ON LATTICE-ORDERED MONOIDS

Milan Jasem
Department of Mathematics, Faculty of Chemical Technology
Slovak Technical University Radlinského 9, 81237 Bratislava, Slovak Republic
e-mail: milian.jasem@stuba.sk

Abstract

In the paper lattice-ordered monoids and specially normal latticeordered monoids which are a generalization of dually residuated latticeordered semigroups are investigated. Normal lattice-ordered monoids are metricless normal lattice-ordered autometrized algebras. It is proved that in any lattice-ordered monoid $A, a \in A$ and $n a \geq 0$ for some positive integer n imply $a \geq 0$. A necessary and sufficient condition is found for a lattice-ordered monoid A, such that the set I of all invertible elements of A is a convex subset of A and $A^{-} \subseteq I$, to be the direct product of the lattice-ordered group I and a lattice-ordered semigroup P with the least element 0 .

Keywords: lattice-ordered monoid, normal lattice-ordered monoid, dually residuated lattice-ordered semigroup, direct decomposition, polar.
2000 Mathematics Subject Classification: 06F05.

Normal lattice-ordered autometrized algebras were investigated in [4], [10], [11], [12], [13], [19]. Swamy ([16], [17], [18]) introduced and studied dually residuated lattice-ordered semigroups (notation $D R l$-semigroups) as a common abstraction of Boolean rings and abelian lattice ordered groups (notations l-groups). Swamy and Subba Rao ([20]) investigated isometries in $D R l$-semigroups. They proved that any isometry fixing zero in a representable $D R l$-semigroup is an involutory semigroup automorphism. In [5], it was shown that to each weak isometry f fixing zero in a $D R l$-semigroup G there exists a direct decomposition $G=A \times B$, where A is a $D R l$-semigroup and B is an l-group, such that $f(x)=x_{A}+\left(0-x_{B}\right)$ for each $x \in G$.

Kovář in [6] proved that any $D R l$-semigroup A is the direct product of the l-group of all invertible elements of A and a $D R l$-semigroup with the least element and showed in [8] that conditions (1), (2) and (3) imply the condition (4) in the definition of a $D R l$-semigroup. In [9], he studied the group of zero fixing isometries of a $D R l$-semigroup. Prime ideals in $D R l$ semigroups were investigated by Hansen in [4]. Rachůnek ([14], [15]) proved that $M V$-algebras are in a one-to-one correspondence with special kinds of bounded $D R l$-semigroups. In [11], [12], he studied ideals and polars in $D R l$ semigroups.

Let us review some notions and notations used in the paper.
A system $A=(A ;+, \leq)$ is called a partially ordered semigroup (po-semigroup) if and only if
(1) $(A ;+)$ is a semigroup,
(2) $(A ; \leq)$ is a partially ordered set,
(3) $a \leq b$ implies $a+x \leq b+x$ and $x+a \leq x+b$ for all $a, b, x \in A$.

A po-semigroup $(A ;+, \leq)$ is called a lattice-ordered semigroup (l-semigroup) if and only if
(1) $(A ; \leq)$ is a lattice with lattice operations \vee and \wedge,
(2) $a+(b \vee c)=(a+b) \vee(a+c),(b \vee c)+a=(b+a) \vee(c+a)$, $a+(b \wedge c)=(a+b) \wedge(a+c),(b \wedge c)+a=(b+a) \wedge(c+a)$
for each $a, b, c \in A$.
An l-semigroup with zero element 0 is called a lattice-ordered monoid (l-monoid).

A system $A=(A ;+, \leq,-)$ is called a dually residuated lattice-ordered semigroup (D Rl-semigroup) if and only if
(1) $(A ;+, \leq)$ is a commutative l-monoid,
(2) for given a, b in A there exists a least $x \in A$ such that $b+x \geq a$, and this x is denoted by $a-b$,
(3) $(a-b) \vee 0+b \leq a \vee b$ for all $a, b \in A$,
(4) $(a-a) \geq 0$ for each $a \in A$.

Partially ordered semigroup A with a zero element is said to be the direct product of its partially ordered subsemigroups P and Q (notation $A=P \times Q$) if the following conditions are fulfilled:
(1) if $a \in P$ and $b \in Q$, then $a+b=b+a$,
(2) each element $c \in A$ can be uniquely represented in the form $c=c_{1}+c_{2}$, where $c_{1} \in P, c_{2} \in Q$,
(3) if $a, b \in A, a=a_{1}+a_{2}, b=b_{1}+b_{2}$, where $a_{1}, b_{1} \in P, a_{2}, b_{2} \in Q$, then $a \geq b$ if and only if $a_{1} \geq b_{1}$ and $a_{2} \geq b_{2}$.
If $A=P \times Q$, then for $x \in A$ we denote by x_{P} and x_{Q} the components of x in the direct factors P and Q, respectively.

An element x of an l-monoid A is called positive (negative) if $x \geq 0$ ($x \leq 0$, resp.). The set of all positive (negative) elements of an l-monoid A will be denoted by $A^{+}\left(A^{-}\right.$, resp.). For each element x of a lattice-ordered group $G,|x|=x \vee(-x)$. (Throughout this paper 0 will denote a zero element. We use \mathbb{N} for the set of all positive integers).

Kovář showed in [10] (Theorem 1) that the set I of all invertible elements of a normal lattice-ordered autometrized algebra is an l-group. Analogous assertion is valid for l-monoids.

Theorem 1. The set I of all invertible elements of an l-monoid A is an l-group and a sublattice of A.

Proof. Clearly, I is a group. Let $a, b \in I$. Then we have $a \vee b+(-a) \wedge(-b)=$ $[a \vee b+(-a)] \wedge[a \vee b+(-b)]=[0 \vee(b-a)] \wedge[(a-b) \vee 0] \geq 0, a \vee b+(-a) \wedge(-b)=$ $[a+(-a) \wedge(-b)] \vee[b+(-a) \wedge(-b)]=[0 \wedge(a-b)] \vee[(b-a) \wedge 0] \leq 0$. Thus $a \vee b+(-a) \wedge(-b)=0$. Analogously, we obtain $(-a) \wedge(-b)+a \vee b=0$. Hence $-(a \vee b)=(-a) \wedge(-b)$. Similarly, we can prove that $-(a \wedge b)=(-a) \vee(-b)$. Therefore, $a \vee b, a \wedge b \in I$. Hence I is a sublattice of A.

As a consequence of Theorem 1, we obtain:
Corollary 1. The set I of all invertible elements of a lattice-ordered autometrized algebra A is an l-group.

Lemma 1. Let A be an l-monoid, $a, b, c \in A$.

$$
\begin{aligned}
& \text { If } a \wedge b=0 \text { and } a \wedge c=0, \text { then } a \wedge(b+c)=0 \\
& \text { If } a \vee b=0 \text { and } a \vee c=0, \text { then } a \vee(b+c)=0
\end{aligned}
$$

The proof is the same as in the case of l-groups. See [1], p. 294.
Remark 1. Choudhury showed in [2] (p. 72) that $a+b=a \vee b+a \wedge b$ for each elements a, b of a commutative l-semigroup.

Theorem 2. Let A be an l-monoid. Let I be the set of all invertible elements of A, and let $P=\{y \in A: y \wedge|z|=0$ for each $z \in I\}$, where $|z|$ is the absolute value of z in I. Then
(i) $P \subseteq A^{+}, 0$ is the least element of $P, I \cap P=\{0\}$,
(ii) P is a convex subset of A,
(iii) P is a sublattice of A and an l-semigroup.

Proof. (i): Clearly, $0 \in P \subseteq A^{+}$. Hence 0 is the least element of P. Let $a \in I \cap P$. Then $a=a \wedge|a|=0$.
(ii): Let $a, b \in P, x \in A$, and $a \geq x \geq b$. Then $0=a \wedge|z| \geq x \wedge|z| \geq$ $b \wedge|z|=0$ for each $z \in I$. Thus $x \wedge|z|=0$ for each $z \in I$ and hence $x \in P$.
(iii): Let $a, b \in P$. By Lemma $1, a+b \in P$. Hence P is a subsemigroup of A. Since $a \geq 0, b \geq 0$, we have $a+b \geq b, a+b \geq a$. Thus $a+b \geq a \vee b \geq$ $a \wedge b \geq 0$. From the convexity of P, it follows that $a \vee b, a \wedge b \in P$.

Theorem 3. Let A be a commutative l-monoid. Let each negative element of A be invertible and the set I of all invertible elements of A be a convex subset of A. Let P be as in Theorem 2. Then A is the direct product of the l-group I and the l-semigroup P with the least element 0 if and only if A satisfies the following condition:
(C) For each $a \in A^{+} \backslash I$ the set $M_{a}=\left\{a \wedge x: x \in I^{+}\right\}$has the greatest element.

Proof. Let the set I of all invertible elements in A be a convex subset of A and let $A^{-} \subseteq I$. By Theorem $1, I$ is an l-group. By Theorem $2, P$ is an l-monoid with the least element 0 .

Suppose that A satisfies the condition (C). Assume that $a \in A^{+} \backslash I$. Since $0 \leq a \wedge x \leq x$ for each $x \in I^{+}$, from the convexity of I it follows that $a \wedge x \in I^{+}$and hence $M_{a} \subseteq I^{+}$. Let a_{1} be the greatest element of $M_{a}, a_{2}=a+\left(-a_{1}\right)$. Then $0 \leq a_{1} \leq a, 0 \leq a_{2} \leq a$. Hence $a=a_{1}+a_{2}$, where $a_{1} \in I^{+}$. Now we prove that $a_{2} \in P$. Let $b \in I, d=|b| \vee a_{1}$. Then $d+a_{1} \in I^{+}$. Then (C) yields $a \wedge\left(d+a_{1}\right) \leq a_{1}$. This implies $a_{2} \wedge d=$ $\left[a+\left(-a_{1}\right)\right] \wedge\left[d+a_{1}+\left(-a_{1}\right)\right]=\left[a \wedge\left(d+a_{1}\right)\right]+\left(-a_{1}\right) \leq 0$. Clearly, $0 \leq a_{2} \wedge d$. Thus $a_{2} \wedge d=0$. Then $0 \leq|b| \leq d$ yields $0=0 \wedge a_{2} \leq|b| \wedge a_{2} \leq d \wedge a_{2}=0$. Hence $a_{2} \wedge|b|=0$. Therefore, $a_{2} \in P$.

If $a \in I^{+}$, then we can write $a=a+0$ and hence each $a \in A^{+}$can be written in the form $a=a_{1}+a_{2}$, where $a_{1} \in I^{+}, a_{2} \in P$.

Let $g \in A$. In view of Remark 1, we have $g=g \wedge 0+g \vee 0$. Then $g \vee 0=$ $(g \vee 0)_{1}+(g \vee 0)_{2}$, where $(g \vee 0)_{1} \in I,(g \vee 0)_{2} \in P$. Let $g_{1}=g \wedge 0+(g \vee 0)_{1}$, $g_{2}=(g \vee 0)_{2}$. Since $g \wedge 0 \in I$, we have $g_{1} \in I$. Thus $g=g_{1}+g_{2}$, where $g_{1} \in I, g_{2} \in P$.

Let $g=g_{1}+g_{2}=h_{1}+h_{2}$, where $h_{1} \in I, h_{2} \in P$. Thus $g_{2}=h_{1}+h_{2}+$ $\left(-g_{1}\right)$. Then $g_{2} \vee h_{2}=\left[h_{1}+h_{2}+\left(-g_{1}\right)\right] \vee h_{2}=\left[h_{1}+\left(-g_{1}\right)\right] \vee 0+h_{2} \in P$. Since $h_{2}=g_{1}+g_{2}+\left(-h_{1}\right)$, we have $g_{2} \vee h_{2}=g_{2} \vee\left[g_{1}+g_{2}+\left(-h_{1}\right)\right]=$ $0 \vee\left[g_{1}+\left(-h_{1}\right)\right]+g_{2} \in P$. Hence $2\left(g_{2} \vee h_{2}\right)=\left[h_{1}+\left(-g_{1}\right)\right] \vee 0+h_{2}+0 \vee\left[g_{1}+\right.$ $\left.\left(-h_{1}\right)\right]+g_{2}=g_{2}+h_{2}+\left(h_{1}-g_{1}\right) \vee 0 \vee\left(g_{1}-h_{1}\right)=g_{2}+h_{2}+\left|h_{1}+\left(-g_{1}\right)\right| \in P$. Since $h_{1}+\left(-g_{1}\right) \in I$ and $2\left(g_{2} \vee h_{2}\right) \in P$, we get $0=2\left(g_{2} \vee h_{2}\right) \wedge\left|h_{1}+\left(-g_{1}\right)\right|=$ $\left[g_{2}+h_{2}+\left|h_{1}+\left(-g_{1}\right)\right|\right] \wedge\left|h_{1}+\left(-g_{1}\right)\right|=\left|h_{1}+\left(-g_{1}\right)\right|+\left[\left(g_{2}+h_{2}\right) \wedge 0\right]=\left|h_{1}+\left(-g_{1}\right)\right|$. This implies $h_{1}=g_{1}$. Then clearly $g_{2}=h_{2}$. Therefore, each $g \in A$ is uniquely represented in the form $g=g_{1}+g_{2}$, where $g_{1} \in I, g_{2} \in P$. Clearly, if $g \in A^{+}$, then g is uniquely represented in the form $g=g_{1}+g_{2}$, where $g_{1} \in I^{+}, g_{2} \in P$.

Let $f, h \in A, f \geq h, f=f_{1}+f_{2}, h=h_{1}+h_{2}$, where $f_{1}, h_{1} \in I$, $f_{2}, h_{2} \in P$. From $f_{1}+f_{2} \geq h_{1}+h_{2}$, we get $f_{1}-h_{1}+f_{2} \geq h_{2} \geq 0$. This and $f_{1}-h_{1} \in I, f_{2} \in P$ yield $f_{1}-h_{1} \geq 0$. Hence $f_{1} \geq h_{1}$. Since $\left|f_{1}-h_{1}\right| \wedge h_{2}=0$ and $h_{2} \leq f_{1}-h_{1}+f_{2} \leq\left|f_{1}-h_{1}\right|+f_{2}$, we get $h_{2}=$ $h_{2} \wedge\left(f_{2}+h_{2}\right) \leq\left(\left|f_{1}-h_{1}\right|+f_{2}\right) \wedge\left(f_{2}+h_{2}\right)=\left(\left|f_{1}-h_{1}\right| \wedge h_{2}\right)+f_{2}=f_{2}$. Therefore, $A=I \times P$.

Let $A=I \times P, a \in A^{+}$. Then $a=a_{I}+a_{P}$, where $a_{I} \in I^{+}, a_{P} \in P$. Since $a \geq a_{I}$, we have $a \wedge a_{I}=a_{I} \in M_{a}$. Let $x \in I^{+}$. From the convexity of I and $x \geq a \wedge x \geq 0$, it follows that $a \wedge x \in I$. Then $a \geq a \wedge x$ implies $a_{I} \geq(a \wedge x)_{I}=a \wedge x$. Therefore, a_{I} is the greatest element of M_{a}.
A commutative l-monoid A is called a normal l-monoid if for each $a, b \in A$ such that $a \leq b$ there exists $x \in A^{+}$such that $a+x=b$.
Remark 2. In the definition of the normal l-monoid it suffices to require for each $a, b \in A$ such that $a \leq b$ the existence $x \in A$ such that $a+x=b$, since then there exists also a positive element $y \in A$ such that $a+y=b$. In fact, if we put $y=x \vee 0$, then we get $a+y=a+x \vee 0=(a+x) \vee a=b \vee a=b$.

Theorem 4. Let A be a normal l-monoid, $a, b \in A$, $a \leq b, S_{a b}=\{x \in$ $A ; a+x=b\}$. Then $S_{a b}$ is a sublattice of A.

Proof. Let $a, b, x, y \in A, a \leq b, a+x=b, a+y=b$. Then $a+x \vee y=$ $(a+x) \vee(a+y)=b, a+x \wedge y=(a+x) \wedge(a+y)=b$.

As a consequence of Theorem 2, we obtain:

Corollary 2. If A is a normal l-monoid and I, P are as in Theorem 2, then P is a normal l-monoid.

Proof. Let $a, b \in P, a \leq b$. Then there exists $x \in A^{+}$such that $a+x=b$. Since $0 \leq a$, we get $0 \leq x \leq a+x=b$. By Theorem 2 (ii), $x \in P$. The rest also follows by Theorem 2 .

Lemma 2. Each negative element of a normal l-monoid A is invertible.

Proof. If $a \in A, a \leq 0$, then there exists $x \in A^{+}$such that $a+x=0$.

Theorem 5. The set I of all invertible elements of a normal l-monoid A is a convex subset of A.

The proof is similar to the proof of Theorem 2 of [10].
By Theorem 3, Corollary 2, Lemma 2, and Theorem 5, we get the following theorem:

Theorem 6. Let A be a normal l-monoid. Let I and P be as in Theorem 2. Then A is the direct product of the l-group I and the normal l-emigroup P with the least element 0 if and only if A satisfies condition (C).

The following example shows that there exists a commutative l-monoid H such that each negative element of H is invertible, the set I of all invertible elements of H is a convex subset of H and H satisfies the condition (C), but H is not a normal l-monoid.

Example. Let $\left(B, \leq_{1}\right)$ be the interval $\langle 0,1\rangle$ of real line with the natural order. Let $x \oplus y=y \oplus x=1$ for each $x, y \in(0,1\rangle$ and let $0 \oplus z=z \oplus 0=z$ for each $z \in\langle 0,1\rangle$. Then $\left(B, \oplus, \leq_{1}\right)$ is a commutative l-monoid with the least element 0 , but not a normal l-monoid. Let $(\mathbb{Z},+, \leq)$ be the additive group of all integers with the natural order. Then the direct product H of $(\mathbb{Z},+, \leq)$ and $(B, \oplus, \leq 1)$ has the above mentioned properties.

Theorem 7. Each $D R l$-semigroup A is a normal l-monoid and satisfies the condition (C) from Theorem 3. Moreover, $0-(0-a)$ is the greatest element of $M_{a}=\left\{a \wedge x: x \in I^{+}\right\}$for each $a \in A^{+} \backslash I$, where I is the set of all invertible elements of A.

Proof. Let A be a $D R l$-semigroup. Let $x, y \in A, x \leq y$. From Lemma 8 of [16] and Corollary of [16], p. 107, it follows that $x+(y-x)=y, y-x \geq 0$. Hence A is a normal l-monoid. Let $a \in A^{+} \backslash I$. Since $a \geq 0$, from Lemmas 1 and 3 of [16], we get $0-a \leq 0$ and $0 \leq 0-(0-a)$. By Lemma 1.2 of [5], $0-(0-a)$ is the inverse of $0-a$ and hence $0-a, 0-(0-a) \in I$. In view of Lemma 13 of [16], $0-(0-a) \leq a$. Then $a \wedge(0-(0-a))=0-(0-a)$. Hence $0-(0-a) \in M_{a}$. Let $x \in I^{+}$. From the convexity of I and $x \geq a \wedge x \geq 0$ we obtain $a \wedge x \in I^{+}$. By Lemma 1.1 (i) of [5], $0-(0-(a \wedge x))=a \wedge x$. Since $a \geq a \wedge x$, in view of Lemma 3 of [16], we have $0-(a \wedge x) \geq 0-a$ and $0-(0-a) \geq 0-(0-(a \wedge x))=a \wedge x$. Hence $0-(0-a)$ is the greatest element of M_{a}.
The following example shows that there exists a normal l-monoid satisfying (C) which is not a $D R l$-semigroup.

Example. Let $(\mathbb{R},+, \leq)$ be the additive group of all real number with the natural order. Let (G, \leq) be the interval $\langle 0,1\rangle$ of real line with the natural order. Let $G^{\infty}=G \cup\{\infty\}$. We put $x \leq_{1} y$ if $x \leq y, x, y \in\langle 0,1\rangle$ and $x \leq_{1} \infty$ for each $x \in G^{\infty}$. Further, for each $x, y \in\langle 0,1\rangle$ we put $x \oplus y=y \oplus x=x+y$ if $x+y \leq 1$ and $x \oplus y=y \oplus x=\infty$ if $x+y>1$. Let $x \oplus \infty=\infty \oplus x=\infty$ for each $x \in G^{\infty}$. Then $\left(G^{\infty}, \oplus, \leq_{1}\right)$ is a normal l-monoid with the least element 0 , but not a $D R l$-semigroup because $\infty-1$ there does not exist in G^{∞}. Then the direct product of $(\mathbb{R},+, \leq)$ and $\left(G^{\infty}, \oplus, \leq_{1}\right)$ is a normal l-monoid satisfying (C), but not a $D R l$-semigroup.

Hence Theorems 3 and 6 generalize The Representation Theorem 12 of Kovař in [6].

Theorem 8. Let A be a finite normal l-monoid with the least element 0. Then A is a $D R l$-semigroup and $a+(b-a)=a \vee b$ for each $a, b \in A$.

Proof. Let $a, b \in A$. Since $a \leq a \vee b$, there exists $a_{1} \in A$ such that $a+a_{1}=a \vee b \geq b$. Let a_{1}, \ldots, a_{n} be all elements of A such that $a+a_{i} \geq b$, $i=1, \ldots, n$. Then $a+a_{1} \wedge \cdots \wedge a_{n}=\left(a+a_{1}\right) \wedge \cdots \wedge\left(a+a_{n}\right) \geq b$. Hence $a_{1} \wedge \cdots \wedge a_{n}=b-a$. Since $a_{1} \geq a_{1} \wedge \cdots \wedge a_{n}=b-a$, we have $a+(b-a) \leq a+a_{1}=a \vee b$. From $b-a \geq 0$, we obtain $a+(b-a) \geq a$. Then $a+(b-a) \geq a \vee b$. Therefore, $a \vee b=a+(b-a)=a+(b-a) \vee 0$.

Theorem 9. In any finite normal l-monoid, 0 is the least element.
Proof. If x is an element of a finite normal l-monoid A, then from Theorem 1 and Lemma 1, it follows that $x \wedge 0$ is an element of the l-group I of all
invertible elements of A. If $x \wedge 0<0$, then I is infinite, a contradiction. Hence $x \wedge 0=0$. Therefore, 0 is the least element of A.

From Theorems 8 and 9 , we immediately obtain:

Theorem 10. Any finite normal l-monoid is a $D R l$-semigroup.
Let x be an element of an l-group G. Then $x^{+}=x \vee 0$ is called the positive part of x and $x^{-}=x \wedge 0$ is called the negative part of x. (See Birkhof [1], p. 293, Fuchs [3], p. 75.) We use the same definition x^{+}and x^{-}also for an element x of an l-monoid A.

Remark 3. For the negative part x^{-}of an element x in an l-group, formula $x^{-}=(-x) \vee 0$ was used in [6]. Hansen defined in [4] the negative part x^{-} of an element x of a $D R l$-semigroup by the formula $x^{-}=(0-x) \vee 0$. The negative part x^{-}of x is a positive element in these cases.

The elements x^{+}and x^{-}in an l-monoid A have analogous properties as in an l-group.

Theorem 11. Let A be an l-monoid, $x, y \in A$. Then
(i) $x=x^{+}$if and only if $x \geq 0$,
(ii) $x=x^{-}$if and only if $x \leq 0$,
(iii) $(x+y)^{+} \leq x^{+}+y^{+},(x+y)^{-} \geq x^{-}+y^{-}$.

The proof is obvious.

Lemma 3. Let A be a normal l-monoid. Let $x \in A$, and let $b, c \in A^{+}$such that $x \wedge 0+b=x, x \wedge 0+c=0$. Then $b=x \vee 0=x+c, b+c=b \vee c$, $b \wedge c=0$.

Proof. Let $x \in A, b, c \in A^{+}, x \wedge 0+b=x, x \wedge 0+c=0$. In view of Remark 1, we have $b=b+0=b+x \wedge 0+c=x+c=x \vee 0+x \wedge 0+c=x \vee 0$. Further we get $b+c=x \vee 0+c=b \vee c, b \wedge c=(x+c) \wedge c=(x \wedge 0)+c=0$.

Theorem 12. Let A be a normal l-monoid, $x \in A, n \in \mathbb{N}$. Then $n\left(x^{-}\right)=$ $(n x)^{-}, n\left(x^{+}\right)=(n x)^{+}$.

Proof. Let $x \in A, n \in N$. Let $b, c \in A^{+}$such that $x \wedge 0+b=x$, $x \wedge 0+c=0$. By Lemma $3, b \wedge c=0$. From Lemma 1 and Remark 1, it follows that $n b \wedge n c=0, n b+n c=n b \vee n c$. Then $(n x)^{-}=(n x) \wedge(n 0)=$ $[n(x \wedge 0)+n b] \wedge[n(x \wedge 0)+n c]=n(x \wedge 0)+n b \wedge n c=n(x \wedge 0)=n\left(x^{-}\right)$. In view of Lemma 3, we have $(n x)^{+}=(n x) \vee(n 0)=[n(x \wedge 0)+n b] \vee[n(x \wedge 0)+n c]=$ $n(x \wedge 0)+n c \vee n b=n(x \wedge 0)+n c+n b=n(x \wedge 0+c)+n b=n b=n(x \vee 0)=$ $n\left(x^{+}\right)$.

Remark 4. Kovař showed in [7] (p. 16) that for any element x of an l-monoid A the following assertions are valid:
(i) $a=a \wedge 0+a \vee 0=a \vee 0+a \wedge 0$,
(ii) $n(a \wedge 0)=n a \wedge(n-1) a \wedge \cdots \wedge a \wedge 0$, where $n \in \mathbb{N}$.

Then, clearly, $a+a \wedge 0=a \wedge 0+a, a+a \vee 0=a \vee 0+a, n(a \vee 0)=$ $n a \vee(n-1) a \vee \cdots \vee a \vee 0$ for any $a \in A, n \in \mathbb{N}$.

Lemma 4. Let A be an l-monoid, $a \in A$, and $n \in \mathbb{N}$. Then:
(i) If $2 a \geq 0$, then $a \geq 0$;
(ii) If $n a \geq 0$, then $(n+1) a \geq 0$.

Proof. (i): Let $a \in A$, and $2 a \geq 0$. Then $2(a \wedge 0)=2 a \wedge a \wedge 0=a \wedge 0$. Hence $a=a \wedge 0+a \vee 0=2(a \wedge 0)+a \vee 0=a \wedge 0+a$. Further, we have $2(a \vee 0)=2 a \vee a \vee 0=2 a \vee a=a+a \vee 0$. Then $a=a \wedge 0+a \vee 0=$ $(a+a \vee 0) \wedge(a \vee 0)=2(a \vee 0) \wedge(a \vee 0)=a \vee 0$. Therefore, $a \geq 0$.
(ii): Let $a \in A, n \in \mathbb{N}$, and $n a \geq 0$. Then $n(a \wedge 0)=n a \wedge(n-1) a \wedge$ $\cdots \wedge a \wedge 0=(n-1) a \wedge \cdots \wedge a \wedge 0=(n-1)(a \wedge 0)$. Hence $(n+1) a=$ $(n+1)(a \vee 0)+a \wedge 0+n(a \wedge 0)=(n+1)(a \vee 0)+a \wedge 0+(n-1)(a \wedge 0)=$ $a \vee 0+n(a \vee 0)+n(a \wedge 0)=a \vee 0+n a \geq 0$.

The following theorem generalizes Lemmas 16 and 17 of paper [16] by Swamy.

Theorem 13. Let A be an l-monoid, $a \in A$, and $n \in \mathbb{N}$. Then:
(i) If $n a \geq 0$, then $a \geq 0$;
(ii) If $n a \leq 0$, then $a \leq 0$;
(iii) If $n a=0$, then $a=0$.

Proof. (i): We prove this statement by induction on n. The statement is valid for $n=1$. Suppose that the statement is valid for all $k \in \mathbb{N}$, such that $k \leq n$.

Let $(n+1) a \geq 0$. If $n+1$ is an even number, then $n+1=2 m$, where $m \in \mathbb{N}$, and $m \leq n$. In view of Lemma 4 (i), from $0 \leq(n+1) a=2(m a)$, we obtain $0 \leq m a$. Hence $0 \leq a$. If $n+1$ is an odd number, then $n+2$ is an even number and $n+2=2 s$, where $s \in \mathbb{N}$, and $s \leq n$. By Lemma 4 (ii), $0 \leq(n+2) a=2(s a)$. Then, from Lemma 4 (i), it follows that $0 \leq s a$. Therefore, $0 \leq a$.

Assertion (ii) can be proved dually.
(iii): It follows from (i) and (ii).

Theorem 14. Let S be an l-monoid, and $S=A \times B$. Then:
(i) A, B are convex sublattices of S,
(ii) $(x \wedge y)_{A}=x_{A} \wedge y_{A},(x \wedge y)_{B}=x_{B} \wedge y_{B}$ for each $x, y \in S$,
(iii) $(x \vee y)_{A}=x_{A} \vee y_{A},(x \vee y)_{B}=x_{B} \vee y_{B}$ for each $x, y \in S$,
(iv) if S is normal, then A and B are normal l-monoids.

Proof. (i): Let $u, v \in A, z \in S$, and $u \leq z \leq v$. Then $0=u_{B} \leq z_{B} \leq v_{B}=$ 0 . Thus $z_{B}=0$ and hence $z=z_{A} \in A$. Let $x, y \in A$. Since $x \wedge y \leq x, y$, we have $(x \wedge y)_{A} \leq x_{A}=x,(x \wedge y)_{A} \leq y_{A}=y$. Thus $(x \wedge y)_{A} \leq x \wedge y \leq x$. From the convexity of A, we get $x \wedge y \in A$. Similarly, $x \vee y \in A$. Analogously, we can show that B is a convex sublattice of S.
(ii) and (iii) are obvious.
(iv): Let $x, y \in A, x \leq y$. Then there exists $z \in S^{+}$, such that $x+z=y$. Hence $x_{A}+z_{A}=y_{A}, x_{B}+z_{B}=y_{B}$. Since $x_{B}=y_{B}=0$, we have $z_{B}=0$. Therefore, $z=z_{A} \in A^{+}$. By (i), A is a lattice. The rest is obvious. Similarly, B is a normal l-monoid.

If A is a commutative l-monoid and $A=I \times P$, where I and P are as in Theorem 2, then A is called a decomposable l-monoid.

Theorem 15. Let A be a decomposable l-monoid, $x \in A$. Then:
(i) $x^{+}=\left(x_{I}\right)^{+}+x_{P}$,
(ii) $x^{-}=\left(x_{I}\right)^{-}$,
(iii) $x^{+} \wedge\left(-x^{-}\right)=0$.

Proof. (i): In view of Theorem 14, we have $x^{+}=x \vee 0=x_{I} \vee 0+x_{P} \vee 0=$ $\left(x_{I}\right)^{+}+x_{P}$.

The proof of (ii) is analogous.
(iii): Since $a^{+} \wedge(-a)^{+}=0$ for any element a of an l-group (see [1], p. 295), in view of (i), (ii), Theorem 1 and 14, we have $x^{+} \wedge\left(-x^{-}\right)=$ $\left[\left(x_{I}\right)^{+}+x_{P}\right] \wedge\left[-\left(x_{I}\right)^{-}\right]=\left(x_{I}\right)^{+} \wedge\left[-\left(x_{I}\right)^{-}\right]+x_{P} \wedge 0=\left(x_{I}\right)^{+} \wedge\left[-\left(x_{I} \wedge 0\right)\right]=$ $\left(x_{I}\right)^{+} \wedge\left(-x_{I}\right)^{+}=0$ for each $x \in A$.

The absolute value $|x|$ of an element x in an l-group G is defined by the formula $|x|=(-x) \vee x$. We cannot use this definition for decomposable l-monoids. But we can define the absolute value $|x|$ of an element x in a decomposable l-monoid analogously as in [6]: $|x|=\left|x_{I}\right|+x_{P}$, where $\left|x_{I}\right|$ is the absolute value of x_{I} in the l-group I. A such defined absolute value has analogous properties as the absolute value in an l-group.

Theorem 16. Let A be a decomposable l-monoid, $x, y \in A, n \in N$. Then
(i) $|x|=0$ if and only if $x=0$,
(ii) if $x \geq 0$, then $|x|=x$,
(iii) if $x \leq 0$, then $|x|=-x$,
(iv) $|x|=x^{+}-x^{-}=x^{+} \vee\left(-x^{-}\right)$,
(v) $n|x|=|n x|$,
(vi) $|x|+|y| \geq|x+y|$,
(vii) $|x|+|y| \geq|x| \vee|y| \geq|x \vee y|,|x| \vee|y| \geq|x \wedge y|$.

Proof. (i): Let $|x|=0$. Then $\left|x_{I}\right|+x_{P}=0$ implies $x_{I}=0, x_{P}=0$. Hence $x=0$. If $x=0$, then $x_{I}=0, x_{P}=0$. Hence $|x|=0$.
(ii): Let $x \geq 0$. Then $x_{I} \geq 0$. Thus $|x|=\left|x_{I}\right|+x_{P}=x_{I}+x_{P}=x$.
(iii): Let $x \leq 0$. Then $x_{I} \leq 0, x_{P}=0$. Hence $|x|=\left|x_{I}\right|+x_{P}=-x_{I}=-x$.
(iv): In view of Theorem 15 and Theorem 7 of [1] (p. 295), we have $x^{+}-\left(x^{-}\right)=\left(x_{I}\right)^{+}+x_{P}-\left[\left(x_{I}\right)^{-}\right]=\left|x_{I}\right|+x_{P}=|x|$. By Remark 1 and Theorem 15 (iii), $x^{+}-\left(x^{-}\right)=x^{+} \vee\left(-x^{-}\right)+x^{+} \wedge\left(-x^{-}\right)=x^{+} \vee\left(-x^{-}\right)$.
(v): By Theorem 8 of [1] (p. 296), we get $n|x|=n\left(\left|x_{I}\right|+x_{P}\right)=$ $n\left|x_{I}\right|+n x_{P}=\left|n x_{I}\right|+(n x)_{P}=\left|(n x)_{I}\right|+(n x)_{P}=|n x|$.
(vi): If a, b are elements of a commutative l-group, then $|a|+|b| \geq|a+b|$ (see [3], p. 76). Let $x, y \in A$. Then, we have $|x|+|y|=\left|x_{I}\right|+x_{P}+\left|y_{I}\right|+y_{P}=$ $\left|x_{I}\right|+\left|y_{I}\right|+(x+y)_{P} \geq\left|x_{I}+y_{I}\right|+(x+y)_{P}=\left|(x+y)_{I}\right|+(x+y)_{P}=|x+y|$.
(vii): Let $x, y \in A$. Since $x_{P}, y_{P} \geq 0$, we get $x_{P}+y_{P} \geq x_{P} \vee y_{P}$. By assertion M) of [3] (p. 76), $|a|+|b| \geq|a| \vee|b| \geq|a \vee b|$ for any elements a, b of an l-group. In view of Theorem 14, we obtain $|x|+|y|=\left|x_{I}\right|+x_{P}+$ $\left|y_{I}\right|+y_{P} \geq\left|x_{I}\right| \vee\left|y_{I}\right|+x_{P} \vee y_{P}=\left(\left|x_{I}\right|+x_{P}\right) \vee\left(\left|y_{I}\right|+y_{P}\right)=|x| \vee|y|=$ $\left[x_{I} \vee\left(-x_{I}\right)\right] \vee\left[y_{I} \vee\left(-y_{I}\right)\right]+x_{P} \vee y_{P} \geq\left[x_{I} \vee y_{I}\right] \vee\left[\left(-x_{I}\right) \wedge\left(-y_{I}\right)\right]+x_{P} \vee y_{P}=$ $\left|x_{I} \vee y_{I}\right|+x_{P} \vee y_{P}=\left|(x \vee y)_{I}\right|+(x \vee y)_{P}=|x \vee y|$. Further, we have $|x| \vee|y|=\left[x_{I} \vee\left(-x_{I}\right)\right] \vee\left[y_{I} \vee\left(-y_{I}\right)\right]+x_{P} \vee y_{P} \geq\left[x_{I} \wedge y_{I}\right] \vee\left[\left(-x_{I}\right) \vee\left(-y_{I}\right)\right]+$ $x_{P} \vee y_{P} \geq\left|x_{I} \wedge y_{I}\right|+x_{P} \wedge y_{P}=\left|(x \wedge y)_{I}\right|+(x \wedge y)_{P}=|x \wedge y|$.

Let A be a decomposable l-monoid, and $B \subseteq A$. Then

$$
B^{\perp}=\{x \in A:|x| \wedge|y|=0 \text { for each } y \in B\}
$$

is called the polar of the set B.
Remark 5. In a decomposable l-monoid A, the l-semigroup P is the polar of the l-group I. In fact, if $x \in I^{\perp}$, then $0=|x| \wedge\left|x_{I}\right|=\left(\left|x_{I}\right|+x_{P}\right) \wedge\left|x_{I}\right|=$ $\left|x_{I}\right|+x_{P} \wedge 0=\left|x_{I}\right|$. Thus $x_{I}=0$ and hence $x=x_{P} \in P$. If $z \in P$, then $0=z \wedge|y|=|z| \wedge|y|$ for each $y \in I$. Therefore, $P=I^{\perp}$.

Theorem 17. Let A be a decomposable l-monoid, $B \subseteq A$. Then B^{\perp} is an l-monoid and a convex sublattice of A.

Proof. Let $x, y \in B^{\perp}$. Then $|x| \wedge|z|=0,|y| \wedge|z|=0$ for each $z \in B$. By Lemma $1,(|x|+|y|) \wedge|z|=0$ for each $z \in B$. Clearly, $0 \in B$. In view of Theorem 16 (vi) and (vii), we obtain $0=(|x|+|y|) \wedge|z| \geq|x+y| \wedge|z| \geq 0$, $0=(|x|+|y|) \wedge|z| \geq|x \vee y| \wedge|z| \geq 0,0=(|x|+|y|) \wedge|z| \geq|x \wedge y| \wedge|z| \geq 0$ and hence $(|x+y|) \wedge|z|=0,|x \vee y| \wedge|z|=0,|x \wedge y| \wedge|z|=0$ for each $z \in B$. Therefore, $x+y, x \vee y, x \wedge y \in B^{\perp}$. Thus B^{\perp} is an l-monoid and a sublattice of A.

Let $a, b \in B^{\perp}, u \in A$, and $a \geq u \geq b$. Then $a_{I} \geq u_{I} \geq b_{I}, a_{P} \geq u_{P} \geq b_{P}$ and hence $a_{I}-b_{I} \geq u_{I}-b_{I} \geq 0$. By Theorem 16 (ii), $\left|a_{I}-b_{I}\right| \geq\left|u_{I}-b_{I}\right| \geq 0$, $\left|a_{P}\right| \geq\left|u_{P}\right| \geq 0$. Since $a \in B^{\perp}$, we get $0=|a| \wedge|z|=\left(\left|a_{I}\right|+a_{P}\right) \wedge|z| \geq\left|a_{I}\right| \wedge$ $|z| \geq 0$ for each $z \in B$ and hence $a_{I} \in B^{\perp}$. Similarly, $b_{I} \in B^{\perp}$. Analogously, $a_{P}, b_{P} \in B^{\perp}$. In view of Lemma 1 and Theorem 16 (vi), we obtain $0=$ $\left(\left|a_{I}\right|+\left|b_{I}\right|\right) \wedge|z|=\left(\left|a_{I}\right|+\left|-b_{I}\right|\right) \wedge|z| \geq\left(\left|a_{I}-b_{I}\right|\right) \wedge|z| \geq\left(\left|u_{I}-b_{I}\right|\right) \wedge|z| \geq 0$ for each $z \in B$. Then $\left(\left|u_{I}-b_{I}\right|\right) \wedge|z|=0$ for each $z \in \mathrm{~B}$ and hence $u_{I}-b_{I} \in B^{\perp}$. Therefore, $\left(u_{I}-b_{I}\right)+b_{I}=u_{I} \in B^{\perp}$. Further, we have $0=\left|a_{P}\right| \wedge|z| \geq$ $\left|u_{P}\right| \wedge|z| \geq 0$ for each $z \in B$. Thus $\left|u_{P}\right| \wedge|z|=0$ for each $z \in B$ and hence $u_{P} \in B^{\perp}$. Therefore, $u_{I}+u_{P}=u \in B^{\perp}$.

Theorem 18. Let A be a decomposable l-monoid, $B, D \subseteq A$. Then:
(i) if $B \subseteq D$, then $B^{\perp} \supseteq D^{\perp}$,
(ii) $B \subseteq B^{\perp \perp}$,
(iii) $B^{\perp}=B^{\perp \perp \perp}$.

The proofs of (i) and (ii) are obvious. Assertion (iii) follows from (i) and (ii).

References

[1] G. Birkhoff, Lattice Theory, Third edition, Amer. Math. Soc., Providence, RI, 1967.
[2] A.C. Choudhury, The doubly distributive m-lattice, Bull. Calcutta. Math. Soc. 47 (1957), 71-74.
[3] L. Fuchs, Partially ordered algebraic systems, Pergamon Press, New York 1963.
[4] M. Hansen, Minimal prime ideals in autometrized algebras, Czech. Math. J. 44 (119) (1994), 81-90.
[5] M. Jasem, Weak isometries and direct decompositions of dually residuated lattice-ordered semigroups, Math. Slovaca 43 (1993), 119-136.
[6] T. Kovář, Any DRl-semigroup is the direct product of a commutative l-group and a DRl-semigroup with the least element, Discuss. Math.-Algebra \& Stochastic Methods 16 (1996), 99-105.
[7] T. Kovář, A general theory of dually residuated lattice-ordered monoids, Ph.D. Thesis, Palacký Univ., Olomouc 1996.
[8] T. Kovář, Two remarks on dually residuated lattice-ordered semigroups, Math. Slovaca 49 (1999), 17-18.
[9] T. Kovář, On (weak) zero-fixing isometries in dually residuated lattice-ordered semigroups, Math. Slovaca 50 (2000), 123-125.
[10] T. Kovář, Normal autometrized lattice-ordered algebras, Math. Slovaca, 50 (2000), 369-376.
[11] J. Rachůnek, Prime ideals in autometrized algebras, Czechoslovak Math. J. 37 (112) (1987), 65-69.
[12] J. Rachůnek, Polars in autometrized algebras, Czechoslovak Math. J. 39 (114) (1989), 681-685.
[13] J. Rachůnek, Regular ideals in autometrized algebras, Math. Slovaca 40 (1990), 117-122.
[14] J. Rachůnek, DRl-semigroups and MV-algebras, Czechoslovak Math. J. 48 (123) (1998), 365-372.
[15] J. Rachůnek, $M V$-algebras are categorically equivalent to a class of $D R l_{1(i)}{ }^{-}$ semigroups, Math. Bohemica 123 (1998), 437-441.
[16] K.L.N. Swamy, Dually residuated lattice-ordered semigroups, Math. Ann. 159 (1965), 105-114.
[17] K.L.N. Swamy, Dually residuated lattice-ordered semigroups. II, Math. Ann. 160 (1965), 64-71.
[18] K.L.N. Swamy, Dually residuated lattice-ordered semigroups. III, Math. Ann. 167 (1966), 71-74.
[19] K.L.N. Swamy and N.P. Rao, Ideals in autometrized algebras, J. Austral. Math. Soc. Ser. A 24 (1977), 362-374.
[20] K.L.N. Swamy and B.V. Subba Rao, Isometries in dually residuated latticeordered semigroups, Math. Sem. Notes Kobe Univ. 8 (1980), 369-379.

Received 26 November 2002
Revised 16 May 2003
Revised 20 November 2003

