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Abstract

In the paper lattice-ordered monoids and specially normal lattice-
ordered monoids which are a generalization of dually residuated lattice-
ordered semigroups are investigated. Normal lattice-ordered monoids
are metricless normal lattice-ordered autometrized algebras. It is pro-
ved that in any lattice-ordered monoid A, a ∈ A and na ≥ 0 for some
positive integer n imply a ≥ 0. A necessary and sufficient condition
is found for a lattice-ordered monoid A, such that the set I of all
invertible elements of A is a convex subset of A and A− ⊆ I, to be
the direct product of the lattice-ordered group I and a lattice-ordered
semigroup P with the least element 0.
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Normal lattice-ordered autometrized algebras were investigated in [4], [10],
[11], [12], [13], [19]. Swamy ([16], [17], [18]) introduced and studied du-
ally residuated lattice-ordered semigroups (notation DRl-semigroups) as a
common abstraction of Boolean rings and abelian lattice ordered groups
(notations l-groups). Swamy and Subba Rao ([20]) investigated isometries
in DRl-semigroups. They proved that any isometry fixing zero in a repre-
sentable DRl-semigroup is an involutory semigroup automorphism. In [5],
it was shown that to each weak isometry f fixing zero in a DRl-semigroup G
there exists a direct decomposition G = A×B, where A is a DRl-semigroup
and B is an l-group, such that f(x) = xA + (0 − xB) for each x ∈ G.
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Kovář in [6] proved that any DRl-semigroup A is the direct product of
the l-group of all invertible elements of A and a DRl-semigroup with the
least element and showed in [8] that conditions (1), (2) and (3) imply the
condition (4) in the definition of a DRl-semigroup. In [9], he studied the
group of zero fixing isometries of a DRl-semigroup. Prime ideals in DRl-
semigroups were investigated by Hansen in [4]. Rach̊unek ([14], [15]) proved
that MV-algebras are in a one-to-one correspondence with special kinds of
bounded DRl-semigroups. In [11], [12], he studied ideals and polars in DRl-
semigroups.

Let us review some notions and notations used in the paper.
A system A = (A; +,≤) is called a partially ordered semigroup

(po-semigroup) if and only if

(1) (A; +) is a semigroup,

(2) (A;≤) is a partially ordered set,

(3) a ≤ b implies a + x ≤ b + x and x + a ≤ x + b for all a, b, x ∈ A.

A po-semigroup (A; +,≤) is called a lattice-ordered semigroup (l-semigroup)
if and only if

(1) (A;≤) is a lattice with lattice operations ∨ and ∧,

(2) a + (b ∨ c) = (a + b) ∨ (a + c), (b ∨ c) + a = (b + a) ∨ (c + a),
a + (b ∧ c) = (a + b) ∧ (a + c),(b ∧ c) + a = (b + a) ∧ (c + a)

for each a, b, c ∈ A.

An l-semigroup with zero element 0 is called a lattice-ordered monoid
(l-monoid).

A system A = (A; +,≤,−) is called a dually residuated lattice-ordered
semigroup (DRl-semigroup) if and only if

(1) (A; +,≤) is a commutative l-monoid,

(2) for given a, b in A there exists a least x ∈ A such that b + x ≥ a, and
this x is denoted by a− b,

(3) (a− b) ∨ 0 + b ≤ a ∨ b for all a, b ∈ A,

(4) (a− a) ≥ 0 for each a ∈ A.

Partially ordered semigroup A with a zero element is said to be the
direct product of its partially ordered subsemigroups P and Q (notation
A = P ×Q) if the following conditions are fulfilled:
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(1) if a ∈ P and b ∈ Q, then a + b = b + a,

(2) each element c ∈ A can be uniquely represented in the form c = c1+c2,
where c1 ∈ P , c2 ∈ Q,

(3) if a, b ∈ A, a = a1 +a2, b = b1 + b2, where a1, b1 ∈ P , a2, b2 ∈ Q, then
a ≥ b if and only if a1 ≥ b1 and a2 ≥ b2.

If A = P × Q, then for x ∈ A we denote by xP and xQ the components of
x in the direct factors P and Q, respectively.

An element x of an l-monoid A is called positive (negative) if x ≥ 0
(x ≤ 0, resp.). The set of all positive (negative) elements of an l-monoid A
will be denoted by A+ (A−, resp.). For each element x of a lattice-ordered
group G, |x| = x ∨ (−x). (Throughout this paper 0 will denote a zero
element. We use IN for the set of all positive integers).

Kovář showed in [10] (Theorem 1) that the set I of all invertible elements
of a normal lattice-ordered autometrized algebra is an l-group. Analogous
assertion is valid for l-monoids.

Theorem 1. The set I of all invertible elements of an l-monoid A is an
l-group and a sublattice of A.

Proof. Clearly, I is a group. Let a, b ∈ I. Then we have a∨b+(−a)∧(−b) =
[a∨b+(−a)]∧[a∨b+(−b)] = [0∨(b−a)]∧[(a−b)∨0] ≥ 0, a∨b+(−a)∧(−b) =
[a + (−a)∧ (−b)]∨ [b + (−a)∧ (−b)] = [0∧ (a− b)]∨ [(b− a)∧ 0] ≤ 0. Thus
a∨b+(−a)∧(−b) = 0. Analogously, we obtain (−a)∧(−b)+a∨b = 0. Hence
−(a∨b) = (−a)∧ (−b). Similarly, we can prove that −(a∧b) = (−a)∨ (−b).
Therefore, a ∨ b, a ∧ b ∈ I. Hence I is a sublattice of A.

As a consequence of Theorem 1, we obtain:

Corollary 1. The set I of all invertible elements of a lattice-ordered
autometrized algebra A is an l-group.

Lemma 1. Let A be an l-monoid, a, b, c ∈ A.
If a ∧ b = 0 and a ∧ c = 0, then a ∧ (b + c) = 0.
If a ∨ b = 0 and a ∨ c = 0, then a ∨ (b + c) = 0.

The proof is the same as in the case of l-groups. See [1], p. 294.

Remark 1. Choudhury showed in [2] (p. 72) that a + b = a ∨ b + a ∧ b for
each elements a, b of a commutative l-semigroup.
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Theorem 2. Let A be an l-monoid. Let I be the set of all invertible ele-
ments of A, and let P = {y ∈ A : y ∧ |z| = 0 for each z ∈ I}, where |z| is
the absolute value of z in I. Then

(i) P ⊆ A+, 0 is the least element of P , I ∩ P = {0},
(ii) P is a convex subset of A,

(iii) P is a sublattice of A and an l-semigroup.

Proof. (i): Clearly, 0 ∈ P ⊆ A+. Hence 0 is the least element of P . Let
a ∈ I ∩ P . Then a = a ∧ |a| = 0.

(ii): Let a, b ∈ P , x ∈ A, and a ≥ x ≥ b. Then 0 = a ∧ |z| ≥ x ∧ |z| ≥
b ∧ |z| = 0 for each z ∈ I. Thus x ∧ |z| = 0 for each z ∈ I and hence x ∈ P .

(iii): Let a, b ∈ P . By Lemma 1, a+ b ∈ P . Hence P is a subsemigroup
of A. Since a ≥ 0, b ≥ 0, we have a + b ≥ b, a + b ≥ a. Thus a + b ≥ a∨ b ≥
a ∧ b ≥ 0. From the convexity of P, it follows that a ∨ b, a ∧ b ∈ P .

Theorem 3. Let A be a commutative l-monoid. Let each negative element
of A be invertible and the set I of all invertible elements of A be a convex
subset of A. Let P be as in Theorem 2. Then A is the direct product of the
l-group I and the l-semigroup P with the least element 0 if and only if A
satisfies the following condition:

(C) For each a ∈ A+ r I the set Ma = {a ∧ x : x ∈ I+} has the greatest
element.

Proof. Let the set I of all invertible elements in A be a convex subset of
A and let A− ⊆ I. By Theorem 1, I is an l-group. By Theorem 2, P is
an l-monoid with the least element 0.

Suppose that A satisfies the condition (C). Assume that a ∈ A+ r I.
Since 0 ≤ a ∧ x ≤ x for each x ∈ I+, from the convexity of I it follows
that a ∧ x ∈ I+ and hence Ma ⊆ I+. Let a1 be the greatest element of
Ma, a2 = a + (−a1 ). Then 0 ≤ a1 ≤ a, 0 ≤ a2 ≤ a. Hence a = a1 + a2,
where a1 ∈ I+. Now we prove that a2 ∈ P . Let b ∈ I, d = |b| ∨ a1. Then
d + a1 ∈ I+. Then (C) yields a ∧ (d + a1) ≤ a1. This implies a2 ∧ d =
[a+(−a1)]∧ [d+a1 +(−a1)] = [a∧ (d+a1)]+(−a1) ≤ 0. Clearly, 0 ≤ a2∧d.
Thus a2 ∧ d = 0. Then 0 ≤ |b| ≤ d yields 0 = 0 ∧ a2 ≤ |b| ∧ a2 ≤ d ∧ a2 = 0.
Hence a2 ∧ |b| = 0. Therefore, a2 ∈ P .

If a ∈ I+, then we can write a = a + 0 and hence each a ∈ A+ can be
written in the form a = a1 + a2, where a1 ∈ I+, a2 ∈ P .
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Let g ∈ A. In view of Remark 1, we have g = g ∧ 0 + g ∨ 0. Then g ∨ 0 =
(g∨ 0)1 +(g∨ 0)2, where (g∨ 0)1 ∈ I, (g∨ 0)2 ∈ P . Let g1 = g∧ 0+(g∨ 0)1,
g2 = (g ∨ 0)2. Since g ∧ 0 ∈ I, we have g1 ∈ I. Thus g = g1 + g2, where
g1 ∈ I, g2 ∈ P .

Let g = g1 + g2 = h1 + h2, where h1 ∈ I, h2 ∈ P . Thus g2 = h1 + h2 +
(−g1). Then g2 ∨ h2 = [h1 + h2 + (−g1)] ∨ h2 = [h1 + (−g1)] ∨ 0 + h2 ∈ P .
Since h2 = g1 + g2 + (−h1), we have g2 ∨ h2 = g2 ∨ [g1 + g2 + (−h1)] =
0∨ [g1 +(−h1)]+g2 ∈ P . Hence 2(g2∨h2) = [h1 +(−g1)]∨0+h2 +0∨ [g1 +
(−h1)]+g2 = g2 +h2 +(h1−g1)∨0∨ (g1−h1) = g2 +h2 + |h1 +(−g1)| ∈ P .
Since h1+(−g1) ∈ I and 2(g2∨h2) ∈ P , we get 0 = 2(g2∨h2)∧|h1+(−g1)| =
[g2+h2+|h1+(−g1)|]∧|h1+(−g1)| = |h1+(−g1)|+[(g2+h2)∧0] = |h1+(−g1)|.
This implies h1 = g1. Then clearly g2 = h2. Therefore, each g ∈ A is
uniquely represented in the form g = g1 + g2, where g1 ∈ I, g2 ∈ P . Clearly,
if g ∈ A+, then g is uniquely represented in the form g = g1 + g2, where
g1 ∈ I+, g2 ∈ P .

Let f , h ∈ A, f ≥ h, f = f1 + f2, h = h1 + h2, where f1, h1 ∈ I,
f2, h2 ∈ P . From f1 + f2 ≥ h1 + h2, we get f1 − h1 + f2 ≥ h2 ≥ 0.
This and f1 − h1 ∈ I, f2 ∈ P yield f1 − h1 ≥ 0. Hence f1 ≥ h1. Since
|f1 − h1| ∧ h2 = 0 and h2 ≤ f1 − h1 + f2 ≤ |f1 − h1| + f2, we get h2 =
h2 ∧ (f2 + h2) ≤ (|f1 − h1| + f2) ∧ (f2 + h2) = (|f1 − h1| ∧ h2) + f2 = f2.
Therefore, A = I × P .

Let A = I × P , a ∈ A+. Then a = aI + aP , where aI ∈ I+, aP ∈ P .
Since a ≥ aI , we have a ∧ aI = aI ∈ Ma. Let x ∈ I+. From the convexity
of I and x ≥ a ∧ x ≥ 0, it follows that a ∧ x ∈ I. Then a ≥ a ∧ x implies
aI ≥ (a ∧ x)I = a ∧ x. Therefore, aI is the greatest element of Ma.

A commutative l-monoid A is called a normal l-monoid if for each a, b ∈ A
such that a ≤ b there exists x ∈ A+ such that a + x = b.

Remark 2. In the definition of the normal l-monoid it suffices to require for
each a, b ∈ A such that a ≤ b the existence x ∈ A such that a + x = b, since
then there exists also a positive element y ∈ A such that a + y = b. In fact,
if we put y = x∨ 0, then we get a + y = a + x∨ 0 = (a + x)∨ a = b∨ a = b.

Theorem 4. Let A be a normal l-monoid, a, b ∈ A, a ≤ b, Sab = {x ∈
A; a + x = b}. Then Sab is a sublattice of A.

Proof. Let a, b, x, y ∈ A, a ≤ b, a + x = b, a + y = b. Then a + x ∨ y =
(a + x) ∨ (a + y) = b, a + x ∧ y = (a + x) ∧ (a + y) = b.

As a consequence of Theorem 2, we obtain:
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Corollary 2. If A is a normal l-monoid and I, P are as in Theorem 2,
then P is a normal l-monoid.

Proof. Let a, b ∈ P , a ≤ b. Then there exists x ∈ A+ such that a + x = b.
Since 0 ≤ a, we get 0 ≤ x ≤ a + x = b. By Theorem 2 (ii), x ∈ P . The rest
also follows by Theorem 2.

Lemma 2. Each negative element of a normal l-monoid A is invertible.

Proof. If a ∈ A, a ≤ 0, then there exists x ∈ A+ such that a + x = 0.

Theorem 5. The set I of all invertible elements of a normal l-monoid A
is a convex subset of A.

The proof is similar to the proof of Theorem 2 of [10].

By Theorem 3, Corollary 2, Lemma 2, and Theorem 5, we get the following
theorem:

Theorem 6. Let A be a normal l-monoid. Let I and P be as in Theorem 2.
Then A is the direct product of the l-group I and the normal l-emigroup P
with the least element 0 if and only if A satisfies condition (C).

The following example shows that there exists a commutative l-monoid H
such that each negative element of H is invertible, the set I of all invertible
elements of H is a convex subset of H and H satisfies the condition (C), but
H is not a normal l-monoid.

Example. Let (B,≤1) be the interval 〈0, 1〉 of real line with the natural
order. Let x⊕ y = y⊕ x = 1 for each x, y ∈ (0, 1〉 and let 0⊕ z = z ⊕ 0 = z
for each z ∈ 〈0, 1〉. Then (B,⊕,≤1) is a commutative l-monoid with the
least element 0, but not a normal l-monoid. Let (Z, +,≤) be the additive
group of all integers with the natural order. Then the direct product H of
(Z,+,≤) and (B,⊕,≤1) has the above mentioned properties.

Theorem 7. Each DRl-semigroup A is a normal l-monoid and satisfies
the condition (C) from Theorem 3. Moreover, 0 − (0 − a) is the greatest
element of Ma = {a ∧ x : x ∈ I+} for each a ∈ A+ r I, where I is the set
of all invertible elements of A.



On lattice-ordered monoids 107

Proof. Let A be a DRl-semigroup. Let x, y ∈ A, x ≤ y. From Lemma 8 of
[16] and Corollary of [16], p. 107, it follows that x + (y− x) = y, y− x ≥ 0.
Hence A is a normal l-monoid. Let a ∈ A+rI. Since a ≥ 0, from Lemmas 1
and 3 of [16], we get 0 − a ≤ 0 and 0 ≤ 0 − (0 − a). By Lemma 1.2 of [5],
0− (0−a) is the inverse of 0−a and hence 0−a, 0− (0−a) ∈ I. In view of
Lemma 13 of [16], 0−(0−a) ≤ a. Then a∧(0−(0−a)) = 0−(0−a). Hence
0 − (0 − a) ∈ Ma. Let x ∈ I+. From the convexity of I and x ≥ a ∧ x ≥ 0
we obtain a ∧ x ∈ I+. By Lemma 1.1 (i) of [5], 0 − (0 − (a ∧ x)) = a ∧ x.
Since a ≥ a∧x, in view of Lemma 3 of [16], we have 0− (a∧x) ≥ 0− a and
0 − (0 − a) ≥ 0 − (0 − (a ∧ x)) = a ∧ x. Hence 0 − (0 − a) is the greatest
element of Ma.

The following example shows that there exists a normal l-monoid satisfying
(C) which is not a DRl-semigroup.

Example. Let (IR, +,≤) be the additive group of all real number with the
natural order. Let (G,≤) be the interval <0, 1> of real line with the natural
order. Let G∞ = G∪{∞}. We put x ≤1 y if x ≤ y, x, y ∈ 〈0, 1〉 and x ≤1 ∞
for each x ∈ G∞. Further, for each x, y ∈ 〈0, 1〉 we put x⊕y = y⊕x = x+y
if x + y ≤ 1 and x⊕ y = y ⊕ x = ∞ if x + y > 1. Let x⊕∞ = ∞⊕ x = ∞
for each x ∈ G∞. Then (G∞,⊕,≤1) is a normal l-monoid with the least
element 0, but not a DRl-semigroup because ∞ − 1 there does not exist
in G∞. Then the direct product of (IR, +,≤) and (G∞,⊕,≤1) is a normal
l-monoid satisfying (C), but not a DRl-semigroup.

Hence Theorems 3 and 6 generalize The Representation Theorem 12 of
Kovař in [6].

Theorem 8. Let A be a finite normal l-monoid with the least element 0.
Then A is a DRl-semigroup and a + (b− a) = a ∨ b for each a, b ∈ A.

Proof. Let a, b ∈ A. Since a ≤ a ∨ b, there exists a1 ∈ A such that
a + a1 = a∨ b ≥ b. Let a1, . . . , an be all elements of A such that a + ai ≥ b,
i = 1, . . . , n. Then a + a1 ∧ · · · ∧ an = (a + a1) ∧ · · · ∧ (a + an) ≥ b.
Hence a1 ∧ · · · ∧ an = b − a. Since a1 ≥ a1 ∧ · · · ∧ an = b − a, we have
a + (b − a) ≤ a + a1 = a ∨ b. From b − a ≥ 0, we obtain a + (b − a) ≥ a.
Then a + (b− a) ≥ a ∨ b. Therefore, a ∨ b = a + (b− a) = a + (b− a) ∨ 0.

Theorem 9. In any finite normal l-monoid, 0 is the least element.

Proof. If x is an element of a finite normal l-monoid A, then from Theorem
1 and Lemma 1, it follows that x ∧ 0 is an element of the l-group I of all
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invertible elements of A. If x ∧ 0 < 0, then I is infinite, a contradiction.
Hence x ∧ 0 = 0. Therefore, 0 is the least element of A.

From Theorems 8 and 9, we immediately obtain:

Theorem 10. Any finite normal l-monoid is a DRl-semigroup.

Let x be an element of an l-group G. Then x+ = x∨ 0 is called the positive
part of x and x− = x ∧ 0 is called the negative part of x. (See Birkhof [1],
p. 293, Fuchs [3], p. 75.) We use the same definition x+ and x− also for an
element x of an l-monoid A.

Remark 3. For the negative part x− of an element x in an l-group, formula
x− = (−x) ∨ 0 was used in [6]. Hansen defined in [4] the negative part x−

of an element x of a DRl-semigroup by the formula x− = (0− x) ∨ 0. The
negative part x− of x is a positive element in these cases.

The elements x+ and x− in an l-monoid A have analogous properties as
in an l-group.

Theorem 11. Let A be an l-monoid, x, y ∈ A. Then

(i) x = x+ if and only if x ≥ 0,

(ii) x = x− if and only if x ≤ 0,

(iii) (x + y)+ ≤ x+ + y+, (x + y)− ≥ x− + y−.

The proof is obvious.

Lemma 3. Let A be a normal l-monoid. Let x ∈ A, and let b, c ∈ A+ such
that x ∧ 0 + b = x, x ∧ 0 + c = 0. Then b = x ∨ 0 = x + c, b + c = b ∨ c,
b ∧ c = 0.

Proof. Let x ∈ A, b, c ∈ A+, x ∧ 0 + b = x, x ∧ 0 + c = 0. In view of
Remark 1, we have b = b+0 = b+x∧0+c = x+c = x∨0+x∧0+c = x∨0.
Further we get b + c = x∨ 0 + c = b∨ c, b∧ c = (x + c)∧ c = (x∧ 0) + c = 0.

Theorem 12. Let A be a normal l-monoid, x ∈ A, n ∈ IN. Then n(x−) =
(nx)−, n(x+) = (nx)+.
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Proof. Let x ∈ A, n ∈ N . Let b, c ∈ A+ such that x ∧ 0 + b = x,
x ∧ 0 + c = 0. By Lemma 3, b ∧ c = 0. From Lemma 1 and Remark 1, it
follows that nb ∧ nc = 0, nb + nc = nb ∨ nc. Then (nx)− = (nx) ∧ (n0) =
[n(x∧0)+nb]∧[n(x∧0)+nc] = n(x∧0)+nb∧nc = n(x∧0) = n(x−). In view
of Lemma 3, we have (nx)+ = (nx)∨(n0) = [n(x∧0)+nb]∨ [n(x∧0)+nc] =
n(x∧0)+nc∨nb = n(x∧0)+nc+nb = n(x∧0+ c)+nb = nb = n(x∨0) =
n(x+).

Remark 4. Kovař showed in [7] (p. 16) that for any element x of an
l-monoid A the following assertions are valid:

(i) a = a ∧ 0 + a ∨ 0 = a ∨ 0 + a ∧ 0,

(ii) n(a ∧ 0) = na ∧ (n− 1)a ∧ · · · ∧ a ∧ 0, where n ∈ IN.

Then, clearly, a + a ∧ 0 = a ∧ 0 + a, a + a ∨ 0 = a ∨ 0 + a, n(a ∨ 0) =
na ∨ (n− 1)a ∨ · · · ∨ a ∨ 0 for any a ∈ A, n ∈ IN.

Lemma 4. Let A be an l-monoid, a ∈ A, and n ∈ IN. Then:

(i) If 2a ≥ 0, then a ≥ 0;

(ii) If na ≥ 0, then (n + 1)a ≥ 0.

Proof. (i): Let a ∈ A, and 2a ≥ 0. Then 2(a ∧ 0) = 2a ∧ a ∧ 0 = a ∧ 0.
Hence a = a ∧ 0 + a ∨ 0 = 2(a ∧ 0) + a ∨ 0 = a ∧ 0 + a. Further, we have
2(a ∨ 0) = 2a ∨ a ∨ 0 = 2a ∨ a = a + a ∨ 0. Then a = a ∧ 0 + a ∨ 0 =
(a + a ∨ 0) ∧ (a ∨ 0) = 2(a ∨ 0) ∧ (a ∨ 0) = a ∨ 0. Therefore, a ≥ 0.

(ii): Let a ∈ A, n ∈ IN, and na ≥ 0. Then n(a ∧ 0) = na ∧ (n − 1)a ∧
· · · ∧ a ∧ 0 = (n − 1)a ∧ · · · ∧ a ∧ 0 = (n − 1)(a ∧ 0). Hence (n + 1)a =
(n + 1)(a ∨ 0) + a ∧ 0 + n(a ∧ 0) = (n + 1)(a ∨ 0) + a ∧ 0 + (n− 1)(a ∧ 0) =
a ∨ 0 + n(a ∨ 0) + n(a ∧ 0) = a ∨ 0 + na ≥ 0.

The following theorem generalizes Lemmas 16 and 17 of paper [16] by
Swamy.

Theorem 13. Let A be an l-monoid, a ∈ A, and n ∈ IN. Then:

(i) If na ≥ 0, then a ≥ 0;

(ii) If na ≤ 0, then a ≤ 0;

(iii) If na = 0, then a = 0.
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Proof. (i): We prove this statement by induction on n. The statement is
valid for n = 1. Suppose that the statement is valid for all k ∈ IN, such that
k ≤ n.

Let (n + 1)a ≥ 0. If n + 1 is an even number, then n + 1 = 2m, where
m ∈ IN, and m ≤ n. In view of Lemma 4 (i), from 0 ≤ (n + 1)a = 2(ma),
we obtain 0 ≤ ma. Hence 0≤a. If n+1 is an odd number, then n+2 is an
even number and n + 2 = 2s, where s ∈ IN, and s ≤ n. By Lemma 4 (ii),
0 ≤ (n + 2)a = 2(sa). Then, from Lemma 4 (i), it follows that 0 ≤ sa.
Therefore, 0 ≤ a.

Assertion (ii) can be proved dually.
(iii): It follows from (i) and (ii).

Theorem 14. Let S be an l-monoid, and S = A×B. Then:

(i) A, B are convex sublattices of S,

(ii) (x ∧ y)A = xA ∧ yA, (x ∧ y)B = xB ∧ yB for each x, y ∈ S,

(iii) (x ∨ y)A = xA ∨ yA, (x ∨ y)B = xB ∨ yB for each x, y ∈ S,

(iv) if S is normal, then A and B are normal l-monoids.

Proof. (i): Let u, v ∈ A, z ∈ S, and u ≤ z ≤ v. Then 0 = uB ≤ zB ≤ vB =
0. Thus zB = 0 and hence z = zA ∈ A. Let x, y ∈ A. Since x∧ y ≤ x, y, we
have (x∧y)A ≤ xA = x, (x∧y)A ≤ yA = y. Thus (x∧y)A ≤ x∧y ≤ x. From
the convexity of A, we get x∧ y ∈ A. Similarly, x∨ y ∈ A. Analogously, we
can show that B is a convex sublattice of S.

(ii) and (iii) are obvious.
(iv): Let x, y ∈ A, x ≤ y. Then there exists z ∈ S+, such that x+z = y.

Hence xA + zA = yA, xB + zB = yB. Since xB = yB = 0, we have zB = 0.
Therefore, z = zA ∈ A+. By (i), A is a lattice. The rest is obvious. Similarly,
B is a normal l-monoid.

If A is a commutative l-monoid and A = I × P , where I and P are as
in Theorem 2, then A is called a decomposable l-monoid.

Theorem 15. Let A be a decomposable l-monoid, x ∈ A. Then:

(i) x+ = (xI)+ + xP ,

(ii) x− = (xI)−,

(iii) x+ ∧ (−x−) = 0.
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Proof. (i): In view of Theorem 14, we have x+ = x∨0 = xI ∨0+xP ∨0 =
(xI)+ + xP .

The proof of (ii) is analogous.
(iii): Since a+ ∧ (−a)+ = 0 for any element a of an l-group (see [1],

p. 295), in view of (i), (ii), Theorem 1 and 14, we have x+ ∧ (−x−) =
[(xI)+ +xP ]∧ [−(xI)−] = (xI)+ ∧ [−(xI)−] +xP ∧ 0 = (xI)+ ∧ [−(xI ∧ 0)] =
(xI)+ ∧ (−xI)+ = 0 for each x ∈ A.

The absolute value |x| of an element x in an l-group G is defined by
the formula |x| = (−x)∨ x. We cannot use this definition for decomposable
l-monoids. But we can define the absolute value |x| of an element x in a
decomposable l-monoid analogously as in [6]: |x| = |xI |+ xP , where |xI | is
the absolute value of xI in the l-group I. A such defined absolute value has
analogous properties as the absolute value in an l-group.

Theorem 16. Let A be a decomposable l-monoid, x, y ∈ A, n ∈ N . Then

(i) |x| = 0 if and only if x = 0,

(ii) if x ≥ 0, then |x| = x,

(iii) if x ≤ 0, then |x| = −x,

(iv) |x| = x+ − x− = x+ ∨ (−x−),

(v) n|x| = |nx|,
(vi) |x|+ |y| ≥ |x + y|,
(vii) |x|+ |y| ≥ |x| ∨ |y| ≥ |x ∨ y|, |x| ∨ |y| ≥ |x ∧ y|.

Proof. (i): Let |x| = 0. Then |xI |+ xP = 0 implies xI = 0, xP = 0. Hence
x = 0. If x =0, then xI = 0, xP = 0. Hence |x| = 0.

(ii): Let x ≥ 0. Then xI ≥ 0. Thus |x| = |xI |+ xP = xI + xP = x.

(iii): Let x ≤ 0. Then xI ≤ 0, xP =0. Hence |x|= |xI |+xP =−xI =−x.

(iv): In view of Theorem 15 and Theorem 7 of [1] (p. 295), we have
x+ − (x−) = (xI)+ + xP − [(xI)−] = |xI | + xP = |x|. By Remark 1 and
Theorem 15 (iii), x+ − (x−) = x+ ∨ (−x−) + x+ ∧ (−x−) = x+ ∨ (−x−).

(v): By Theorem 8 of [1] (p. 296), we get n|x| = n(|xI | + xP ) =
n|xI |+ nxP = |nxI |+ (nx)P = |(nx)I |+ (nx)P = |nx|.

(vi): If a, b are elements of a commutative l-group, then |a|+|b| ≥ |a+b|
(see [3], p. 76). Let x, y ∈ A. Then, we have |x|+|y| = |xI |+xP +|yI |+yP =
|xI |+ |yI |+(x+ y)P ≥ |xI + yI |+(x+ y)P = |(x+ y)I |+(x+ y)P = |x+ y|.
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(vii): Let x, y ∈ A. Since xP , yP ≥ 0, we get xP + yP ≥ xP ∨ yP . By
assertion M) of [3] (p. 76), |a| + |b| ≥ |a| ∨ |b| ≥ |a ∨ b| for any elements a,
b of an l-group. In view of Theorem 14, we obtain |x| + |y| = |xI | + xP +
|yI | + yP ≥ |xI | ∨ |yI | + xP ∨ yP = (|xI | + xP ) ∨ (|yI | + yP ) = |x| ∨ |y| =
[xI ∨ (−xI)]∨ [yI ∨ (−yI)]+xP ∨yP ≥ [xI ∨yI ]∨ [(−xI)∧ (−yI)]+xP ∨yP =
|xI ∨ yI | + xP ∨ yP = |(x ∨ y)I | + (x ∨ y)P = |x ∨ y|. Further, we have
|x|∨ |y| = [xI ∨ (−xI)]∨ [yI ∨ (−yI)]+xP ∨yP ≥ [xI ∧yI ]∨ [(−xI)∨ (−yI)]+
xP ∨ yP ≥ |xI ∧ yI |+ xP ∧ yP = |(x ∧ y)I |+ (x ∧ y)P = |x ∧ y|.
Let A be a decomposable l-monoid, and B ⊆ A. Then

B⊥ = {x ∈ A : |x| ∧ |y| = 0 for each y ∈ B}
is called the polar of the set B.

Remark 5. In a decomposable l-monoid A, the l-semigroup P is the polar
of the l-group I. In fact, if x ∈ I⊥, then 0 = |x| ∧ |xI | = (|xI |+ xP )∧ |xI | =
|xI | + xP ∧ 0 = |xI |. Thus xI = 0 and hence x = xP ∈ P . If z ∈ P , then
0 = z ∧ |y| = |z| ∧ |y| for each y ∈ I. Therefore, P = I⊥.

Theorem 17. Let A be a decomposable l-monoid, B ⊆ A. Then B⊥ is an
l-monoid and a convex sublattice of A.

Proof. Let x, y ∈ B⊥. Then |x| ∧ |z| = 0, |y| ∧ |z| = 0 for each z ∈ B. By
Lemma 1, (|x| + |y|) ∧ |z| = 0 for each z ∈ B. Clearly, 0 ∈ B. In view of
Theorem 16 (vi) and (vii), we obtain 0 = (|x|+ |y|)∧ |z| ≥ |x + y| ∧ |z| ≥ 0,
0 = (|x|+ |y|)∧ |z| ≥ |x∨ y| ∧ |z| ≥ 0, 0 = (|x|+ |y|)∧ |z| ≥ |x∧ y| ∧ |z| ≥ 0
and hence (|x + y|) ∧ |z| = 0, |x ∨ y| ∧ |z| = 0, |x ∧ y| ∧ |z| = 0 for each
z ∈ B. Therefore, x + y, x ∨ y, x ∧ y ∈ B⊥. Thus B⊥ is an l-monoid and a
sublattice of A.

Let a, b ∈ B⊥, u ∈ A, and a ≥ u ≥ b. Then aI ≥ uI ≥ bI , aP ≥ uP ≥ bP

and hence aI−bI ≥ uI−bI ≥ 0. By Theorem 16 (ii), |aI−bI | ≥ |uI−bI | ≥ 0,
|aP | ≥ |uP | ≥ 0. Since a ∈ B⊥, we get 0 = |a|∧|z| = (|aI |+aP )∧|z| ≥ |aI |∧
|z| ≥ 0 for each z ∈ B and hence aI ∈ B⊥. Similarly, bI ∈ B⊥. Analogously,
aP , bP ∈ B⊥. In view of Lemma 1 and Theorem 16 (vi), we obtain 0 =
(|aI |+|bI |)∧|z| = (|aI |+|−bI |)∧|z| ≥ (|aI−bI |)∧|z| ≥ (|uI−bI |)∧|z| ≥ 0 for
each z ∈ B. Then (|uI−bI |)∧|z| = 0 for each z ∈B and hence uI−bI ∈ B⊥.
Therefore, (uI − bI) + bI = uI ∈ B⊥. Further, we have 0 = |aP | ∧ |z| ≥
|uP | ∧ |z| ≥ 0 for each z ∈ B. Thus |uP | ∧ |z| = 0 for each z ∈ B and hence
uP ∈ B⊥. Therefore, uI + uP = u ∈ B⊥.
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Theorem 18. Let A be a decomposable l-monoid, B, D ⊆ A. Then:
(i) if B ⊆ D, then B⊥ ⊇ D⊥,

(ii) B ⊆ B⊥⊥,

(iii) B⊥ = B⊥⊥⊥.

The proofs of (i) and (ii) are obvious. Assertion (iii) follows from (i) and
(ii).
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[7] T. Kovář, A general theory of dually residuated lattice-ordered monoids, Ph.D.
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