ ψ′)]κ

= [(ϕ⊗ ϕ′)(cY,P ⊗ cY ′,P ′)(ψ ⊗ ψ′)]κ

= [ϕcY,P ψ ⊗ ϕ′cY ′,P ′ψ
′]κ

= [ϕcY,P ψ]κ ⊗ [ϕ′cY ′,P ′ψ
′]κ

= [ϕ]κ[ψ]κ ⊗ [ϕ′]κ[ψ′]κ

= ρσ ⊗ ρ′σ′).

Ad (M1), (M2), (M3): The conditions are trivially fulfilled since a and r
consist of unit morphisms only.

Ad (M4): ∀A,B ∈ |Ts|
(
s
(Ts)
A,B s

(Ts)
B,A =

[
s
(T)
AW,BW

]
κ

[
s
(T)
BW,AW

]
κ

=
[
s
(T)
AW,BW cBW⊗AW,BW⊗AW s

(T)
BW,AW

]
κ

=
[
s
(T)
AW,BW s

(T)
BW,AW

]
κ

=
[
1(T)

AW⊗BW

]
κ

= 1(Ts)
(AW⊗BW )W ∗ = 1(Ts)

A⊗B

)
.

Ad (M5): ∀A ∈ |Ts|
(
s
(Ts)
A,I l

(Ts)
A =

[
s
(T)
AW,IW

]
κ

[l(T)
AW

]
κ

=
[
s
(T)
AW,IW l

(T)
AW

]
κ

=
[
r
(T)
AW

]
κ

= r
(Ts)
A = 1(Ts)

A

)
.

Ad (M6): ∀A,B, C, A′, B′, C ′ ∈ |Ts| ∀ρ ∈ Ts[A,A′]

∀σ ∈ Ts[B,B′]∀τ ∈ Ts[C,C ′]

(
a

(Ts)
A,B,C((ρ⊗ σ)⊗ τ) =

[
a

(T)
X,Y,P

]
κ

(([ϕ]κ ⊗ [ψ]κ) ⊗ [χ]κ)
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=
[
a

(T)
X,Y,P c(X⊗Y )⊗P,(X⊗Y )⊗P ((ϕ⊗ ψ)⊗ χ)

]
κ

=
[
(ϕ⊗ (ψ ⊗ χ))a(T)

X′,Y ′,P ′

]
κ

=
[
(ϕ⊗ (ψ ⊗ χ))cX′⊗(Y ′⊗P ′),X′⊗(Y ′⊗P ′)a

(T)
X′,Y ′,P ′

]
κ

=
(
[ϕ]κ ⊗ ([ψ]κ ⊗ [χ]κ)

) [
a

(T)
X′,Y ′,P ′

]
κ

= (ρ⊗ (σ ⊗ τ))a(Ts)
A′,B′,C′

)
.

Ad (M7): ∀A,A′ ∈ |Ts| ∀ρ ∈ Ts[A,A′]
(
r
(Ts)
A ρ =

[
r
(T)
AW ]κ[ϕ

]
κ

=
[
r
(T)
AW cAW,Xϕ

]
κ

(by XW ∗ = AWW ∗ = A)

=
[(

cAW,Xϕ⊗ 1(T)
I

)
r
(T)
X′

]
κ

=
[(

cAW,Xϕ⊗ 1(T)
I

)
cX′⊗I,X′⊗Ir

(T)
X′

]
κ

=
[
cAW,Xϕ⊗ 1(T)

I

]
κ

[
r
(T)
X′

]
κ

=
(
[cAW,Xϕ]κ ⊗

[
1(T)

I

]
κ

) [
r
(T)
X′

]
κ

=
(
[ϕ]κ ⊗

[
1(T)

I

]
κ

) [
r
(T)
X′

]
κ

=
(
ρ⊗ 1(Ts)

I

)
r
(Ts)
A′

)
(by X ′W ∗ = A′WW ∗ = A′).

Ad (M8): ∀A,B ∈ |Ts| ∀ρ ∈ Ts[A,A′], σ ∈ Ts[B, B′]

(
s
(Ts)
A,B (σ ⊗ ρ) =

[
s
(T)
AW,BW

]
κ

([ψ]κ ⊗ [ϕ]κ
)

=
[
s
(T)
AW,BW

]
κ

[ψ ⊗ ϕ]κ

=
[
s
(T)
AW,BW cBW⊗AW,Y⊗X(ψ ⊗ ϕ)

]
κ

=
[
cAW⊗BW,X⊗Y s

(T)
X,Y (ψ ⊗ ϕ)

]
κ
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=
[
cAW⊗BW,X⊗Y (ϕ⊗ ψ)s(T)

X′,Y ′

]
κ

=
[
(ϕ⊗ ψ)cX′⊗Y ′,X′⊗Y ′s

(T)
X′,Y ′

]
κ

= [ϕ⊗ ψ]κ
[
s
(T)
X′,Y ′

]
κ

= ([ϕ]κ ⊗ [ψ]κ)
[
s
(T)
X′,Y ′

]
κ

= (ρ⊗ σ)s(Ts)
A′,B′ ,

where

XW ∗ = AWW ∗ = A, X ′W ∗ = A′WW ∗ = A′,

Y W ∗ = BWW ∗ = B, Y ′W ∗ = B′WW ∗ = B′.

Theorem 4.7. Let T ∈ |Th◦dht(J)| be a J-sorted Hoehnke theory. Then
there exists in a natural manner a strictly d-monoidal functor Ψ into the
corresponding strict Hoehnke theory Ts ∈ |sTh◦dht(J)|.

Proof. Defining XΨ := XW ∗, ϕΨ := [ϕ]κ one obtains for arbitrary
objects X, Y, P and morphisms ϕ ∈ T [X, Y ], ψ ∈ T [Y, P ]

(
dom(T )ϕ

)
Ψ = XΨ = XW ∗ = dom(Ts)[ϕ]κ = dom(Ts)(ϕΨ),

(
cod(T )ϕ

)
Ψ = Y Ψ = Y W ∗ = cod(Ts)[ϕ]κ = cod(Ts)(ϕΨ),

1(T )
X Ψ =

[
1(T )

X

]
κ

= 1(Ts)
XW ∗ = 1(Ts)

XΨ ,

(ϕ ·(T ) ψ)Ψ = [ϕ ·(T ) ψ]κ = [ϕ]κ ·(Ts) [ψ]κ = (ϕΨ) ·(Ts) ψΨ),

hence Ψ is a functor.
By Lemma 3.8, it is sufficient to show (sFD), (sFT), and (sFM).

Ad (sFD): d
(T)
X Ψ =

[
d

(T)
X

]
κ

=
[
d

(T)
XW ∗W

]
κ

= d
(Ts)
XW ∗ = d

(Ts)
XΨ .
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Ad (sFT): t
(T)
X Ψ =

[
t
(T)
X

]
κ

=
[
t
(T)
XW ∗W

]
κ

= t
(Ts)
XW ∗ = t

(Ts)
XΨ .

Ad (sFM): (ϕ⊗ ψ)Ψ = [ϕ⊗ ψ]κ = [ϕ]κ ⊗ [ψ]κ = ϕΨ⊗ ψΨ.

Therefore, Ψ : T → Ts is a strictly d-monoidal functor.

The converse question is also positively answered by the following
theorem:

Theorem 4.8. Let Ts ∈ |sT ◦dht(J)| be a strict J-sorted Hoehnke theory.
Then there corresponds to Ts in a natural way a J-sorted Hoehnke theory
T ∈ |T ◦dht(J)|.

Proof. Take |T| = H◦ (|T | = H), where (H◦;⊗, I, O) ((H;⊗, I)) is the
free G◦-algebra (free G-algebra) freely generated by J .

Defining T[X, Y ] := {(X, ϕ, Y ) | ϕ ∈ Ts[XW ∗, Y W ∗]} for arbitrary
X, Y ∈ H◦ (X, Y ∈ H) one obtains obviously T[X,Y ]∪T[X ′, Y ′] = ∅ if X 6=
X ′ or Y 6= Y ′ and, by definition, dom(T) (X, ϕ, Y ) = X, cod(T) (X, ϕ, Y ) =
Y and 1(T)

X = (X, 1(Ts)
XW ∗ , X).

Morphisms (X,ϕ, Y ) and (P, ψ, Q) are composable for Y = P defined
by

(X, ϕ, Y ) ·(T) (Y, ψ, Q) := (X, ϕ ·(Ts) ψ, Q).

Then

1(T)
X ·(T) (X, ϕ, Y )=(X, 1(Ts)

XW ∗ , X) ·(T) (X,ϕ, Y )=(X, 1(Ts)
XW ∗ϕ, Y )=(X,ϕ, Y ),

(X, ϕ, Y ) ·(T) 1(T)
Y =(X, ϕ, Y ) ·(T) (Y, 1(Ts)

Y W ∗ , Y )=(X,ϕ1(Ts)
Y W ∗ , Y )=(X, ϕ, Y ),

(X, ϕ, Y ) ·(T) ((Y, ψ, P ) ·(T) (P, χ, Q))=(X, ϕ(ψχ), Q)

=(X, (ϕψ)χ,Q)=((X,ϕ, Y ) ·(T) (Y, ψ, P )) ·(T) (P, χ,Q),

hence one has a category.
By the agreements

(X1, ϕ1, Y1)⊗(T) (X2, ϕ2, Y2) := (X1 ⊗(Ts) X2, ϕ1 ⊗(Ts) ϕ2, Y1 ⊗(Ts) Y2),
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a
(T)
X,Y,P := (X ⊗ (Y ⊗ P ), 1(Ts)

XW ∗⊗Y W ∗⊗PW ∗ , (X ⊗ Y )⊗ P ),

r
(T)
X :=

(
X ⊗ I, 1(Ts)

XW ∗ , X
)
,

l
(T)
X :=

(
I ⊗X, 1(Ts)

XW ∗ , X
)
,

s
(T)
X,Y :=

(
X ⊗ Y, s

(Ts)
XW ∗⊗Y W ∗ , Y ⊗X

)
,

d
(T)
X :=

(
X, d

(Ts)
XW ∗ , X ⊗X

)
,

t
(T)
X :=

(
X, t

(Ts)
XW ∗ , I

)
,

o(T) :=
(
I, o(Ts), O

)

one obtains a dhts-category (T,⊗(T), I, a(T), r(T), l(T), s(T), t(T), o(T)), i.e.
a Hoehnke theory in |T ◦dht(J)|, since the validity of the defining axioms
obviously carries over from Ts into T.

Remark. If Ts ∈ |sT ◦dhth∇(J)| is even any strict J-sorted Hoehnke theory
with halfdiagonalinversions, then one obtains by the additional agreement

∇(T)
X :=

(
X ⊗X,∇(Ts)

XW ∗ , X
)

a dhth∇s-category (T,⊗(T), I, a(T), r(T), l(T), s(T), t(T),∇(T), o(T)), i.e. a
Hoehnke theory in |T ◦dhth∇(J)|.

Definition 4.9. Let T and T′ be J-sorted Hoehnke theories in |Th◦dht(J)|
and |sTh◦dht(J)|, respectively.

Then a d-monoidal functor F : T → T′ is called theory morphism, if, in
addition, the conditions

(Th1) ∀X ∈ |T| (XF = X),

(sF∗) ∀X,Y ∈ |T| (F̃ 〈X, Y 〉 ∈ UnK′)
are fulfilled.
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Lemma 4.10. Every theory morphism F : T → T′ has the properties
(sFD), (sFT), (sFM), (sFI∗).

Conversely, any functor F : T → T′ is a theory morphism between J-
sorted Hoehnke theories T and T′, whenever F satifies (Th1), (sFD), (sFT),
and (sFM).

Proof. The assertion is an immediate consequence of Lemma 3.8 and
Corollary 3.10.

Theorem 4.11. All J-sorted Hoehnke theories together with the correspond-
ing theory morphisms form a category Th◦dht(J) and sTh◦dht(J), respectively,
where the composition of theory morphisms is defined by the usual composi-
tion of functors.

Proof. Obviously, dom (F : T → T′) = T, cod (F : T → T′) = T′.
The identical functor 1T : T → T is a theory morphism with respect to

1̃T = (1̃T〈X, Y 〉 = 1X⊗Y | X, Y ∈ H◦), i1T = 1I .

Let F : T → T′ and G : T′ → T′′ be theory morphisms. Then, by definition,
FG is a functor fulfilling the condition (Th1).

Moreover, because of Lemma 4.10 and Proposition 3.9, FG is a theory
morphism.

Trivially, F1T = F = F1T′ and F (GH) = (FG)H for every theory
morphism F and all composable theory morphisms F , G and H.

Theorem 4.12. Let Th◦dht(J) and sTh◦dht(J) be the categories introduced
above. Then there are the functors

Σ : Th◦dht(J) → sTh◦dht(J)

T 7→ TΣ := Ts (see 4.6),

(F : T → T′) 7→ (FΣ : Ts → Ts
′) defined by

XW ∗ 7→ XW ∗, [ϕ]κ 7→ [ϕF ]κ′
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and

Π : sTh◦dht(J) → Th◦dht(J)

Ts 7→ TsΠ := T (see 4.7),

(F : Ts → Ts
′) 7→ (FΠ : T → T′) defined by

X 7→ X, (X, ϕ, Y ) 7→ (X,ϕF, Y )
such that Σ is a left-adjoint functor of the functor Π.

Proof. a) The functor property of Σ:
The mapping on objects is well defined by Theorem 4.5. Let F be a the-
ory morphism from a J-sorted theory T into a J-sorted theory T′, i.e.
F ∈ Th◦dht(J)[T,T′]. Then FΣ, defined as above, is a theory morphism
too, more precisely,

FΣ ∈ sTh◦(J)[TΣ,T′Σ].

By definition, the mapping FΣ respects “dom” and “cod” and one obtains

1(TΣ)
XW ∗(FΣ)=

[
1(T)

X

]
κ

(FΣ)=
[
1(T)

X F
]
κ

=
[
1(T′)

X

]
κ

=1(T′Σ)
XW ∗ =1(T′Σ)

(XW ∗)(FΣ)

for all objects X ∈ |T|.

Now let [ϕ]κ ∈ TΣ[XW ∗, Y W∗], [ψ]κ ∈ TΣ[UW ∗, V W∗] be arbitrary
morphisms such that Y W ∗ = UW ∗. Then

([ϕ]κ[ψ]κ)(FΣ) = [ϕcY,Uψ]κ)(FΣ) = [ϕF ]κ′ [cY,UF ]κ′ [ψF ]κ′

= [ϕF ]κ′ [c′Y,U ]κ′ [ψF ]κ′ = [ϕF ]κ′ [1′Y W ∗,UW ∗ ]κ′ [ψF ]κ′

= [ϕF ]κ′ [ψF ]κ′ = [ϕ]κ(FΣ)[ψ]κ(FΣ).

Furthermore, the functor FΣ satisfies (Th1) by definition, (sFD) and (sFT)
since for all A ∈ S◦ one has
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d
(TΣ)
A (FΣ)=

[
d

(T)
AW

]
κ

(FΣ)=
[
d

(T)
AW F

]
κ′

=
[
d

(T′)
(AW )F

]
κ′

=
[
d

(T′)
AW

]
κ′

=d
(T′Σ)
A(FΣ)

and

t
(TΣ)
A (FΣ)=

[
t
(T)
AW

]
κ

(FΣ)=
[
t
(T)
AW F

]
κ′

=
[
t
(T′)
(AW )F

]
κ′

=
[
t
(T′)
AW

]
κ′

= t
(T′Σ)
A(FΣ),

and (sFM) since for all ϕ ∈ T[X, U ], ψ ∈ T[Y, V ] the equation

([ϕ]κ ⊗ [ψ]κ)(FΣ) = [(ϕ⊗ ψ)F ]κ′ = [ϕF ⊗ ψF ]κ′

= [ϕF ]κ′ ⊗ [ψF ]κ′ = [ϕ]κ(FΣ)⊗ [ψ]κ′(FΣ)

is valid.

b) The functor property of Π:
The mapping on objects Ts is well defined by Theorem 4.7.
Let (F : Ts → T′

s) be a theory morphism. Then (FΠ : T → T′) defined by

X 7→ X, (X, ϕ, Y ) 7→ (X,ϕF, Y )

is a theory morphism too, since the conditions (Th1), (sFD), (sFT), and
(sFM) are satisfied.

Ad (Th1): ∀X ∈ H◦ (X(FΠ) = X) by definition.

Ad (sFD):

∀X∈H◦
(
d

(T)
X (FΠ)=

(
X, d

(Ts)
XW ∗ , X ⊗X

)
(FΠ)=

(
X, d

(Ts)
XW ∗F, X ⊗X

)

=
(
X, d

(T′s)
XW ∗F , X ⊗X

)
=

(
X, d

(T′s)
XW ∗ , X ⊗X

)
= d

(T′)
X = d

(T′)
X(FΠ)

)
.

Ad (sFT): ∀X ∈ H◦
(
t
(T)
X (FΠ) =

(
X, t

(Ts)
XW ∗ , I

)
(FΠ) =

(
X, t

(Ts)
XW ∗F, I

)

=
(
X, t

(T′s)
XW ∗F , I

)
=

(
X, t

(T′s)
XW ∗ , I

)
= t

(T′)
X = t

(T′)
X(FΠ)

)
.
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Ad (sFM): ∀ρ ∈ T[X,U ], σ ∈ T[Y, V ]
(
(ρ⊗ σ)(FΠ)

= ((X, ϕ,U)⊗ (Y, ψ, V ))(FΠ)

= (X ⊗ Y, ϕ⊗ ψ,U ⊗ V )(FΠ)

= (X ⊗ Y, (ϕ⊗ ψ)F, U ⊗ V )

= (X ⊗ Y, ϕF ⊗ ψF, U ⊗ V )

= (X, ϕF, U)⊗ (Y, ψF, V )

= (X, ϕ,U)(FΠ)⊗ (Y, ψ, V )(FΠ)

= ρ(FΠ)⊗ σ(FΠ)
)
.

c) It remains to show that Σ is a left-adjoint of Π. We will prove in several
steps that for every T ∈ |Th◦dht(J)| and every Ts ∈ |sTh◦dht(J)| there is an
isomorphism between the sets sTh◦dht(J)[TΣ,Ts] and Th◦dht(J)[T,TsΠ].

1. A functor from a theory T into T(ΣΠ):

Define a mapping ΘT on objects and morphisms of any Hoehnke theory
by XΘT := X and ϕΘT := (X, [ϕ]κ, Y ) for ϕ ∈ T[X,Y ]. This mappings
are well defined and the values are objects and morphisms of T(ΣΠ).

ΘT : T → T(ΣΠ) is a functor, since the object mapping is compatible
with “dom” and “cod” and

1(T)
X ΘT =

(
X,

[
1(T)

X

]
κ

, X
)

=
(
X, 1(T(Σ))

XW ∗ , X
)

= 1((TΣ)Π)
X = 1(T(ΣΠ))

XΘT
,

(ϕψ)ΘT = (X, [ϕψ]κ, U) = (X, [ϕ]κ[ψ]κ, U)

= (X, [ϕ]κ, Y )(Y, [ψ]κ, U) = (ϕΘT)(ψΘT).
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Moreover, ΘT : T → T(ΣΠ) is even a theory morphism because of the
validity of (Th1), (sFD), (sFT), and (sFM) as follows:

∀X ∈ |T| (XΘT = X) by definition.

∀X ∈ |T|
(
d

(T)
X ΘT =

(
X,

[
d

(T)
X

]
κ

, X ⊗X
)

=
(
X, d

(TΣ)
XW ∗ , X ⊗X

)

= d
((T)Σ)Π)
X = d

(T(ΣΠ))
XΘT

)
.

∀X ∈ |T|
(
t
(T)
X ΘT =

(
X,

[
t
(T)
X

]
κ

, I
)

=
(
X, t

(TΣ)
XW ∗ , I

)
= t

((T)Σ)Π)
X

= t
(T(ΣΠ))
XΘT

)
.

∀ϕ ∈ T[X,U ], ψ ∈ T[Y, V ] ((ϕ⊗ ψ)ΘT = (X ⊗ Y, [ϕ⊗ ψ]κ, U ⊗ V )

= (X, [ϕ]κ, U)⊗ (Y, [ψ]κ, V ) = ϕΘT ⊗ ψΘT).

In such a way, every theory morphism G′ ∈ |sTh◦dht(J)| determines uniquely
a theory morphism G := ΘT (G′Π) ∈ Th◦dht(J)[T,TsΠ].

2. A construction of a strictly d-monoidal functor G : T → Ts:
To every theory morphism G ∈ Th◦dht(J)[T,TsΠ] there is assigned in a

natural manner a strictly d-monoidal functor G : T → Ts as follows:

Let be given any G ∈ Th◦dht(J)[T,TsΠ]. Then

XG = X (X ∈ |T|) and

T[X, U ] 3 ϕ 7→ ϕG = (X, ϕG, U) ∈ TsΠ[X, U ],

where ϕG ∈ Ts[XW ∗, UW ∗].

The agreements
H◦ 3 X 7→ XΞ := XW ∗ ∈ S◦

and
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TsΠ[X, U ] 3 (X, ψ,U) 7→ (X,ψ, U)Ξ := ψ ∈ Ts[XW ∗, UW ∗]
define a functor Ξ : TsΠ → Ts because of:

dom(Ts)((X,ψ, U)Ξ) = dom(Ts)(ψ) = XW ∗ = XΞ =
(
dom(TsΠ)(X,ψ, U)

)
Ξ,

cod(Ts)((X, ψ, U)Ξ) = cod(Ts)(ψ) = UW ∗ = UΞ =
(
cod(TsΠ)(X, ψ, U)

)
Ξ,

1(TsΠ)
X Ξ =

(
X, 1(Ts)

XW ∗ , X
)

Ξ = 1(Ts)
XW ∗ = 1(Ts)

XΞ ,

((X, ψ1, U)(U,ψ2, Y ))Ξ = (X, ψ1ψ2, Y )Ξ = ψ1ψ2 = (X, ψ1, U)Ξ(U,ψ2, Y )Ξ.

Ξ : TsΠ → Ts is a strictly d-monoidal functor since (sFD), (sFT), and
(sFM) are valid:

d
(TsΠ)
X Ξ =

(
X, d

(Ts)
XW ∗ , X ⊗X

)
Ξ = d

(Ts)
XW ∗ = d

(Ts)
XΞ ,

t
(TsΠ)
X Ξ =

(
X, t

(Ts)
XW ∗ , I

)
Ξ = t

(Ts)
XW ∗ = t

(Ts)
XΞ ,

((X1, ψ1, U1)⊗ (X2, ψ2, U2))Ξ = (X1 ⊗X2, ψ1 ⊗ ψ2, U1 ⊗ U2)Ξ

= ψ1 ⊗ ψ2 = (X1, ψ1, U1)Ξ⊗ (X2, ψ2, U2)Ξ.

The compositum G := GΞ is strictly d-monoidal functor from T into Ts.

3. The induced theory morphism G′ ∈ sTh◦dht(J):
Let G, Ξ, and G be given as above. Then define a mapping G′ by

AG′ := A for all A ∈ S◦ and [ϕ]κG′ := ϕG = (ϕG)Ξ = (X, ϕG, U)Ξ = ϕG ∈
Ts[XW ∗, UW ∗] for all ϕ ∈ T[X, U ], where ϕG is a well-defined morphism
of Ts.

Because of
ϕ1 ∈ T[X1, U1] ∧ ϕ2 ∈ T[X2, U2] ∧ [ϕ1]κ = [ϕ2]κ ⇒

⇒ X1W
∗ = X2W

∗ := A ∧ U1W
∗ = U2W

∗ := B

∧ c−1
X1

ϕ1cU1 = c−1
X2

ϕ2cU2 ∈ Ts[AW,BW ] ⇒
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⇒ (c−1
X1

G)(ϕ1G)(cU1G) = (c−1
X2

G)(ϕ2G)(cU2G) ∈ TsΠ[A,B]

⇒
(
AW, 1(Ts)

A , X1

)
(X1, (ϕ1)G, U1)

(
U1, 1

(Ts)
B , BW

)

=
(
AW, 1(Ts)

A , X2

)
(X2, (ϕ2)G, U2)

(
U2, 1

(Ts)
B , BW

)

⇒ (X1, (ϕ1)G, U1) = (X2, (ϕ2)G, U2)

⇒ (ϕ1)G = (ϕ2)G,

possibly different representants of the same κ-class of morphisms determine
identical images, thus [ϕ1]κG′ = [ϕ2]κG′.

The mapping G′ determines a functor G′ : TΣ → Ts since

dom(Ts)([ϕ]κG′) = dom(Ts)(ϕG) = XW ∗ = (XW ∗)G′ =
(
dom(TΣ)([ϕ]κ)

)
G′,

cod(Ts)([ϕ]κG′) = cod(Ts)(ϕG) = UW ∗ = (UW ∗)G′ =
(
cod(TΣ)([ϕ]κ)

)
G′,

(
1(TΣ)

A

)
G′ =

([
1(T)

AW

]
κ

)
G′ =

(
1(T)

AW

)
G =

(
1(T)

AW

)
(GΞ) =

((
1(T)

AW

)
G

)
Ξ

=
(
1(TsΠ)
(AW )G

)
Ξ = 1(Ts)

((AW )G)Ξ = 1(Ts)
A = 1(Ts)

AG′ ,

([ϕ]κ[ψ]κ)G′ = ([ϕcU,Y ψ]κ)G′ = (ϕcU,Y ψ)G = (ϕG)(cU,Y G)(ψG)

= ϕGψG = ([ϕ]κG′)([ψ]κG′).

Moreover, G′ is even a theory morphism in sTh◦dht(J) because of the validity
of (Th1) by definition and the validity of (sFD), (sFT), and (sFM) as follows:

(
d

(TΣ)
A

)
G′ =

[
d

(T)
A

]
κ

G′ = d
(T)
A G = d

(TsΠ)
AW Ξ = d

(Ts)
A = d

(Ts)
AG′ ,

(
t
(TΣ)
A

)
G′ =

[
t
(T)
A

]
κ

G′ = t
(T)
A G = t

(TsΠ)
AW Ξ = t

(Ts)
A = t

(Ts)
AG′ ,
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([ϕ]κ ⊗ [ψ]κ)G′ = ([ϕ⊗ ψ]κ)G′ = (ϕ⊗ ψ)G = (ϕG)⊗ (ψG) =

= [ϕ]κG′ ⊗ [ψ]κG′.

By the functor Π : sTh◦ − dht(J) → Th◦dht(J), G′Π : T(ΣΠ) → TsΠ is a
theory morphism.

Moreover, this theory morphism has the property
G = ΘT(G′Π).

This is a consequence of

H◦ 3 X 7→ X(ΘT(G′Π)) = (XΘT)(G′Π) = X(G′Π) = X = XG

and
T[X, U ] 3 ϕ 7→ ϕ(ΘT(G′Π)) = (ϕΘT)(G′Π) = (X, [ϕ]κ, U)(G′Π) =

= (X, [ϕ]κG′, U) = (X, ϕG, U) = ϕG.

Finally, let L : TΣ → Ts be a theory morphism such that ΘT)(LΠ) = G.
Then

∀X ∈ H◦ ((XW ∗)G′ = XW ∗ = (XW ∗)G)

and

∀X, U ∈ H◦ ∀ϕ ∈ T[X, U ] ((X, [ϕ]κG′, U) = (X, ϕG,U) = ϕG =

= ϕ(ΘT)(LΠ)) = (ϕΘT)(LΠ) = (X, [ϕ]κ, U)(LΠ) = (X, [ϕ]κL,U)

⇒ [ϕ]κG′ = [ϕ]κL),

thus L = G′, i.e. G′ is the only theory morphism in sTh◦dht(J) with the
property

G = ΘT(G′Π).
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T

T(ΣΠ)

TsΠ

TΣ Ts

-

-

?

6

?

@
@

@
@

@
@

@@R

@
@

@
@

@
@

@@R
G

G′Π

GΨ

ΘT

Ξ

G′

The diagram illustrates the individual d-monoidal functors and theory mor-
phisms, respectively, which are considered in the proof of the last theorem.
This diagram is commutative in all of its parts, namely G = ΘT(G′Π) was
shown above, G = GΞ by definition, and G = ΨG′ follows by

X(ΨG′) = (XΨ)G′ = (XW ∗)G′ = XW ∗ = XG

and

ϕ(ΨG′) = (ϕΨ)G′ = [ϕ]κG′ = ϕG = ϕG.

Corollary 4.13. The theory morphisms ΘT , T ∈ |Th◦dht(J)| form a natural
transformation Θ : IdTh◦dht(J) → ΣΠ.

Proof. Θ = (ΘT | T ∈ |Th◦dht(J)|) is a natural transformation
Θ : IdTh◦dht(J) → ΣΠ because of the commutativity of the following dia-
gram for arbitrary theories and theory morphisms of Th◦dht(J):
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(N) T T(ΣΠ)

T′ T′(ΣΠ)

-

-

? ?

ΘT

F F (ΣΠ)

ΘT′

Let X be any object of T. Then

X(FΘT′) = (XF )ΘT′ = XΘT′ = X

and

X(ΘTF (ΣΠ)) = (XΘT)((FΣ)Π) = X.

For every morphism ϕ ∈ T[X,U ] one has

ϕ(FΘT′) = (ϕF )ΘT′ = (X, [ϕF ]κ′ , U)

and
ϕ(ΘTF (ΣΠ) = (ϕΘT)((FΣ)Π) =

= (X, [ϕ]κ, U)((FΣ)Π)) =

= (X, [ϕ]κ(FΣ), U) = (X, [ϕF ]κ′ , U),

hence

ΘTF (ΣΠ) = FΘT′ .
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