LOCALLY FINITE *M*-SOLID VARIETIES OF SEMIGROUPS

KLAUS DENECKE AND BUNDIT PIBALJOMMEE

Universität Potsdam, Institut für Mathematik D–14415 Potsdam, PF 601553, Germany e-mail: kdenecke@rz.uni-potsdam.de e-mail: bunpib@rz.uni-potsdam.de

Abstract

An algebra of type τ is said to be *locally finite* if all its finitely generated subalgebras are finite. A class K of algebras of type τ is called locally finite if all its elements are locally finite. It is well-known (see [2]) that a variety of algebras of the same type τ is locally finite iff all its finitely generated free algebras are finite. A variety V is *finitely based* if it admits a finite basis of identities, i.e. if there is a finite set Σ of identities such that $V = Mod\Sigma$, the class of all algebras of type τ which satisfy all identities from Σ . Every variety which is generated by a finite algebra is locally finite. But there are finite algebras which are not finitely based. For semigroup varieties, Perkins proved that the variety generated by the five-element *Brandt-semigroup*

$$B_2^1 = \left\{ \left(\begin{array}{cc} 0 & 0 \\ 0 & 0 \end{array} \right), \left(\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array} \right), \left(\begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array} \right), \left(\begin{array}{cc} 0 & 0 \\ 1 & 0 \end{array} \right), \left(\begin{array}{cc} 0 & 0 \\ 0 & 1 \end{array} \right) \right\}$$

is not finitely based ([9], [10]). An identity $s \approx t$ is called a hyperidentity of a variety V if whenever the operation symbols occurring in s and in t, respectively, are replaced by any terms of V of the appropriate arity, the identity which results, holds in V. A variety V is called solid if every identity of V also holds as a hyperidentity in V. If we apply only substitutions from a set M we speak of Mhyperidentities and M-solid varieties. In this paper we use the theory of M-solid varieties to prove that a type (2) M-solid variety of the form $V = H_M Mod\{F(x_1, F(x_2, x_3)) \approx F(F(x_1, x_2), x_3)\}$, which consists precisely of all algebras which satisfy the associative law as an *M*-hyperidentity is locally finite iff the hypersubstitution which maps F to the word $x_1x_2x_1$ or to the word $x_2x_1x_2$ belongs to M and that V is finitely based if it is locally finite.

Keywords: locally finite variety, finitely based variety, *M*-solid variety.

2000 Mathematics Subject Classification: 08A15, 08B15, 20M01.

1. Preliminaries

First of all we want to give some basic knowledge about hyperidentities and M-solid varieties. Let $\tau = (n_i)_{i \in I}$ be a type of algebras with operation symbols f_i of arity n_i , indexed by some set I. Let $X = \{x_1, x_2, x_3, \ldots\}$ be a countably infinite alphabet of variables and let $X_n = \{x_1, x_2, \ldots, x_n\}$ be an n-element alphabet. We denote by $W_{\tau}(X_n)$ the set of all n-ary terms of type τ . Let $W_{\tau}(X) := \bigcup_{n=1}^{\infty} W_{\tau}(X_n)$ be the set of all terms of type τ . Any map $\sigma : \{f_i | i \in I\} \to W_{\tau}(X)$ which takes each n_i -ary operation symbol to an n_i -ary term is called a hypersubstitution of type τ . Each hypersubstitution σ induces a map $\hat{\sigma}$ on the set of all terms which is defined by

- (i) $\hat{\sigma}[x] := x$ if $x \in X$ is a variable,
- (ii) $\hat{\sigma}[f_i(t_1, \dots, t_{n_i})] := \sigma(f_i)(\hat{\sigma}[t_1], \dots, \hat{\sigma}[t_{n_i}])$ for composite terms $f_i(t_1, \dots, t_{n_i})$.

On the set $Hyp(\tau)$ of all hypersubstitutions of type τ , we define a binary operation $\circ_h : Hyp(\tau) \times Hyp(\tau) \to Hyp(\tau)$ by $\sigma_1 \circ_h \sigma_2 = \hat{\sigma}_1 \circ \sigma_2$, where \circ is the usual composition of functions. Then together with the identity element σ_{id} , mapping each f_i to the term $f_i(x_1, \ldots, x_{n_i})$, we obtain a monoid $(Hyp(\tau); \circ_h, \sigma_{id})$.

For a variety V the equation $s \approx t$ is called a hyperidentity in V if $\hat{\sigma}[s] \approx \hat{\sigma}[t]$ are identities in V for all hypersubstitutions σ . If $M \subseteq Hyp(\tau)$ is a submonoid of $Hyp(\tau)$ and if $\hat{\sigma}[s] \approx \hat{\sigma}[t]$ are identities for all $\sigma \in M$, the identity $s \approx t$ is called an *M*-hyperidentity. The variety V is called solid if every identity in V is satisfied as a hyperidentity and *M*-solid if every identity in V is satisfied as a *M*-hyperidentity. The collection of all *M*-solid varieties of a given type τ form a complete sublattice $S_M(\tau)$ of the lattice $\mathcal{L}(\tau)$ of all varieties of type τ with $S_{M_1}(\tau) \subseteq S_{M_2}(\tau)$ if $M_2 \subseteq M_1$. To study such complete sublattices can help to get more insight into the lattice $\mathcal{L}(\tau)$. This is particularly interesting if one studies subvariety lattices of given varieties, for instance, the lattice $\mathcal{L}(SEM)$ of all subvarieties of the variety SEM of all semigroups. Then $\mathcal{S}_M(SEM)$ is the complete sublattice of all M-solid varieties of $\mathcal{L}(SEM)$. For every M-solid variety V of type τ there exists a set Σ of equations such that V is precisely the class of all algebras of type τ which satisfy all equations from Σ as M-hyperidentities. This class is called the M-hypermodel class determined by Σ , and is denoted by $V = H_M Mod\Sigma$. If we define an operator $\chi_M : \mathcal{P}(W_\tau(X)^2) \to \mathcal{P}(W_\tau(X)^2)$, where \mathcal{P} denotes the formation of the power set, by

$$\chi_M[\Sigma] := \{ \hat{\sigma}[s] \approx \hat{\sigma}[t] \mid s \approx t \in \Sigma, \sigma \in M \},\$$

then V is the class of all algebras of type τ satisfying every equation from $\chi_M[\Sigma]$ as identity, i.e. $H_M Mod\Sigma = Mod\chi_M[\Sigma]$.

It is interesting to remark that there are varieties V having a finite hyperidentity basis Σ but no finite basis for their identities. As an example, we consider the type $\tau = (2, 1)$ with a binary operation symbol to be indicated by juxtaposition and a unary operation symbol f. Let Σ be the following finite set of equations:

$$\Sigma = \{ (x_1 x_2) x_3 \approx x_1 (x_2 x_3), \ x_1 x_2 x_3 x_4 \approx x_1 x_3 x_2 x_4, \ x_2 x_1^2 x_2 \\ \approx x_1 x_2^2 x_1, \ x_2 f(x_1) x_1^2 x_2 \approx x_1 x_2 f(x_1) x_2 x_1 \}.$$

We consider the monoid M of hypersubstitutions of the form $\sigma^{(k)}$, for any natural number k, where $\sigma^{(k)}$ maps the binary operation symbol to itself and the unary operation symbol f to x_1^k , for $k \ge 1$, together with the identity hypersubstitution σ_{id} . Then the set

$$\chi_M[\Sigma] = \{ (x_1 x_2) x_3 \approx x_1(x_2 x_3), \ x_1 x_2 x_3 x_4 \approx x_1 x_3 x_2 x_4, \ x_2 x_1^2 x_2 \approx x_1 x_2^2 x_1 \} \cup \\ \cup \{ x_2 x_1^k x_1^2 x_2 \approx x_1 x_2 x_1^k x_2 x_1 \mid k \ge 1 \}$$

does not have a finite basis, as shown by Perkins in [10]. Another similar example was given by Paseman in [8] using the type $\tau = (1, 1, 1)$.

The variety $V_{HS} = HMod\{F(x_1, F(x_2, x_3)) \approx F(F(x_1, x_2), x_3)\}$ consisting of all semigroups satisfying the associative law as hyperidentity is the greatest solid variety of semigroups and the variety $H_MMod\{F(x_1, F(x_2, x_3)) \approx F(F(x_1, x_2), x_3)\}$ is the greatest *M*-solid variety of semigroups for a submonoid *M* of Hyp(2). In [12] it was proved that V_{HS} is finitely based

by identities and that $V_{HS} = \{x_1(x_2x_3) \approx (x_1x_2)x_3, x_1x_2x_1x_3x_1x_2x_1 \approx x_1x_2x_3x_2x_1, (x_1^2x_2)^2x_3 \approx x_1^2x_2^2x_3, x_1x_2^2x_2^3 \approx x_1(x_2x_3^2)^2, x_1^2 \approx x_2^4\}$. In a similar way for the monoid $Pre = Hyp(2) \setminus \{\sigma_{x_1}, \sigma_{x_2}\}$, where σ_{x_1} maps F to x_1 and σ_{x_2} maps F to x_2 , of all Pre-hypersubstitutions, it was proved that $H_{Pre}Mod\{F(x_1, F(x_2, x_3)) \approx F(F(x_1, x_2), x_3)\}$ has the set $\{x_1(x_2x_3) \approx (x_1x_2)x_3, x_1x_2x_1x_3x_1x_2x_1 \approx x_1x_2x_3x_2x_1, x_1^2 \approx x_2^2, x_1^3 \approx x_2^3\}$ as finite basis for all its identities.

A hypersubstitution of type $\tau = (2)$ is called *regular*, if F is mapped to a binary term containing both variables x_1 and x_2 . The set *Reg* of all regular hypersubstitutions of type $\tau = (2)$ forms also a submonoid of the monoid *Hyp* of all hypersubstitutions and in [4] it was proved that $H_{Reg}Mod\{F(x_1, F(x_2, x_3)) \approx F(F(x_1, x_2), x_3)\}$ is finitely based by identities. Therefore, in a very natural way the following problems arise:

For which monoids M of hypersubstitutions of type $\tau = (2)$ is $H_M Mod\{F(x_1, F(x_2, x_3)) \approx F(F(x_1, x_2), x_3)\}$ finitely based by identities ?

We will show that this problem is closely connected with the following one:

For which monoids M of hypersubstitutions of type $\tau = (2)$ is $H_M Mod\{F(x_1, F(x_2, x_3)) \approx F(F(x_1, x_2), x_3)\}$ locally finite ?

2. Locally finite M-solid varieties

Let V be a variety of type τ and let IdV be the set of all identities valid in V. Then a hypersubstitution $\sigma \in Hyp(\tau)$ is called V-proper if $\hat{\sigma}[s] \approx$ $\hat{\sigma}[t] \in IdV$ for every $s \approx t \in IdV$. Let P(V) be the set of all V-proper hypersubstitutions. Then P(V) is a submonoid of $Hyp(\tau)$. Every variety is P(V)-solid and P(V) is the greatest submonoid M of $Hyp(\tau)$ such that V is M-solid. A variety is solid if and only if $P(V) = Hyp(\tau)$. For checking whether an identity is satisfied as a hyperidentity in a variety V, not all hypersubstitutions are important. In [11] the following binary relation on $Hyp(\tau)$ was introduced:

Definition 2.1. Let V be a variety of type τ . Two hypersubstitutions σ_1 and σ_2 of type τ are called V-equivalent if and only if $\sigma_1(f_i) \approx \sigma_2(f_i) \in IdV$ for all $i \in I$. In this case, we write $\sigma_1 \sim_V \sigma_2$.

Clearly, \sim_V is an equivalence relation on $Hyp(\tau)$ and on its submonoids. If V is M-solid then the restriction of \sim_V to $M \times M$ is a congruence relation on M. The following property is easy to check:

If $s \approx t \in IdV$, $\sigma_1 \sim_V \sigma_2$ and $\hat{\sigma}_1[s] \approx \hat{\sigma}_1[t] \in IdV$, then $\hat{\sigma}_2[s] \approx \hat{\sigma}_2[t] \in IdV$.

In other words, the monoid P(V) is a union of equivalence classes with respect to the relation \sim_V .

As a consequence, to check whether $s \approx t$ is satisfied as an M-hyperidentity in a variety V we can restrict our checking to one representative from each equivalence class of the quotient set $M/_{\sim_V}$. Such sets of representatives can be selected by a choice function $\Phi: M/_{\sim_V} \to M$. From the class of the identity hypersubstitution $[\sigma_{id}]_{\sim_V}$ one has to choose σ_{id} . We will use the notation $M_{\Phi}^N(V)$ and call the elements of this set normal form hypersubstitutions. In [1], it was proved that $Mod\chi_M[\Sigma] = Mod\chi_{M_{\Phi}^N(V)}[\Sigma]$ for every variety V, for every set Σ of equations, and every choice function Φ .

Now we come back to varieties of semigroups and prove:

Theorem 2.2. If V is an M-solid locally finite variety of semigroups which is definable by a finite set Σ of M-hyperidentities, then V is finitely based by identities.

Proof. As an *M*-solid variety, *V* is the class of all semigroups which satisfy all equations from Σ as *M*-hyperidentities, i.e. $V = H_M Mod\Sigma$. Using the equations $H_M Mod\Sigma = Mod\chi_M[\Sigma] = Mod\chi_{M_{\Phi}^N(V)}[\Sigma]$, we see that $\chi_{M_{\Phi}^N(V)}[\Sigma]$ is a basis for the set of all identities satisfied in *V*. Clearly, the cardinality of *M* is equal to the cardinality of all images of *f* under hypersubstitutions from *M*, i.e. $|M| = |\{\sigma(f) \mid \sigma \in M\}|$. From this and from $\sigma_1 \sim_V \sigma_2$ iff $\sigma_1(f) \approx \sigma_2(f) \in IdV$, we obtain $|M_{\Phi}^N(V)| = |M/_{\sim_V}| = |\{[\sigma(f)]_{IdV} \mid \sigma \in M\}| \leq |F_V(\{x, y\})|$. Since *V* is locally finite, $F_V(\{x, y\})$ is finite and then $M_{\Phi}^N(V)$ is also finite. Therefore, $\chi_{M_{\Phi}^N}[\Sigma]$ is finite and *V* is finitely based by identities.

3. Zimin-Words

M. Sapir discovered ([13]) that there exists a property of semigroup varieties such that every finitely generated variety has this property and any finitely based variety satisfying this property must satisfy an identity of a specific form. This identity has the form $Z_n \approx w$ where the left hand side is called a Zimin word and is defined inductively by:

 $Z_1 := x_1,$ $Z_{n+1} := Z_n x_{n+1} Z_n.$

Then the sequence of Zimin words can be produced by the hypersubstitution $\sigma_{x_1x_2x_1}$ which maps a binary operation symbol f to the word $x_1x_2x_1$ (or by $\sigma_{x_2x_1x_2}$ mapping f to the word $x_2x_1x_2$).

Definition 3.1. Let f be a binary operation symbol. Then we define

 $f^1(x_1) := x_1,$ $f^n(x_1, x_2, \dots, x_n) := f(f^{n-1}(x_1, \dots, x_{n-1}), x_n).$

Proposition 3.2. For every $n \ge 1$, we have

 $\hat{\sigma}_{x_1x_2x_1}[f^n(x_1, x_2, \dots, x_n)] = Z_n.$

Proof. For n = 1, we have $\hat{\sigma}_{x_1 x_2 x_1}[x_1] = x_1 = Z_1$.

Assume that $\hat{\sigma}_{x_1x_2x_1}[f^{n-1}(x_1, x_2, \dots, x_{n-1})] = Z_{n-1}$. Then $\hat{\sigma}_{x_1x_2x_1}[f^n(x_1, x_2, \dots, x_n)] = \hat{\sigma}_{x_1,x_2,x_1}[f(f^{n-1}(x_1, \dots, x_{n-1}), x_n)] = \sigma_{x_1x_2x_1}(f)(\hat{\sigma}_{x_1x_2x_1}[f^{n-1}(x_1, \dots, x_{n-2})], x_n]) = Z_{n-1}x_nZ_{n-1} = Z_n.$

Dually, if we apply the hypersubstitution $\sigma_{x_2x_1x_2}$ to the terms $f^{(n)}(x_1, x_2, \ldots, x_n)$ inductively defined by $f^{(1)}(x_1) := x_1, f^{(n)}(x_1, \ldots, x_n) := f(x_1, f^{(n-1)}(x_2, \ldots, x_n))$, then we obtain a sequence of words from which we get the Zimin words by exchange of variables.

Then we have

Proposition 3.3. If $\sigma_{x_1x_2x_1}(\sigma_{x_2x_1x_2})$ is a proper hypersubstitution of a variety V of semigroups, then for every $n \geq 3$ there is a term u_n such that $Z_n \approx u_n$ is an identity in V.

Proof. Clearly, for every $n \geq 3$ the equations $f^n(x_1, \ldots, x_n) \approx f^{(n)}(x_1, \ldots, x_n)$ are identities in V, since these equations are consequences of the associative law. Then using $\sigma_{x_1x_2x_1}$, we obtain all Zimin words on the left hand side, and if $\sigma_{x_2x_1x_2}$ is a proper hypersubstitution of V, we obtain the Zimin words on the right hand side after exchanging of variables.

We recall the following definitions:

Definition 3.4. A semigroup S is said to be *periodic* if for every $a \in S$ there exist two different numbers m_a and n_a such that $a^{m_a} = a^{n_a}$. A variety V of semigroups is called *periodic* if every member of V is periodic. A zero 0 in a semigroup S is an element from S with x0 = 0x = 0 for every $x \in S$. A semigroup S with zero is called a *nil-semigroup* if for any $a \in S$ there is a natural number n with $a^n = 0$.

For periodic semigroups we have

Proposition 3.5 ([6]). A finitely based periodic semigroup variety V is locally finite iff all groups in V and all nil-semigroups in V are locally finite.

In [6] (see also [7], \S 7) sufficient conditions for groups to be locally finite are given.

Proposition 3.6. Every group satisfying the identity $x \approx x^3$ (or $x \approx x^2$, $x \approx x^4$, $x \approx x^5$, $x \approx x^7$) is locally finite.

We denote by $F_{SEM}(X_n)$ the free semigroup generated by X_n . In [6], the following result is proved:

Theorem 3.7. Let V be a variety of semigroups given by a (possibly infinite) set Σ of identities. Assume that the number of variables occurring in words of Σ is n. Then the following conditions are equivalent:

- (i) All nil-semigroups from V are locally finite;
- (ii) V satisfies a non-trivial identity with one side equal to Z_{n+1} ;
- (iii) There exists an identity $s \approx t \in \Sigma$ and a substitution

$$\Phi: X_n \longrightarrow F_{SEM}(X_n)$$

such that Z_{n+1} contains a value $\overline{\Phi}(s)$ or $\overline{\Phi}(t)$ where $\overline{\Phi}(s) \neq \overline{\Phi}(t)$.

Now we prove:

Theorem 3.8. Let V be a variety of semigroups and assume that $\sigma_{x_1x_2x_1}$ (or $\sigma_{x_2x_1x_2}$) is a proper hypersubstitution of V. Then V is locally finite.

Proof. Since $\sigma_{x_1x_2x_1}$ (or $\sigma_{x_2x_1x_2}$) is a proper hypersubstitution of V, for every $n \geq 3$ the identities $\hat{\sigma}_{x_1x_2x_1}[f^n(x_1,\ldots,x_n)] \approx \sigma_{x_1x_2x_1}[f^{(n)}(x_1,\ldots,x_n)]$ are satisfied in V. For n = 3 this gives $x_1x_2x_1x_3x_1x_2x_1 \approx x_1x_2x_3x_2x_1$. For $\sigma_{x_2x_1x_2}$ we obtain the identity $x_3x_2x_3x_1x_3x_2x_3 \approx x_3x_2x_1x_2x_3$ and by exchange x_1 and x_3 we obtain the first identity. Therefore V is a subvariety of the variety

$$V_1 := Mod\{x_1(x_2x_3) \approx (x_1x_2)x_3, x_1x_2x_1x_3x_1x_2x_1 \approx x_1x_2x_3x_2x_1\}.$$

We prove that the last variety is locally finite. The variety V_1 is finitely based and periodic since by identification of variables from the second identity of the basis we obtain $x_1^7 \approx x_1^5$. We can apply Proposition 3.5 and show that all groups and all nil-semigroups in V_1 are locally finite. If \mathcal{G} is a group in V_1 , then x_1^4 has an inverse and by multiplication of $x_1^7 \approx x_1^5$ with this inverse we obtain $x_1^3 \approx x_1$. Then by Proposition 3.6, \mathcal{G} is locally finite. Now we apply Theorem 3.7. In the basis of V_1 we have words containing the three variables x_1, x_2, x_3 . From $x_1x_2x_1x_3x_1x_2x_1 \approx x_1x_2x_3x_2x_1$ we obtain the identity $x_1x_2x_1x_3x_1x_2x_1x_4x_1x_2x_1x_3x_1x_2x_1 \approx x_1x_2x_3x_2x_1x_4x_1x_2x_3x_2x_1$ which is also satisfied in V_1 . The left hand side is the Zimin word Z_4 and therefore every nil-semigroup from V_1 is locally finite. By Proposition 3.5 the variety V_1 is locally finite and the variety V, as a subvariety of V_1 , is also locally finite.

Now Theorem 2.2 and Theorem 3.8 give the following result:

Corollary 3.9. Let V be an M-solid variety of semigroups and assume that $\sigma_{x_1x_2x_1}$ (or $\sigma_{x_2x_1x_2}$) is a proper hypersubstitution of V. If V is definable by a finite set Σ of M-hyperidentities, then V is finitely based by identities.

As examples we consider the monoids M = Hyp(2) of all type (2) hypersubstitutions, $M = Pre := Hyp \setminus \{\sigma_x, \sigma_y\} \ (\sigma_x, \sigma_y \text{ are the hypersubstitutions}$ mapping the operation symbol to the variable x and y, respectively) of all Pre-hypersubstitutions, the monoid M = Reg of all regular hypersubstitutions which map the operation symbol to terms containing both variables and $M = H_2^{op}$, the monoid of all hypersubstitutions which map f to a term containing the operation symbol f at least twice. All these monoids contain $\sigma_{x_1x_2x_1}$ and $\sigma_{x_2x_1x_2}$. The greatest M-solid varieties with respect to these monoids are the M-hyper-model classes of the associative law, i.e. $HMod\{F(x_1, F(x_2, x_3)) \approx F(F(x_1, x_2), x_3)\}, H_{Pre}Mod\{F(x_1, F(x_2, x_3))\}$ $\approx F(F(x_1, x_2), x_3)\}, H_{Reg}Mod\{F(x_1, F(x_2, x_3)) \approx F(F(x_1, x_2), x_3)\}, H_{H_2^{op}}Mod\{F(x_1, F(x_2, x_3)) \approx F(F(x_1, x_2), x_3)\}$.

All these varieties fulfil the presumptions of Corollary 3.9 and are finitely based. Finite bases were given in [4], [5] and [3]: $\begin{aligned} H_{Pre}Mod\{F(x_1, F(x_2, x_3)) \approx F(F(x_1, x_2), x_3)\} = Mod\{x_1(x_2x_3) \approx (x_1x_2)x_3, x_1x_2x_1x_3x_1x_2x_1 \approx x_1x_2x_3x_2x_1, x_1^2 \approx x_2^2, x_1^3 \approx x_2^3\}, \\ H_{Reg}Mod\{F(x_1, F(x_2, x_3)) \approx F(F(x_1, x_2), x_3)\} = Mod\{x_1(x_2x_3) \approx (x_1x_2)x_3, x_1x_2x_1x_3x_1x_2x_1 \approx x_1x_2x_3x_2x_1, (x_1^2x_2)^2x_3 \approx x_1^2x_2^2x_3, x_1x_2^2x_3^2 \approx x_1(x_2x_3^2)^2\}, \end{aligned}$
$$\begin{split} H_{H_2^{op}} Mod\{F(x_1,F(x_2,x_3)) \approx F(F(x_1,x_2),x_3)\} = Mod\{x_1(x_2x_3) \approx (x_1x_2)x_3, x_1x_2x_1x_3x_1x_2x_1 \approx x_1x_2x_3x_2x_1, (x_1^2x_2)^2x_3 \approx x_1^2x_2^2x_3, x_1x_2^2x_2^3 \approx x_1(x_2x_3^2)^2, x_1^3 \approx x_1^5\}. \end{split}$$

Now we prove that varieties of the form $V = H_M Mod\{F(x_1, F(x_2, x_3)) \approx F(F(x_1, x_2), x_3)\}$ also satisfy the converse of Theorem 3.8, i.e. we have:

Theorem 3.10. Suppose that V is a variety of semigroups for which there is a monoid M of hypersubstitutions such that $V = H_M Mod\{F(x_1, F(x_2, x_3)) \approx F(F(x_1, x_2), x_3)\}$. Then V is locally finite iff $\sigma_{x_1x_2x_1}(\sigma_{x_2x_1x_2})$ is a proper hypersubstitution of V.

Proof. Because of Theorem 3.8 we have to show that locally finite varieties of the form $H_M Mod\{F(x_1, F(x_2, x_3)) \approx F(F(x_1, x_2), x_3)\}$ admit $\sigma_{x_1x_2x_1}$ or $\sigma_{x_2x_1x_2}$ as proper hypersubstitutions. All nil-semigroups from V are locally finite and we may assume that the condition Theorem 3.7 (iii) is satisfied. Since $H_M Mod\{F(x_1, F(x_2, x_3)) \approx F(F(x_1, x_2), x_3)\} = Mod\chi_M[\{F(x_1, F(x_2, x_3)) \approx F(F(x_1, x_2), x_3)\}]$, the set $\Sigma = \chi_M[\{F(x_1, F(x_2, x_3)) \approx F(F(x_1, x_2), x_3)\}]$ is an identity basis of V. The set $\chi_M[F(x_1, F(x_2, x_3)) \approx F(F(x_1, x_2), x_3)]$ contains only three variables, therefore we have to find an identity $s \approx t \in \chi_M[\{F(x_1, F(x_2, x_3)) \approx F(F(x_1, x_2), x_3)\}]$ such that there is a substitution $\Phi : X_n \longrightarrow F_{SEM}(X_n)$ into the free semigroup and $\Phi(s)$ or $\Phi(t)$ (where $\Phi(s) \neq \Phi(t)$) occur in the Zimin word $Z_4 = x_1x_2x_1x_3x_1x_2x_1x_4x_1x_2x_1x_3x_1x_2x_1$. The identity $s \approx t$ arises from the associative law by hypersubstitution.

Applying $\sigma_{x_1}, \sigma_{x_2}, \sigma_{x_1x_2}, \sigma_{x_2x_1}$ on both sides of the associative law gives equal words of $F_{SEM}(X_3)$. If we apply a hypersubstitution σ which maps the operation symbol F to a word which contains a power of a word with an exponent > 1 built up by two variables, then the image of the associative law contains also a power with an exponent > 1. Since the extension $\overline{\Phi}: F_{SEM}(X_3) \to F_{SEM}(X_3)$ of the substitution $\Phi: X_3 \to F_{SEM}(X_3)$ is an endomorphism, the image of a word containing a power of a word contains a power of the image: $\overline{\Phi}(uw^l v) = \overline{\Phi}(u)\overline{\Phi}(v)^l\overline{\Phi}(v)$. But Z_4 contains no power of a word. Therefore only the hypersubstitutions $\sigma_{x_1x_2x_1}$ and $\sigma_{x_2x_1x_2}$ can produce the identity $s \approx t$. It follows that $\sigma_{x_1x_2x_1} \in M$ or $\sigma_{x_2x_1x_2} \in M$. But then $\sigma_{x_1x_2x_1}$ or $\sigma_{x_2x_1x_2}$ is a proper hypersubstitution with respect to V. As a consequence of Theorem 2.2 and Theorem 3.9, we have

Corollary 3.11. A variety of semigroups of the form $V = H_M Mod\{F(x_1, F(x_2, x_3)) \approx F(F(x_1, x_2), x_3)\}$ is finitely based if $\sigma_{x_1x_2x_1}$ or $\sigma_{x_2x_1x_2}$ is a proper hypersubstitution of V.

References

- [1] Sr. Arworn, *Groupoids of Hypersubstitutions and G-Solid Varieties*, Shaker-Verlag, Aachen 2000.
- [2] S. Burris and H. P. Sankappanavar, A Course in Universal Algebra, Springer-Verlag, Berlin-Heidelberg-New York 1981.
- [3] Th. Changphas and K. Denecke, Complexity of hypersubstitutions and lattices of varieties, Discuss. Math. – Gen. Algebra Appl. 23 (2003), 31–43.
- [4] K. Denecke and J. Koppitz, *M-solid varieties of semigroups*, Discuss. Math.
 Algebra & Stochastics Methods 15 (1995), 23–41.
- [5] K. Denecke, J. Koppitz and N. Pabhapote, *The greatest regular-solid variety* of semigroups, preprint 2002.
- [6] O.G. Kharlampovich and M.V. Sapir, Algorithmic problems in varieties, Internat. J. Algebra Comput. 5 (1995), 379–602.
- [7] A.Yu. Olshanskii, Geometry of Defining Relations in Groups, (Russian), Izdat. "Nauka", Moscow 1989.
- [8] G. Paseman, A small basis for hyperassociativity, preprint, University of California, Berkeley, CA, 1993.
- [9] P. Perkins, Decision Problems for Equational Theories of Semigroups and General Algebras, Ph.D. Thesis, University of California, Berkeley, CA, 1966.
- [10] P. Perkins, Bases for equational theories of semigroups, J. Algebra 11 (1969), 298–314.
- [11] J. Płonka, Proper and inner hypersubstitutions of varieties, p. 106–116 in: Proceedings of the International Conference: "Summer School on General Algebra and Ordered Sets", Palacký University of Olomouc 1994.
- [12] L. Polák, On hyperassociativity, Algebra Universalis, **36** (1996), 363–378.
- [13] M. Sapir, Problems of Burnside type and the finite basis property in varieties of semigroups, (Russian), Izv. Akad. Nauk SSSR Ser. Mat. 51 (1987), 319–340, English transl. in Math. USSR-Izv. 30 (1988), 295–314.

Received 2 May 2003 Revised 7 July 2003