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Abstract

An algebra of type τ is said to be locally finite if all its finitely
generated subalgebras are finite. A class K of algebras of type τ is
called locally finite if all its elements are locally finite. It is well-known
(see [2]) that a variety of algebras of the same type τ is locally finite iff
all its finitely generated free algebras are finite. A variety V is finitely
based if it admits a finite basis of identities, i.e. if there is a finite set
Σ of identities such that V = ModΣ, the class of all algebras of type
τ which satisfy all identities from Σ. Every variety which is generated
by a finite algebra is locally finite. But there are finite algebras which
are not finitely based. For semigroup varieties, Perkins proved that
the variety generated by the five-element Brandt-semigroup
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is not finitely based ([9], [10]). An identity s ≈ t is called a hyper-
identity of a variety V if whenever the operation symbols occurring
in s and in t, respectively, are replaced by any terms of V of the
appropriate arity, the identity which results, holds in V . A variety
V is called solid if every identity of V also holds as a hyperidentity
in V . If we apply only substitutions from a set M we speak of M -
hyperidentities and M -solid varieties. In this paper we use the theory
of M-solid varieties to prove that a type (2) M -solid variety of the
form V = HMMod{F (x1, F (x2, x3)) ≈ F (F (x1, x2), x3)}, which con-
sists precisely of all algebras which satisfy the associative law as an
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M -hyperidentity is locally finite iff the hypersubstitution which maps
F to the word x1x2x1 or to the word x2x1x2 belongs to M and that
V is finitely based if it is locally finite.

Keywords: locally finite variety, finitely based variety, M -solid
variety.
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1. Preliminaries

First of all we want to give some basic knowledge about hyperidentities and
M -solid varieties. Let τ = (ni)i∈I be a type of algebras with operation
symbols fi of arity ni, indexed by some set I. Let X = {x1, x2, x3, . . .} be a
countably infinite alphabet of variables and let Xn = {x1, x2, . . . , xn} be an
n-element alphabet. We denote by Wτ (Xn) the set of all n-ary terms of type
τ . Let Wτ (X) :=

⋃∞
n=1 Wτ (Xn) be the set of all terms of type τ . Any map

σ : {fi|i ∈ I} → Wτ (X) which takes each ni-ary operation symbol to an
ni-ary term is called a hypersubstitution of type τ . Each hypersubstitution
σ induces a map σ̂ on the set of all terms which is defined by

(i) σ̂[x] := x if x ∈ X is a variable,

(ii) σ̂[fi(t1, . . . , tni)] := σ(fi)(σ̂[t1], . . . , σ̂[tni ])

for composite terms fi(t1, . . . , tni).

On the set Hyp(τ) of all hypersubstitutions of type τ , we define a binary
operation ◦h : Hyp(τ) × Hyp(τ) → Hyp(τ) by σ1 ◦h σ2 = σ̂1 ◦ σ2, where
◦ is the usual composition of functions. Then together with the identity
element σid, mapping each fi to the term fi(x1, . . . , xni), we obtain a monoid
(Hyp(τ); ◦h, σid).

For a variety V the equation s ≈ t is called a hyperidentity in V if
σ̂[s] ≈ σ̂[t] are identities in V for all hypersubstitutions σ. If M ⊆ Hyp(τ)
is a submonoid of Hyp(τ) and if σ̂[s] ≈ σ̂[t] are identities for all σ ∈ M , the
identity s ≈ t is called an M -hyperidentity. The variety V is called solid if
every identity in V is satisfied as a hyperidentity and M -solid if every iden-
tity in V is satisfied as an M -hyperidentity. The collection of all M -solid
varieties of a given type τ form a complete sublattice SM (τ) of the lattice
L(τ) of all varieties of type τ with SM1(τ) ⊆ SM2(τ) if M2 ⊆ M1. To study
such complete sublattices can help to get more insight into the lattice L(τ).
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This is particularly interesting if one studies subvariety lattices of given
varieties, for instance, the lattice L(SEM) of all subvarieties of the variety
SEM of all semigroups. Then SM (SEM) is the complete sublattice of all
M -solid varieties of L(SEM). For every M -solid variety V of type τ there
exists a set Σ of equations such that V is precisely the class of all algebras
of type τ which satisfy all equations from Σ as M -hyperidentities. This
class is called the M -hypermodel class determined by Σ, and is denoted by
V = HMModΣ. If we define an operator χM : P(Wτ (X)2) → P(Wτ (X)2),
where P denotes the formation of the power set, by

χM [Σ] := {σ̂[s] ≈ σ̂[t] | s ≈ t ∈ Σ, σ ∈ M},

then V is the class of all algebras of type τ satisfying every equation from
χM [Σ] as identity, i.e. HMModΣ = ModχM [Σ].

It is interesting to remark that there are varieties V having a finite hy-
peridentity basis Σ but no finite basis for their identities. As an example, we
consider the type τ = (2, 1) with a binary operation symbol to be indicated
by juxtaposition and a unary operation symbol f . Let Σ be the following
finite set of equations:

Σ = {(x1x2)x3 ≈ x1(x2x3), x1x2x3x4 ≈ x1x3x2x4, x2x
2
1x2

≈ x1x
2
2x1, x2f(x1)x2

1x2 ≈ x1x2f(x1)x2x1}.
We consider the monoid M of hypersubstitutions of the form σ(k), for any
natural number k, where σ(k) maps the binary operation symbol to itself and
the unary operation symbol f to xk

1, for k ≥ 1, together with the identity
hypersubstitution σid. Then the set

χM [Σ] = {(x1x2)x3 ≈ x1(x2x3), x1x2x3x4 ≈ x1x3x2x4, x2x
2
1x2 ≈ x1x

2
2x1}∪

∪{x2x
k
1x

2
1x2 ≈ x1x2x

k
1x2x1 | k ≥ 1}

does not have a finite basis, as shown by Perkins in [10]. Another similar
example was given by Paseman in [8] using the type τ = (1, 1, 1).

The variety VHS = HMod{F (x1, F (x2, x3)) ≈ F (F (x1, x2), x3)} con-
sisting of all semigroups satisfying the associative law as hyperidentity is the
greatest solid variety of semigroups and the variety HMMod{F (x1, F (x2, x3))
≈ F (F (x1, x2), x3)} is the greatest M -solid variety of semigroups for a sub-
monoid M of Hyp(2). In [12] it was proved that VHS is finitely based
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by identities and that VHS = {x1(x2x3) ≈ (x1x2)x3, x1x2x1x3x1x2x1 ≈
x1x2x3x2x1, (x2

1x2)2x3 ≈ x2
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2
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2}. In a
similar way for the monoid Pre = Hyp(2)\{σx1 , σx2}, where σx1 maps F to
x1 and σx2 maps F to x2, of all Pre-hypersubstitutions, it was proved that
HPreMod{F (x1, F (x2, x3)) ≈ F (F (x1, x2), x3)} has the set {x1(x2x3) ≈
(x1x2)x3, x1x2x1x3x1x2x1 ≈ x1x2x3x2x1, x2

1 ≈ x2
2, x3

1 ≈ x3
2} as finite basis

for all its identities.
A hypersubstitution of type τ = (2) is called regular, if F is mapped

to a binary term containing both variables x1 and x2. The set Reg of
all regular hypersubstitutions of type τ = (2) forms also a submonoid of
the monoid Hyp of all hypersubstitutions and in [4] it was proved that
HRegMod{F (x1, F (x2, x3)) ≈ F (F (x1, x2), x3)} is finitely based by identi-
ties. Therefore, in a very natural way the following problems arise:

For which monoids M of hypersubstitutions of type τ = (2) is
HMMod{F (x1, F (x2, x3))≈F (F (x1, x2), x3)} finitely based by identities ?

We will show that this problem is closely connected with the following
one:

For which monoids M of hypersubstitutions of type τ = (2) is
HMMod{F (x1, F (x2, x3)) ≈ F (F (x1, x2), x3)} locally finite ?

2. Locally finite M-solid varieties

Let V be a variety of type τ and let IdV be the set of all identities valid
in V . Then a hypersubstitution σ ∈ Hyp(τ) is called V -proper if σ̂[s] ≈
σ̂[t] ∈ IdV for every s ≈ t ∈ IdV . Let P (V ) be the set of all V -proper
hypersubstitutions. Then P (V ) is a submonoid of Hyp(τ). Every variety is
P (V )-solid and P (V ) is the greatest submonoid M of Hyp(τ) such that V
is M -solid. A variety is solid if and only if P (V ) = Hyp(τ). For checking
whether an identity is satisfied as a hyperidentity in a variety V , not all
hypersubstitutions are important. In [11] the following binary relation on
Hyp(τ) was introduced:

Definition 2.1. Let V be a variety of type τ . Two hypersubstitutions σ1

and σ2 of type τ are called V -equivalent if and only if σ1(fi) ≈ σ2(fi) ∈ IdV
for all i ∈ I. In this case, we write σ1 ∼V σ2.

Clearly, ∼V is an equivalence relation on Hyp(τ) and on its submonoids. If
V is M -solid then the restriction of ∼V to M ×M is a congruence relation
on M . The following property is easy to check:
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If s ≈ t ∈ IdV , σ1 ∼V σ2 and σ̂1[s] ≈ σ̂1[t] ∈ IdV , then σ̂2[s] ≈ σ̂2[t] ∈
IdV .

In other words, the monoid P (V ) is a union of equivalence classes with
respect to the relation ∼V .

As a consequence, to check whether s ≈ t is satisfied as an M -hyperiden-
tity in a variety V we can restrict our checking to one representative from
each equivalence class of the quotient set M/∼V . Such sets of representatives
can be selected by a choice function Φ : M/∼V → M . From the class of the
identity hypersubstitution [σid]∼V one has to choose σid. We will use the
notation MN

Φ (V ) and call the elements of this set normal form hypersubsti-
tutions. In [1], it was proved that ModχM [Σ] = ModχMN

Φ (V )[Σ] for every
variety V , for every set Σ of equations, and every choice function Φ.

Now we come back to varieties of semigroups and prove:

Theorem 2.2. If V is an M -solid locally finite variety of semigroups which
is definable by a finite set Σ of M -hyperidentities, then V is finitely based
by identities.

Proof. As an M -solid variety, V is the class of all semigroups which sat-
isfy all equations from Σ as M -hyperidentities, i.e. V = HMModΣ. Us-
ing the equations HMModΣ = ModχM [Σ] = ModχMN

Φ (V )[Σ], we see that
χMN

Φ (V )[Σ] is a basis for the set of all identities satisfied in V . Clearly,
the cardinality of M is equal to the cardinality of all images of f under
hypersubstitutions from M , i.e. |M | = |{σ(f) |σ ∈ M}|. From this and
from σ1 ∼V σ2 iff σ1(f) ≈ σ2(f) ∈ IdV, we obtain |MN

Φ (V )| = |M/∼V | =
|{[σ(f)]IdV |σ ∈ M}| ≤ |FV ({x, y})|. Since V is locally finite, FV ({x, y}) is
finite and then MN

Φ (V ) is also finite. Therefore, χMN
Φ

[Σ] is finite and V is
finitely based by identities.

3. Zimin-Words

M. Sapir discovered ([13]) that there exists a property of semigroup varieties
such that every finitely generated variety has this property and any finitely
based variety satisfying this property must satisfy an identity of a specific
form. This identity has the form Zn ≈ w where the left hand side is called
a Zimin word and is defined inductively by:

Z1 := x1,

Zn+1 := Znxn+1Zn.
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Then the sequence of Zimin words can be produced by the hypersubstitution
σx1x2x1 which maps a binary operation symbol f to the word x1x2x1(or by
σx2x1x2 mapping f to the word x2x1x2).

Definition 3.1. Let f be a binary operation symbol. Then we define

f1(x1) := x1,

fn(x1, x2, . . . , xn) := f(fn−1(x1, . . . , xn−1), xn).

Proposition 3.2. For every n ≥ 1, we have

σ̂x1x2x1 [f
n(x1, x2, . . . , xn)] = Zn.

Proof. For n = 1, we have σ̂x1x2x1 [x1] = x1 = Z1.
Assume that σ̂x1x2x1 [f

n−1(x1, x2, . . . , xn−1)] = Zn−1. Then
σ̂x1x2x1 [f

n(x1, x2, . . . , xn)] = σ̂x1,x2,x1 [f(fn−1(x1, . . . , xn−1), xn)] =
σx1x2x1(f)(σ̂x1x2x1 [f

n−1(x1, . . . , xn−2)], xn]) = Zn−1xnZn−1 = Zn.

Dually, if we apply the hypersubstitution σx2x1x2 to the terms
f (n)(x1, x2, . . . , xn) inductively defined by f (1)(x1) := x1, f

(n)(x1, . . . , xn) :=
f(x1, f

(n−1)(x2, . . . , xn)), then we obtain a sequence of words from which we
get the Zimin words by exchange of variables.

Then we have

Proposition 3.3. If σx1x2x1(σx2x1x2) is a proper hypersubstitution of a
variety V of semigroups, then for every n ≥ 3 there is a term un such
that Zn ≈ un is an identity in V .

Proof. Clearly, for every n ≥ 3 the equations fn(x1, . . . , xn) ≈
f (n)(x1, . . . , xn) are identities in V, since these equations are consequences
of the associative law. Then using σx1x2x1 , we obtain all Zimin words on the
left hand side, and if σx2x1x2 is a proper hypersubstitution of V , we obtain
the Zimin words on the right hand side after exchanging of variables.

We recall the following definitions:

Definition 3.4. A semigroup S is said to be periodic if for every a ∈ S
there exist two different numbers ma and na such that ama = ana . A variety
V of semigroups is called periodic if every member of V is periodic. A zero
0 in a semigroup S is an element from S with x0 = 0x = 0 for every x ∈ S.
A semigroup S with zero is called a nil-semigroup if for any a ∈ S there is
a natural number n with an = 0.
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For periodic semigroups we have

Proposition 3.5 ([6]). A finitely based periodic semigroup variety V is
locally finite iff all groups in V and all nil-semigroups in V are locally finite.

In [6] (see also [7], §7) sufficient conditions for groups to be locally finite are
given.

Proposition 3.6. Every group satisfying the identity x ≈ x3 (or x ≈
x2, x ≈ x4, x ≈ x5, x ≈ x7) is locally finite.

We denote by FSEM (Xn) the free semigroup generated by Xn. In [6], the
following result is proved:

Theorem 3.7. Let V be a variety of semigroups given by a (possibly infinite)
set Σ of identities. Assume that the number of variables occurring in words
of Σ is n. Then the following conditions are equivalent:

(i) All nil-semigroups from V are locally finite;

(ii) V satisfies a non-trivial identity with one side equal to Zn+1;

(iii) There exists an identity s ≈ t ∈ Σ and a substitution

Φ : Xn −→ FSEM (Xn)

such that Zn+1 contains a value Φ̄(s) or Φ̄(t) where Φ̄(s) 6= Φ̄(t).

Now we prove:

Theorem 3.8. Let V be a variety of semigroups and assume that σx1x2x1

(or σx2x1x2) is a proper hypersubstitution of V . Then V is locally finite.

Proof. Since σx1x2x1(or σx2x1x2) is a proper hypersubstitution of V , for
every n ≥ 3 the identities σ̂x1x2x1 [f

n(x1, . . . , xn)] ≈ σx1x2x1 [f
(n)(x1, . . . , xn)]

are satisfied in V . For n = 3 this gives x1x2x1x3x1x2x1 ≈ x1x2x3x2x1.
For σx2x1x2 we obtain the identity x3x2x3x1x3x2x3 ≈ x3x2x1x2x3 and by
exchange x1 and x3 we obtain the first identity. Therefore V is a subvariety
of the variety

V1 := Mod{x1(x2x3) ≈ (x1x2)x3, x1x2x1x3x1x2x1 ≈ x1x2x3x2x1}.
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We prove that the last variety is locally finite. The variety V1 is finitely based
and periodic since by identification of variables from the second identity of
the basis we obtain x7

1 ≈ x5
1. We can apply Proposition 3.5 and show that

all groups and all nil-semigroups in V1 are locally finite. If G is a group
in V1, then x4

1 has an inverse and by multiplication of x7
1 ≈ x5

1 with this
inverse we obtain x3

1 ≈ x1. Then by Proposition 3.6, G is locally finite.
Now we apply Theorem 3.7. In the basis of V1 we have words containing the
three variables x1, x2, x3. From x1x2x1x3x1x2x1 ≈ x1x2x3x2x1 we obtain
the identity x1x2x1x3x1x2x1x4x1x2x1x3x1x2x1 ≈ x1x2x3x2x1x4x1x2x3x2x1

which is also satisfied in V1. The left hand side is the Zimin word Z4 and
therefore every nil-semigroup from V1 is locally finite. By Proposition 3.5
the variety V1 is locally finite and the variety V, as a subvariety of V1, is also
locally finite.

Now Theorem 2.2 and Theorem 3.8 give the following result:

Corollary 3.9. Let V be an M -solid variety of semigroups and assume that
σx1x2x1(or σx2x1x2) is a proper hypersubstitution of V . If V is definable by
a finite set Σ of M -hyperidentities, then V is finitely based by identities.

As examples we consider the monoids M = Hyp(2) of all type (2) hypersub-
stitutions, M = Pre := Hyp \ {σx, σy} (σx, σy are the hypersubstitutions
mapping the operation symbol to the variable x and y, respectively) of all
Pre-hypersubstitutions, the monoid M = Reg of all regular hypersubstitu-
tions which map the operation symbol to terms containing both variables
and M = Hop

2 , the monoid of all hypersubstitutions which map f to a
term containing the operation symbol f at least twice. All these monoids
contain σx1x2x1 and σx2x1x2 .The greatest M -solid varieties with respect to
these monoids are the M -hyper-model classes of the associative law, i.e.
HMod{F (x1, F (x2, x3)) ≈ F (F (x1, x2), x3)},HPreMod{F (x1, F (x2, x3))
≈ F (F (x1, x2), x3)}, HRegMod{F (x1, F (x2, x3)) ≈ F (F (x1, x2), x3)},
HHop

2
Mod{F (x1, F (x2, x3)) ≈ F (F (x1, x2), x3)}.

All these varieties fulfil the presumptions of Corollary 3.9 and are finitely
based. Finite bases were given in [4], [5] and [3]:
HPreMod{F (x1, F (x2, x3))≈F (F (x1, x2), x3)}=Mod{x1(x2x3)≈(x1x2)x3,
x1x2x1x3x1x2x1 ≈ x1x2x3x2x1, x2

1 ≈ x2
2, x3

1 ≈ x3
2},

HRegMod{F (x1, F (x2, x3))≈F (F (x1, x2), x3)}=Mod{x1(x2x3)≈(x1x2)x3,
x1x2x1x3x1x2x1 ≈ x1x2x3x2x1, (x2

1x2)2x3 ≈ x2
1x

2
2x3, x1x

2
2x

3
2 ≈ x1(x2x

2
3)

2},
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HHop
2

Mod{F (x1, F (x2, x3))≈F (F (x1, x2), x3)}=Mod{x1(x2x3)≈(x1x2)x3,

x1x2x1x3x1x2x1 ≈ x1x2x3x2x1, (x2
1x2)2x3 ≈ x2

1x
2
2x3, x1x

2
2x

3
2 ≈ x1(x2x

2
3)

2,
x3

1 ≈x5
1}.

Now we prove that varieties of the form V = HMMod{F (x1, F (x2, x3))
≈ F (F (x1, x2), x3)} also satisfy the converse of Theorem 3.8, i.e. we have:

Theorem 3.10. Suppose that V is a variety of semigroups for which there is
a monoid M of hypersubstitutions such that V = HMMod{F (x1, F (x2, x3))
≈ F (F (x1, x2), x3)}. Then V is locally finite iff σx1x2x1(σx2x1x2) is a proper
hypersubstitution of V .

Proof. Because of Theorem 3.8 we have to show that locally finite va-
rieties of the form HMMod{F (x1, F (x2, x3)) ≈ F (F (x1, x2), x3)} admit
σx1x2x1 or σx2x1x2 as proper hypersubstitutions. All nil-semigroups from
V are locally finite and we may assume that the condition Theorem 3.7
(iii) is satisfied. Since HMMod{F (x1, F (x2, x3)) ≈ F (F (x1, x2), x3)} =
ModχM [{F (x1, F (x2, x3)) ≈ F (F (x1, x2), x3)}], the set Σ = χM [{F (x1,
F (x2, x3)) ≈ F (F (x1, x2), x3)}] is an identity basis of V . The set χM [F (x1,
F (x2, x3)) ≈ F (F (x1, x2), x3)] contains only three variables, therefore we
have to find an identity s ≈ t ∈ χM [{F (x1, F (x2, x3)) ≈ F (F (x1, x2), x3)}]
such that there is a substitution Φ : Xn −→ FSEM (Xn) into the free
semigroup and Φ(s) or Φ(t) (where Φ(s) 6= Φ(t)) occur in the Zimin word
Z4 = x1x2x1x3x1x2x1x4x1x2x1x3x1x2x1. The identity s ≈ t arises from the
associative law by hypersubstitution.

Applying σx1 , σx2 , σx1x2 , σx2x1 on both sides of the associative law gives
equal words of FSEM (X3). If we apply a hypersubstitution σ which maps
the operation symbol F to a word which contains a power of a word with
an exponent > 1 built up by two variables, then the image of the associa-
tive law contains also a power with an exponent > 1. Since the extension
Φ̄ : FSEM (X3) → FSEM (X3) of the substitution Φ : X3 → FSEM (X3) is an
endomorphism, the image of a word containing a power of a word contains a
power of the image: Φ̄(uwlv) = Φ̄(u)Φ̄(w)lΦ̄(v). But Z4 contains no power
of a word. Therefore only the hypersubstitutions σx1x2x1 and σx2x1x2 can
produce the identity s ≈ t. It follows that σx1x2x1 ∈ M or σx2x1x2 ∈ M .
But then σx1x2x1 or σx2x1x2 is a proper hypersubstitution with respect to V .
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As a consequence of Theorem 2.2 and Theorem 3.9, we have

Corollary 3.11. A variety of semigroups of the form V = HMMod{F (x1,
F (x2, x3)) ≈ F (F (x1, x2), x3)} is finitely based if σx1x2x1 or σx2x1x2 is a
proper hypersubstitution of V .
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