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Abstract

In the paper lattice-ordered monoids and specially normal lattice-
ordered monoids which are a generalization of dually residuated lattice-
ordered semigroups are investigated. Normal lattice-ordered monoids
are metricless normal lattice-ordered autometrized algebras. It is pro-
ved that in any lattice-ordered monoid A, a € A and na > 0 for some
positive integer n imply a > 0. A necessary and sufficient condition
is found for a lattice-ordered monoid A, such that the set I of all
invertible elements of A is a convex subset of A and A~ C I, to be
the direct product of the lattice-ordered group I and a lattice-ordered
semigroup P with the least element O.
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Normal lattice-ordered autometrized algebras were investigated in [4], [10],
[11], [12], [13], [19]. Swamy ([16], [17], [18]) introduced and studied du-
ally residuated lattice-ordered semigroups (notation D RI-semigroups) as a
common abstraction of Boolean rings and abelian lattice ordered groups
(notations [-groups). Swamy and Subba Rao ([20]) investigated isometries
in DRI-semigroups. They proved that any isometry fixing zero in a repre-
sentable D RI-semigroup is an involutory semigroup automorphism. In [5],
it was shown that to each weak isometry f fixing zero in a D Rl-semigroup G
there exists a direct decomposition G = A x B, where A is a D Rl-semigroup
and B is an [l-group, such that f(x) = x4 + (0 — xzp) for each z € G.
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Kovar in [6] proved that any D RI-semigroup A is the direct product of
the I-group of all invertible elements of A and a D Rl-semigroup with the
least element and showed in [8] that conditions (1), (2) and (3) imply the
condition (4) in the definition of a DRIl-semigroup. In [9], he studied the
group of zero fixing isometries of a DRIl-semigroup. Prime ideals in DRI-
semigroups were investigated by Hansen in [4]. Rachunek ([14], [15]) proved
that MV-algebras are in a one-to-one correspondence with special kinds of
bounded D Rl-semigroups. In [11], [12], he studied ideals and polars in DRI-

semigroups.
Let us review some notions and notations used in the paper.
A system A = (A;+,<) is called a partially ordered semigroup

(po-semigroup) if and only if
(1) (A;+) is a semigroup,
(2) (A;<) is a partially ordered set,
(3) a<bimpliesa+z<b+zand x+a<x+Dbforall a,b,x € A.

A po-semigroup (A4;+, <) is called a lattice-ordered semigroup (I-semigroup)
if and only if

(1) (A4;<) is a lattice with lattice operations V and A,
(2) a+(bVe)=(a+b)V(ia+ec), (bVe)+a=(b+a)V(c+a),
a+(bAc)=(a+b)A(a+c),(bAc)+a=(b+a)A(c+a)
for each a, b, ¢ € A.
An [-semigroup with zero element 0 is called a lattice-ordered monoid
(I-monoid).
A system A = (A;+,<,—) is called a dually residuated lattice-ordered

semigroup (DRI-semigroup) if and only if

(1) (A;+, <) is a commutative [-monoid,

(2) for given a, b in A there exists a least x € A such that b+ x > a, and
this x is denoted by a — b,

(3) (a=b)vO+b<aVbforalla,beA,
(4) (a—a) >0 for each a € A.

Partially ordered semigroup A with a zero element is said to be the
direct product of its partially ordered subsemigroups P and @ (notation
A = P x Q) if the following conditions are fulfilled:
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(1) fac Pandbe @, thena+b=0>0+a,

(2) each element ¢ € A can be uniquely represented in the form ¢ = ¢; +co,
where ¢; € P, ¢ € Q,

(3) ifa,be A, a=aj+az, b="by+by, where ay, by € P, az, bs € @, then
a > b if and only if a; > by and as > bs.

If A= P x @, then for x € A we denote by xp and x¢g the components of
x in the direct factors P and @, respectively.

An element x of an [-monoid A is called positive (negative) if > 0
(x <0, resp.). The set of all positive (negative) elements of an [-monoid A
will be denoted by AT (A~, resp.). For each element x of a lattice-ordered
group G, |z] = x V (—z). (Throughout this paper 0 will denote a zero
element. We use IN for the set of all positive integers).

Kovér showed in [10] (Theorem 1) that the set I of all invertible elements
of a normal lattice-ordered autometrized algebra is an I-group. Analogous
assertion is valid for /-monoids.

Theorem 1. The set I of all invertible elements of an l-monoid A is an
l-group and a sublattice of A.

Proof. Clearly, I is a group. Let a, b € I. Then we have aVb+(—a)A(—b) =
[aVb+(—a)|AlaVb+(=b)] = [0V (b—a)|A[(a—b)VO] > 0,aVb+(—a)A(—b) =
[a+ (—a) A (=b)]V[b+ (—a) A (=b)] =[0A (a—b)]VI[(b—a)A0] <0. Thus
aVb+(—a)A(—=b) = 0. Analogously, we obtain (—a)A(—b)+aVb = 0. Hence
—(aVb) = (—a)A(—b). Similarly, we can prove that —(aAb) = (—a)V (-b).
Therefore, a Vb, a Ab € I. Hence I is a sublattice of A. |

As a consequence of Theorem 1, we obtain:

Corollary 1. The set I of all invertible elements of a lattice-ordered
autometrized algebra A is an l-group. |

Lemma 1. Let A be an l-monoid, a, b, c € A.
Ifanb=0andaNc=0, thenaA(b+c)=0.
Ifavb=0andaVc=0, thenaV (b+c)=0.

The proof is the same as in the case of I-groups. See [1], p. 294. [

Remark 1. Choudhury showed in [2] (p. 72) that a +b=aV b+ a A b for
each elements a, b of a commutative [-semigroup.
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Theorem 2. Let A be an [-monoid. Let I be the set of all invertible ele-
ments of A, and let P={y € A : yA|z| =0 for each z € I}, where |z| is
the absolute value of z in I. Then

(i) P C A", 0 is the least element of P, I N P = {0},
(ii) P is a convex subset of A,

(iii) P is a sublattice of A and an l-semigroup.

Proof. (i): Clearly, 0 € P C A". Hence 0 is the least element of P. Let
a€INP. Then a=aAlal=0.
(ii): Let a,be P,z € A,anda>x>b. Then 0 =a A |z| > x Az >
bA|z| =0 for each z € I. Thus = A |z| = 0 for each z € I and hence z € P.
(iii): Let a, b € P. By Lemma 1, a+b € P. Hence P is a subsemigroup
of A. Sincea >0,b>0, wehavea+b>b,a+b>a. Thusa+b>aVb>
a Ab > 0. From the convexity of P, it follows that a Vb, a Ab € P. |

Theorem 3. Let A be a commutative [-monoid. Let each negative element
of A be invertible and the set I of all invertible elements of A be a convex
subset of A. Let P be as in Theorem 2. Then A is the direct product of the
l-group I and the l-semigroup P with the least element 0 if and only if A
satisfies the following condition:

(C) For each a € AT N I the set My, ={aANx : x € I} has the greatest
element.

Proof. Let the set I of all invertible elements in A be a convex subset of
Aandlet A= CI. By Theorem 1, I is an [-group. By Theorem 2, P is
an [-monoid with the least element 0.

Suppose that A satisfies the condition (C). Assume that a € AT \ I.
Since 0 < a Az < z for each z € IT, from the convexity of I it follows
that a Az € I™ and hence M, C IT™. Let a; be the greatest element of
Mg, ag = a+ (—aj; ). Then 0 < a; < a, 0 < ay < a. Hence a = a; + ag,
where a; € I™. Now we prove that ag € P. Let b € I, d = |b| V a;. Then
d+a; € I't. Then (C) yields a A (d + a1) < a;. This implies as A d =
la+ (—a1)]A[d+ a1+ (—a1)] = [aA(d+a1)]+ (—a1) < 0. Clearly, 0 < ag Ad.
Thus ag Ad =0. Then 0 < |b] < dyields 0 =0Aaz < |b| Aaz <dAay=0.
Hence ag A |b| = 0. Therefore, ay € P.

If a € I'", then we can write a = a + 0 and hence each a € A* can be
written in the form a = a; + as, where a; € I, as € P.
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Let g € A. In view of Remark 1, we have g = gA 0+ gV 0. Then gV 0 =
(gVv0)1+(gVv0)a, where (gVv0); € I, (gV0)2 € P. Let g = gA0+(gV0)y,
g2 = (g V0)3. Since g A0 € I, we have g1 € I. Thus g = g1 + g2, where
g €1,g2€ P.

Let g = g1 + g2 = h1 + hsa, where hy € I, hg € P. Thus go = hy + he +
(—g1). Then go V ho = [h1 + ho + (—gl)] V hy = [hl + (—91)] VO+ hy € P.
Since ha = g1 + g2 + (—h1), we have go V ha = g2 V [g1 + g2 + (—h1)] =
OV[91+(—h1)] + g2 € P. Hence 2(92\/h2) = [h1+(—gl)] \/O—l—hg—i-O\/[gl—i-
(=h1)]+g2 =ga+ha+(h1—g1) VOV (g1 —h1) = g2+ ha+|h1 +(—g1)| € P.
Since h1+(—g1) € I and 2(gaVha) € P, we get 0 = 2(gaVho)Alh1+(—g1)| =
[g2+ho+hi+(—g1)[|A[h1+(=g1)] = [h1+(—=g1)[+[(92+h2)AO] = |h1+(—g1)|-
This implies hy = g1. Then clearly go = hg. Therefore, each g € A is
uniquely represented in the form g = g1 + g2, where g; € I, go € P. Clearly,
if g € AT, then ¢ is uniquely represented in the form g = g1 + go, where
gl €I, go€P.

Let f, h e A, f > h, f = fi + fa, h = h1 + ha, where fi, by € I,
fa, ha € P. From fi + fo > hi1 + ho, we get f1 — hy + fo > ho > 0.
This and fi — hy € I, fo € P yield f{ — hy > 0. Hence f; > hy. Since
’fl—h1|/\h2 =0and ho < fi —h1 4+ fo < ’fl—hl‘—i-fg, we get hg =
hao A (f2 + h2) < (|f1 — ha| + f2) A (fo + h2) = (|f1 — ha| A h2) + fa = fo.
Therefore, A =1 x P.

Let A=1xP,a¢c A". Then a = a; + ap, where a; € I, ap € P.
Since a > ay, we have a Aa; = af € M,. Let x € I™. From the convexity
of I and z > a Ax > 0, it follows that a Az € I. Then a > a A x implies
ar > (a ANx); = a A z. Therefore, ay is the greatest element of M,. [ ]

A commutative [-monoid A is called a normal I-monoid if for each a, b € A
such that a < b there exists z € A1 such that a +z = b.

Remark 2. In the definition of the normal /[-monoid it suffices to require for
each a, b € A such that a < b the existence x € A such that a +x = b, since
then there exists also a positive element y € A such that a +y = b. In fact,
if we put y =2 V0, then weget a+y=a+2V0=(a+2z)Va=bVa=h.

Theorem 4. Let A be a normal l-monoid, a, b € A, a < b, Sy = {z €
A;a+x =b}. Then Sy is a sublattice of A.

Proof.leta, b, x,y€ A,a<b,at+tz=ba+y=>b Thena+xVy=
(a+z)V(a+y) =bat+tzANy=(a+z)A(a+y) =0 u

As a consequence of Theorem 2, we obtain:
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Corollary 2. If A is a normal l-monoid and I, P are as in Theorem 2,
then P is a normal [-monoid.

Proof. Let a, b € P, a <b. Then there exists x € A' such that a +z = b.
Since 0 < a, we get 0 < z < a+z = b. By Theorem 2 (ii), x € P. The rest
also follows by Theorem 2. ]

Lemma 2. Fach negative element of a normal [-monoid A is invertible.
Proof.If a € A, a <0, then there exists v € AT such that a+2=0. m

Theorem 5. The set I of all invertible elements of a mormal l-monoid A
is a convex subset of A.

The proof is similar to the proof of Theorem 2 of [10]. |

By Theorem 3, Corollary 2, Lemma 2, and Theorem 5, we get the following
theorem:

Theorem 6. Let A be a normal [-monoid. Let I and P be as in Theorem 2.
Then A is the direct product of the l-group I and the normal l-emigroup P
with the least element 0 if and only if A satisfies condition (C). ]

The following example shows that there exists a commutative [-monoid H
such that each negative element of H is invertible, the set I of all invertible
elements of H is a convex subset of H and H satisfies the condition (C), but
H is not a normal /[-monoid.

Example. Let (B,<;) be the interval (0,1) of real line with the natural
order. Let t @y =y@x =1 foreach z,y € (0,1) andlet 0z =20d0=2
for each z € (0,1). Then (B,®,<;) is a commutative /-monoid with the
least element 0, but not a normal I-monoid. Let (Z,+, <) be the additive
group of all integers with the natural order. Then the direct product H of
(Z,+,<) and (B, ®, <1) has the above mentioned properties.

Theorem 7. Fach DRI-semigroup A is a normal [-monoid and satisfies
the condition (C) from Theorem 3. Moreover, 0 — (0 — a) is the greatest
element of M, = {aAx : x €It} for each a € AT I, where I is the set
of all invertible elements of A.
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Proof. Let A be a DRI-semigroup. Let x, y € A, x < y. From Lemma 8 of
[16] and Corollary of [16], p. 107, it follows that z+ (y —z) =y, y —x > 0.
Hence A is a normal l-monoid. Let a € AT~ I. Since a > 0, from Lemmas 1
and 3 of [16], we get 0 —a < 0 and 0 < 0 — (0 — a). By Lemma 1.2 of [5],
0— (0 —a) is the inverse of 0 —a and hence 0 —a, 0— (0 —a) € I. In view of
Lemma 13 of [16], 0— (0—a) < a. Then aA(0—(0—a)) = 0—(0—a). Hence
0—(0—a) € M,. Let x € I'". From the convexity of I and z > a Az >0
we obtain a Ax € IT. By Lemma 1.1 (i) of [5], 0 — (0 — (a Ax)) = a A x.
Since a > a Az, in view of Lemma 3 of [16], we have 0 — (a Az) > 0 —a and
0—(0—-a)>0—-(0—(aAx)) =aAz Hence 0— (0— a) is the greatest
element of M,. [ |

The following example shows that there exists a normal I-monoid satisfying
(C) which is not a D Rl-semigroup.

Example. Let (IR, +, <) be the additive group of all real number with the
natural order. Let (G, <) be the interval <0, 1> of real line with the natural
order. Let G* = GU{oo}. Weput x <; yifx <y, z,y € (0,1) and x <; 00
for each x € G*™. Further, for each z, y € (0,1) we put x By = ydr =z+y
fr+y<landzpy=ydr=xifzc+y>1 Let tPoo=00Px =00
for each « € G*. Then (G*™,®, <;) is a normal [-monoid with the least
element 0, but not a DRI-semigroup because oo — 1 there does not exist
in G*. Then the direct product of (IR, +, <) and (G*,®, <;) is a normal
l[-monoid satisfying (C), but not a D RI-semigroup.

Hence Theorems 3 and 6 generalize The Representation Theorem 12 of
Kovat in [6].

Theorem 8. Let A be a finite normal I-monoid with the least element 0.
Then A is a DRI-semigroup and a + (b—a) = a Vb for each a, b € A.

Proof. Let a, b € A. Since a < a V b, there exists a; € A such that
a+a1=aVvVb>b Letay, ..., a, be all elements of A such that a+a; > b,
i=1 ...,n. Thena4+a A---Na, = (a+a1)) AN---AN(a+a,) > b
Hence a1 A --- ANa, = b—a. Since a1 > a1 A---ANa, = b— a, we have
a+(b—-a)<a+a =aVb Fromb—a >0, we obtain a + (b —a) > a.
Then a + (b—a) > a Vb. Therefore,aVb=a+ (b—a)=a+(b—a)V0. m

Theorem 9. In any finite normal [-monoid, 0 is the least element.

Proof. If x is an element of a finite normal [-monoid A, then from Theorem
1 and Lemma 1, it follows that = A 0 is an element of the [-group I of all
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invertible elements of A. If x A 0 < 0, then [ is infinite, a contradiction.
Hence z A 0 = 0. Therefore, 0 is the least element of A. [

From Theorems 8 and 9, we immediately obtain:
Theorem 10. Any finite normal [-monoid is a DRIl-semigroup. [

Let = be an element of an I-group G. Then 27 = 2V 0 is called the positive
part of z and x= = x A 0 is called the negative part of x. (See Birkhof [1],
p. 293, Fuchs [3], p. 75.) We use the same definition + and z~ also for an
element x of an [-monoid A.

Remark 3. For the negative part £~ of an element x in an [-group, formula
x” = (—z) V0 was used in [6]. Hansen defined in [4] the negative part z~
of an element z of a DRI-semigroup by the formula = = (0 — z) V 0. The
negative part £~ of x is a positive element in these cases.

The elements 7 and ™ in an l-monoid A have analogous properties as
in an [-group.

Theorem 11. Let A be an l-monoid, x, y € A. Then
(i) xz=a" if and only if x >0,
(ii) =2z if and only if x <0,

(iii) (z+y)T <at+y", (x+y)” >z +y .
The proof is obvious. [

Lemma 3. Let A be a normal l-monoid. Let x € A, and let b, c € A" such
that t ANO+b=x, 2 AN0+c=0. Thenb=xzV0=xz+c¢c, b+c=0bVe,
bAc=0.

Proof. Let z € A, b,c€ AT, xAO+b=x, 2 A0+ c = 0. In view of
Remark 1, we have b =0+0=b4+2A0+c=x+c=2V0+x2A0+c=2z2VO0.
Further we get b+c=a2V0+c=bVe,bAc=(z+c)Ac=(xAN0)+c=0.

|

Theorem 12. Let A be a normal l-monoid, x € A, n € N. Then n(z~) =
(n2), n(z*) = (nz)*.
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Proof. Let x € A, n € N. Let b, c € A" such that z A0+ b = =z,
A0+ c=0. By Lemma 3, b A ¢ = 0. From Lemma 1 and Remark 1, it
follows that nb A nc = 0, nb 4+ nc = nb VvV nc. Then (nz)~ = (nz) A (n0) =
[n(zA0)+nb]A[n(zA0)+nc] = n(xzA0)+nbAnc = n(zA0) = n(xz™). In view
of Lemma 3, we have (nz)t = (nz)V (n0) = [n(xA0)+nb]V[n(zA0)+nc] =
n(zA0)+ncVnb=n(xA0)+nc+nb=n(xA0+c)+nb=nb=n(xV0)=
n(z™). n

Remark 4. Kovar showed in [7] (p. 16) that for any element x of an
[-monoid A the following assertions are valid:
(i) a=aNn0+aV0=aV0+aAO,
(i) n(aN0)=naA(n—1)aA---ANaA0, where n € IN.
Then, clearly, a+ a A0 =aA0+a, a+aV0=aV0+a, nlaVv0) =
naV(n—1)aV---VaVO0forany a € A, n € IN.
Lemma 4. Let A be an l-monoid, a € A, and n € IN. Then:
(i) If2a >0, then a > 0;
(ii) Ifna >0, then (n+ 1)a > 0.
Proof. (i): Let a € A, and 2a > 0. Then 2(a A0) =2a Aa A0 =aAD0.
Hence a =aAN0+aVO0=2aAn0)+aV0=aA0+a. Further, we have
2@v0)=2avav0=2aVa=a+aV0 Thena=aA0+aV0=
(a+aVO)A(aV0)=2(aV0)A(aV0)=aVO0. Therefore, a > 0.

(ii): Let a € A, n € IN, and na > 0. Then n(a A0) = na A (n — 1)a A
- ANaANO=(mn—-1aA---ANaAN0=(n—1)(aAN0). Hence (n+ 1)a =

(n+1)(av0)+an0+n(an0)=(n+1)(aV0)+aA0+ (n—1)(aN0)=
aV0+n(aVv0)+n(an0)=aV0+na>D0. n

The following theorem generalizes Lemmas 16 and 17 of paper [16] by

Swamy.

Theorem 13. Let A be an I-monoid, a € A, and n € IN. Then:
(i) Ifna >0, then a > 0;

(ii) Ifna <0, then a < 0;
(iii) Ifna =0, then a = 0.
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Proof. (i): We prove this statement by induction on n. The statement is
valid for n = 1. Suppose that the statement is valid for all £ € IN, such that
k<n.

Let (n+1)a > 0. If n+ 1 is an even number, then n 4+ 1 = 2m, where
m € IN, and m < n. In view of Lemma 4 (i), from 0 < (n + 1)a = 2(ma),
we obtain 0 < ma. Hence 0<a. If n+1 is an odd number, then n+2 is an
even number and n + 2 = 2s, where s € IN, and s < n. By Lemma 4 (ii),
0 < (n+2)a = 2(sa). Then, from Lemma 4 (i), it follows that 0 < sa.
Therefore, 0 < a.

Assertion (ii) can be proved dually.

(iii): It follows from (i) and (ii). |

Theorem 14. Let S be an [-monoid, and S = A x B. Then:

(i) A, B are convex sublattices of S,
(i

) (xAy)a=zaNya, (xANy)p=2xpANyp for each z, y € S,
(i) (xVy)a=zaVya, (xVy)p=axpVyp foreachzx, yeS,
)

(iv) if S is normal, then A and B are normal [-monoids.

Proof. (i): Letu,v e A, z€ S,andu < z <wv. Then0 =up < zp <vp =
0. Thus zg = 0 and hence z = 24 € A. Let x, y € A. Since x Ay < x, y, we
have (xAy)a < xa =2z, (xAYy)a <ya =y. Thus (xAy)a < xAy < z. From
the convexity of A, we get x Ay € A. Similarly, z Vy € A. Analogously, we
can show that B is a convex sublattice of S.

(ii) and (iii) are obvious.

(iv): Let x, y € A, x < y. Then there exists z € ST, such that z+2z = y.
Hence x4 + 24 = ya, B + 2 = yp. Since xp = yp = 0, we have zp = 0.
Therefore, 2 = 24 € AT. By (i), 4 is a lattice. The rest is obvious. Similarly,
B is a normal [-monoid. [

If A is a commutative [-monoid and A = I x P, where I and P are as
in Theorem 2, then A is called a decomposable {-monoid.
Theorem 15. Let A be a decomposable [-monoid, v € A. Then:
(i) o = (@) +ap,
(ii) =~ = (x1)7,

(i) 2t A (—z7) =0.
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Proof. (i): In view of Theorem 14, we have z* = 2V0=2;V0+zpV0 =
(fL‘[)+ +xp.

The proof of (ii) is analogous.

(iii): Since a™ A (—a)™ = 0 for any element a of an I-group (see [1],
p. 295), in view of (i), (i), Theorem 1 and 14, we have zt A (—z7) =
(@)™ +zp] A [=(z)7] = (20)" Al=(z1) ]+ 2p A0 = (21)" A[—(z1 A 0)]
(zr)*™ A (—z)t =0 for each z € A.

The absolute value |z| of an element z in an l-group G is defined by
the formula |z| = (—x) V 2. We cannot use this definition for decomposable
[-monoids. But we can define the absolute value |z| of an element z in a
decomposable I-monoid analogously as in [6]: |x| = |z| + zp, where |z]]| is
the absolute value of x in the I-group I. A such defined absolute value has
analogous properties as the absolute value in an I-group.

Theorem 16. Let A be a decomposable [-monoid, x, y € A, n € N. Then
(i) |z| =0 if and only if v =0,

if © >0, then |z| = x,

(iii) if x <0, then |z| = —z,
(iv) |z =2t -2~ =2tV (-27),
(v) nlz] = |nz,

lz| + |y| > |z + yl,
lz| + |yl > ||V |yl > [z Vyllz| VYl > |z Ayl

Proof. (i): Let |x| = 0. Then |z;|+2p = 0 implies 21 = 0, xp = 0. Hence
z =0. If z =0, then ; = 0, xp = 0. Hence |z| = 0.

(ii): Let x > 0. Then xy > 0. Thus |z| = |z;| + zp =z + xp = =.

(iii): Let # < 0. Then 7 <0, xp=0. Hence |z|=|z7|+xp=—2;=—2.

(iv): In view of Theorem 15 and Theorem 7 of [1] (p. 295), we have
zt —(z7) = (z1)" +xp — [(z1)”] = |z1] + zp = |z|. By Remark 1 and
Theorem 15 (iii), 27 — (z7) =2t V(=27 )+ 2T A (=27 ) =z VvV (—z7).

(v): By Theorem 8 of [1] (p. 296), we get n|z| = n(|lzf| + zp) =
nl|zr| +nep = |nzr| + (nx)p = |(nx)1| + (nx)p = |nx|.

(vi): If a, b are elements of a commutative [-group, then |a|+[b| > |a+b|
(see [3], p. 76). Let z, y € A. Then, we have |z|+|y| = |z7|+xp+|yr|+yp =
21|+ |yl + (x+y)p > |z tyr|+ (2 +y)p = [(+y)il+ (z+y)p = [z +y].
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(vii): Let z, y € A. Since zp, yp > 0, we get xp +yp > xp V yp. By
assertion M) of [3] (p. 76), |a| + |b] > |a| V |b] > |a V b| for any elements a,
b of an l-group. In view of Theorem 14, we obtain |z| + |y| = |z1| + zp +
il +yp = |21V |yrl +2p Vyp = (lzi] +2zp) V (Jyur| + yp) = [2] V |y| =
[V (=2 VyrV(=yp)l+zpVyp > [zrVyrV[(—2) AN(~yr)] +xpVyp =
ler Vyrl+zpVyp = |(xVy)r|+ (x Vy)p = |z Vy|. Further, we have
2|V ]yl =[xV (=zD)]Vyr V (=yD)]l +xpVyp > [z Ayr] V[(=21) V (—y1)] +
zpVuyp > lxr ANyr|+xp Ayp =[x Ay)r|+ (xAy)p = |z Ayl |

Let A be a decomposable [-monoid, and B C A. Then
Bt ={z €A : |z|Aly|=0 for each y € B}
is called the polar of the set B.

Remark 5. In a decomposable [-monoid A, the [-semigroup P is the polar
of the [-group I. In fact, if z € I+, then 0 = |z| A |z;| = (Jx7| +zp) AlzI| =
|zr| + xp A O = |z7|. Thus 2y = 0 and hence x = xp € P. If z € P, then
0=z Aly| = |z| A |y| for each y € I. Therefore, P = I+.

Theorem 17. Let A be a decomposable l-monoid, B C A. Then Bt is an
[-monoid and a convex sublattice of A.

Proof. Let x, y € B+. Then |z| A |z| =0, |y| A |z| = 0 for each z € B. By
Lemma 1, (x| + |y|) A |z| = 0 for each z € B. Clearly, 0 € B. In view of
Theorem 16 (vi) and (vii), we obtain 0 = (|z|+ |y|) A |z| > |z +y| A|z| > 0,
0= (jal + [y A2l > |2V gl Al2] > 0, 0 = (Jo| + Jy) A L2 > o Ayl Al2] > 0
and hence (|[x +y|) Alz] =0, [t Vy|Alz] =0, |x Ay| A|z| = 0 for each
z € B. Therefore, x +vy, x Vy, x Ay € B+. Thus B is an [-monoid and a
sublattice of A.

Leta,be B+, u e A, anda > u>b. Thena; > uy > by, ap > up > bp
and hence a; —b; > uy—by > 0. By Theorem 16 (ii), |a; —bs| > |uy—bs| > 0,
lap| > |up| > 0. Since a € B, we get 0 = |a|A|z| = (lar| +ap)A|z| > |ar|A
|z| > 0 for each z € B and hence a; € B+. Similarly, by € B+. Analogously,
ap, bp € B*. In view of Lemma 1 and Theorem 16 (vi), we obtain 0 =
(Jorl+1b1)Al2] = (larl+|=br) ALzl > (ar—br)Alz] > (Jur—bil)Al2] > 0 for
each z € B. Then (Ju;r —by|) A|z| = 0 for each z €B and hence u; —b; € B*.
Therefore, (u; — by) + by = u; € B*. Further, we have 0 = |ap| A |2| >
lup| A '|z] > 0 for each z € B. Thus |up| A |z| = 0 for each z € B and hence
up € BL. Therefore, ur + up = u € B+. [ |
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Theorem 18. Let A be a decomposable [-monoid, B, D C A. Then:

(i)
(i)
(i)

if BC D, then B+ D D™+,
B C BLL}

BJ_ — BJ_J_J_ )

The proofs of (i) and (ii) are obvious. Assertion (iii) follows from (i) and

(ii).
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